/usr/include/trilinos/Thyra_DefaultScaledAdjointLinearOp_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | // @HEADER
// ***********************************************************************
//
// Thyra: Interfaces and Support for Abstract Numerical Algorithms
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef THYRA_DEFAULT_SCALED_ADJOINT_LINEAR_OP_DECL_HPP
#define THYRA_DEFAULT_SCALED_ADJOINT_LINEAR_OP_DECL_HPP
#include "Thyra_ScaledAdjointLinearOpBase.hpp"
#include "Teuchos_ConstNonconstObjectContainer.hpp"
namespace Thyra {
/** \brief Concrete decorator <tt>LinearOpBase</tt> subclass that wraps a
<tt>LinearOpBase</tt> object and adds on an extra scaling factor and/or a
transpose enum.
This class represents a scaled, adjointed (transposed) linear operator
<tt>M</tt> of the form:
\verbatim
M = scalar * op(Op)
\endverbatim
where <tt>Op</tt> is another <tt>LinearOpBase</tt> object, <tt>scalar</tt> is
a <tt>Scalar</tt>, and the operation <tt>op(Op)</tt> is specified by a
<tt>EOpTransp</tt> and is given as <tt>op(Op) = Op</tt> (<tt>NOTRANS</tt>), or
<tt>op(Op) = Op^T</tt> (<tt>TRANS</tt>), or <tt>op(Op) = Op^H</tt>
(<tt>CONJTRANS</tt>). Of course the operator <tt>M</tt> is not constructed
explicitly but instead just applies the decorated operator <tt>Op</tt> by
modifying the <tt>apply()</tt> function that calls <tt>Op.apply()</tt>.
This subclass is designed to allow the efficient handling of multiple implicit
scalings and/or adjoints (transposes) and allow these implicit
transformations to be reversed. A sequence of scalings/adjoints from some
original <tt>LinearOpBase</tt> object <tt>origOp</tt> is shown as:
\verbatim
M = scalar_n * op_n( ... scalar_2 * op_2( scalar_1 * op_1( origOp ) ) ... )
=>
M = overallScalar * overall_op(origOp)
\endverbatim
where <tt>overallScalar</tt> and <tt>overall_op(...)</tt> are the cumulative
transformations given as:
\verbatim
overallScalar = scalar_n * ... * scalar_2 * ... * scalar_1
overall_op(origOp) = op_n( ... op_2( op_1( ... op_n( origOp ) ... ) ) )
\endverbatim
Each individual transformation pair <tt>(scalar_i,op_i(...))</tt> is specified
with arguments <tt>Scalar scalar</tt> and <tt>EOpTransp transp</tt>. The
overall scaling is returned using <tt>this->overallScalar()</tt>, the overall
adjoint enum is returned using <tt>this->overallTransp()</tt>, and the
original linear operator is returned from <tt>this->getOrigOp()</tt>.
The operator most recently wrapped is returned from <tt>this->getOp()</tt>.
The individual scalings and transformations are not exposed from this
interface but can be viewed by calling <tt>this->description()</tt> with a
verbosity level of ???. The arguments passed into the constructor
<tt>DefaultScaledAdjointLinearOp()</tt> or <tt>initialize()</tt> can always be
extracted using <tt>uninitialize()</tt>.
This subclass keeps track of all of the individual scalings <tt>scalar_i</tt>
and adjoining operations <tt>op_i(...)</tt> so that the <tt>description()</tt>
function can print this out and also so that the operations can be reversed.
The copy constructor and assignment operators are declared private since some
thought needs to be put into what they should mean.
Note: This class does not maintain any specific cached information about the
original operator so it is safe, in some cases, to manipulate the original
operator and still keep <tt>this</tt> intact and automatically updated for any
changes that are made.
\ingroup Thyra_Op_Vec_ANA_Development_grp
*/
template<class Scalar>
class DefaultScaledAdjointLinearOp
: virtual public ScaledAdjointLinearOpBase<Scalar>
{
public:
/** @name Constructors/initializers/accessors */
//@{
/** \brief Constructs to uninitialized.
*
* Postconditions:<ul>
* <li><tt>this->range().get()==NULL</tt>
* </ul>
*/
DefaultScaledAdjointLinearOp();
/** \brief Calls <tt>initialize()</tt>.
*
* Note, instead of calling this constructor directly consider using the
* non-member functions described belos which create dynamically allocated
* <tt>RCP</tt>-wrapped objects.
*/
DefaultScaledAdjointLinearOp(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<LinearOpBase<Scalar> > &Op
);
/** \brief Calls <tt>initialize()</tt>.
*
* Note, instead of calling this constructor directly consider using the
* non-member functions described belos which create dynamically allocated
* <tt>RCP</tt>-wrapped objects.
*/
DefaultScaledAdjointLinearOp(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<const LinearOpBase<Scalar> > &Op
);
/** \brief Initialize with an operator with by defining adjoint (transpose) and
* scaling arguments.
*
* \param scalar [in] Scalar argument defining <tt>scalar_0</tt> (see
* introduction).
*
* \param transp [in] Transpose argument defining <tt>op_0(...)</tt> (see
* introduction).
*
* \param Op [in] Smart pointer to linear operator (persisting
* relationship).
*
*
* Preconditions:<ul>
* <li><tt>Op.get() != NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li>ToDo: Fill these in!!!!
* </ul>
*/
void initialize(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<LinearOpBase<Scalar> > &Op
);
/** \brief Initialize with an operator with by defining adjoint (transpose) and
* scaling arguments.
*
* \param scalar [in] Scalar argument defining <tt>scalar_0</tt> (see
* introduction).
*
* \param transp [in] Transpose argument defining <tt>op_0(...)</tt> (see
* introduction).
*
* \param Op [in] Smart pointer to linear operator (persisting
* relationship).
*
* Preconditions:<ul>
* <li><tt>Op.get() != NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li>ToDo: Fill these in!!!!
* </ul>
*/
void initialize(
const Scalar &scalar
,const EOpTransp &transp
,const RCP<const LinearOpBase<Scalar> > &Op
);
/** \brief Return the non-const linear operator passed into
* <tt>initialize()</tt>.
*/
RCP<LinearOpBase<Scalar> > getNonconstOp();
/** \brief Return the const linear operator passed into
* <tt>initialize()</tt>.
*/
RCP<const LinearOpBase<Scalar> > getOp() const;
/** \brief Set to uninitialized and (optionally) extract the objects passed into <tt>initialize()</tt>.
*
* Postconditions:<ul>
* <li><tt>this->range().get()==NULL</tt>
* </ul>
*/
void uninitialize();
//@}
/** @name Overridden from Teuchos::Describable */
//@{
/** \brief Outputs
* <tt>DefaultScaledAdjointLinearOp<Scalar>{this->getOrigOp().description())</tt>
* along with the dimensions.
*/
std::string description() const;
/** \brief Prints out the original operator as well as all of the scalings
* and transpositions in the order that they occurred.
*
* This function outputs different levels of detail based on the value passed in
* for <tt>verbLevel</tt>:
*
* ToDo: Finish documentation!
*/
void describe(
Teuchos::FancyOStream &out,
const Teuchos::EVerbosityLevel verbLevel
) const;
//@}
/** @name Overridden from LinearOpBase */
//@{
/** \brief Return the range space of the logical linear operator.
*
* Simply returns: \code
return ( this->overallTransp()==NOTRANS ? this->getOrigOp()->range() : this->getOrigOp()->domain() );
\endcode
*/
RCP<const VectorSpaceBase<Scalar> > range() const;
/** \brief Return the domain space of the logical linear operator.
*
* Simply returns: \code
return ( this->overallTransp()==NOTRANS ? this->getOrigOp()->domain() : this->getOrigOp()->range() );
\endcode
*/
RCP<const VectorSpaceBase<Scalar> > domain() const;
/** \brief . */
RCP<const LinearOpBase<Scalar> > clone() const;
//@}
/** \name Overridden from ScaledAdointLinearOpBase */
//@{
/** \brief . */
Scalar overallScalar() const;
/** \brief . */
EOpTransp overallTransp() const;
/** \brief . */
RCP<LinearOpBase<Scalar> > getNonconstOrigOp();
/** \brief . */
RCP<const LinearOpBase<Scalar> > getOrigOp() const;
//@}
protected:
/** @name Overridden from LinearOpBase */
//@{
/** \brief Return if the operation is supported on the logical linear
* operator.
*
* Simply returns: \code
return this->getOrigOp()->opSupported(trans_trans(this->overallTransp(),M_trans));
\endcode
*/
bool opSupportedImpl(EOpTransp M_trans) const;
/** \brief Apply the linear operator (or its transpose) to a multi-vector :
* <tt>Y = alpha*op(M)*X + beta*Y</tt>.
*
* Simply calls: \code
this->getOrigOp()->apply(trans_trans(M_trans,this->overallTransp()),X,Y,(this->overallScalar()*alpha),beta)
\endcode
*/
void applyImpl(
const EOpTransp M_trans,
const MultiVectorBase<Scalar> &X,
const Ptr<MultiVectorBase<Scalar> > &Y,
const Scalar alpha,
const Scalar beta
) const;
//@}
private:
// ////////////////////////////////
// Private types
template <class Scalar2>
struct ScalarETransp {
Scalar2 scalar;
EOpTransp transp;
ScalarETransp()
{}
ScalarETransp( const Scalar2 &_scalar, const EOpTransp &_transp )
: scalar(_scalar), transp(_transp)
{}
};
typedef std::vector<ScalarETransp<Scalar> > allScalarETransp_t;
typedef Teuchos::ConstNonconstObjectContainer<LinearOpBase<Scalar> > CNLOC;
// ////////////////////////////////
// Private data members
CNLOC origOp_;
Scalar overallScalar_;
EOpTransp overallTransp_;
int my_index_;
RCP<allScalarETransp_t> allScalarETransp_;
// ////////////////////////////////
// Private member functions
void initializeImpl(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<const LinearOpBase<Scalar> > &Op,
const bool isConst
);
CNLOC getOpImpl() const;
void assertInitialized() const;
// Not defined and not to be called
DefaultScaledAdjointLinearOp(const DefaultScaledAdjointLinearOp<Scalar>&);
DefaultScaledAdjointLinearOp<Scalar>& operator=(const DefaultScaledAdjointLinearOp<Scalar>&);
};
/** \brief Build an implicit non-<tt>const</tt> scaled linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(scalar,NOTRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<LinearOpBase<Scalar> >
nonconstScale(
const Scalar &scalar,
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit <tt>const</tt> scaled linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(scalar,NOTRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<const LinearOpBase<Scalar> >
scale(
const Scalar &scalar,
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit non-<tt>const</tt> adjoined linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(Teuchos::ScalarTraits<Scalar>::one(),CONJTRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<LinearOpBase<Scalar> >
nonconstAdjoint(
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit <tt>const</tt> adjoined linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(Teuchos::ScalarTraits<Scalar>::one(),CONJTRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<const LinearOpBase<Scalar> >
adjoint(
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit non-<tt>const</tt> transposed linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(Teuchos::ScalarTraits<Scalar>::one(),TRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<LinearOpBase<Scalar> >
nonconstTranspose(
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit <tt>const</tt> transposed linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(Teuchos::ScalarTraits<Scalar>::one(),TRANS,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<const LinearOpBase<Scalar> >
transpose(
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit non-<tt>const</tt> scaled and/or adjoined
* (transposed) linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(scale,transp,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<LinearOpBase<Scalar> >
nonconstScaleAndAdjoint(
const Scalar &scalar, const EOpTransp &transp,
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
/** \brief Build an implicit <tt>const</tt> scaled and/or adjoined
* (transposed) linear operator.
*
* Returns <tt>Teuchos::rcp(new
* DefaultScaledAdjointLinearOp<Scalar>(scale,transp,Op)</tt>.
*
* Preconditions:<ul>
* <li><tt>Op.get()!=NULL</tt>
* </ul>
*
* Postconditions:<ul>
* <li><tt>return.get()!=NULL</tt>
* </ul>
*
* \relates DefaultScaledAdjointLinearOp
*/
template<class Scalar>
RCP<const LinearOpBase<Scalar> >
scaleAndAdjoint(
const Scalar &scalar, const EOpTransp &transp,
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label = ""
);
// /////////////////////////////////
// Inline members
template<class Scalar>
inline
DefaultScaledAdjointLinearOp<Scalar>::DefaultScaledAdjointLinearOp()
:overallScalar_(Teuchos::ScalarTraits<Scalar>::zero())
,overallTransp_(NOTRANS)
{}
template<class Scalar>
inline
DefaultScaledAdjointLinearOp<Scalar>::DefaultScaledAdjointLinearOp(
const Scalar &scalar
,const EOpTransp &transp
,const RCP<LinearOpBase<Scalar> > &Op
)
:overallScalar_(Teuchos::ScalarTraits<Scalar>::zero())
,overallTransp_(NOTRANS)
{
this->initialize(scalar,transp,Op);
}
template<class Scalar>
inline
DefaultScaledAdjointLinearOp<Scalar>::DefaultScaledAdjointLinearOp(
const Scalar &scalar
,const EOpTransp &transp
,const RCP<const LinearOpBase<Scalar> > &Op
)
:overallScalar_(Teuchos::ScalarTraits<Scalar>::zero())
,overallTransp_(NOTRANS)
{
this->initialize(scalar,transp,Op);
}
template<class Scalar>
inline
void DefaultScaledAdjointLinearOp<Scalar>::assertInitialized() const
{
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPT( origOp_.getConstObj().get() == NULL );
#endif
}
} // end namespace Thyra
// /////////////////////////////////
// Inline non-members
template<class Scalar> inline
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Thyra::nonconstScale(
const Scalar &scalar,
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
scalar,NOTRANS,Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<const Thyra::LinearOpBase<Scalar> >
Thyra::scale(
const Scalar &scalar,
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(scalar,NOTRANS,Op)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Thyra::nonconstAdjoint(
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
Teuchos::ScalarTraits<Scalar>::one(),CONJTRANS,Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<const Thyra::LinearOpBase<Scalar> >
Thyra::adjoint(
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
Teuchos::ScalarTraits<Scalar>::one(),CONJTRANS,Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Thyra::nonconstTranspose(
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
Teuchos::ScalarTraits<Scalar>::one(),TRANS,Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<const Thyra::LinearOpBase<Scalar> >
Thyra::transpose(
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
Teuchos::ScalarTraits<Scalar>::one(),TRANS,Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<Thyra::LinearOpBase<Scalar> >
Thyra::nonconstScaleAndAdjoint(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(scalar,transp,Op)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
template<class Scalar> inline
Teuchos::RCP<const Thyra::LinearOpBase<Scalar> >
Thyra::scaleAndAdjoint(
const Scalar &scalar,
const EOpTransp &transp,
const RCP<const LinearOpBase<Scalar> > &Op,
const std::string &label
)
{
RCP<Thyra::LinearOpBase<Scalar> >
salo = Teuchos::rcp(
new DefaultScaledAdjointLinearOp<Scalar>(
scalar, transp, Op
)
);
if (label.length())
salo->setObjectLabel(label);
return salo;
}
#endif // THYRA_DEFAULT_SCALED_ADJOINT_LINEAR_OP_DECL_HPP
|