This file is indexed.

/usr/include/trilinos/Thyra_DefaultLumpedParameterModelEvaluator.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_DEFAUL_LUMPED_PARAMETER_LUMPED_MODEL_EVALUATOR_HPP
#define THYRA_DEFAUL_LUMPED_PARAMETER_LUMPED_MODEL_EVALUATOR_HPP


#include "Thyra_ModelEvaluatorDelegatorBase.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_DetachedVectorView.hpp"
#include "Teuchos_ParameterListAcceptor.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_Time.hpp"
#include "Teuchos_Assert.hpp"
#include "Teuchos_as.hpp"

#include "sillyModifiedGramSchmidt.hpp" // This is just an example!


namespace Thyra {


/** \brief Decorator class that wraps any ModelEvaluator object and lumps
 * parameters together using a linear basis matrix.
 *
 * \section Thyra_DefaultLumpedParameterModelEvaluator_intro_sec Introduction
 *
 * The purpose of this Decorator class is to provide a linear basis reduction,
 * or "lumping", for a set of parameters.  Let <tt>p_orig</tt> be one of the
 * parameter subvectors of the underlying model
 * <tt>*getUnderlyingModel()</tt>.  This class provides an affine model for
 * the reduced parameters:
 
 \verbatim

   p_orig = B * p + p_orig_base

 \endverbatim

 * where <tt>B</tt> is some <tt>MultiVectorBase</tt> object with linearly
 * independent columns where
 * <tt>B.range()->isCompatible(*p_orig.space())==true</tt> and
 * <tt>B.domain()->dim() <= B.range()->dim()</tt>.  The basis matrix
 * <tt>B</tt> can be set by the client or can be generated automatically in
 * this object for any number of columns.  The vector <tt>p_orig_base</tt> is
 * generally selected to be the nominal values of the original parameters
 * <tt>p_orig</tt> in which case <tt>p == 0</tt> gives the original nominal
 * values and <tt>p != 0</tt> gives a perturbation from the nominal values.
 * This is the default option but a different base vector can be set.  Note
 * that storing <tt>B</tt> as a column-wise multi-vector allows the space
 * <tt>*p_orig.space()</tt> to be any arbitrary vector space, including a
 * parallel distributed vector space in an SPMD program.  It is this
 * flexibility that truly makes this decorator class an ANA class.
 *
 * The reduced parameter subvector <tt>p</tt> is what is exposed to an ANA
 * client dnd the original parameter subvector <tt>p_orig</tt> is what is
 * passed to the original underlying model.  Note that given <tt>p</tt>,
 * <tt>p_orig</tt> is uniquely determined but opposite is not true in general
 * (see Section \ref Thyra_DefaultLumpedParameterModelEvaluator_mapping_sec).
 *
 * \section Thyra_DefaultLumpedParameterModelEvaluator_derivs_sec Derivatives
 *
 * The reduced basis <tt>B</tt> of course affects the definition of all of the
 * derivatives with respect to the given parameter subvector.  The
 * relationship between the derivative of any function <tt>h</tt> with respect
 * to <tt>p_orig</tt> and <tt>p</tt> is:

 \verbatim

   d(h)/d(p) = d(h)/d(p_orig) * B

 \endverbatim

 * When <tt>d(h)/d(p)</tt> is only needed as a linear operator, both
 * <tt>d(h)/d(p_orig)</tt> and <tt>B</tt> would just need to be supplied as
 * general linear operators and then the multiplied linear operator
 * <tt>d(h)/d(p_orig)*B</tt> could be represented implicitly using a
 * <tt>Thyra::DefaultMultipliedLinearOp</tt> subclass object.
 *
 * When <tt>d(h)/d(p)</tt> is only needed as a column-wise multi-vector, then
 * <tt>d(h)/d(p_orig)</tt> is only needed as a general linear operator and
 * <tt>B</tt> must be a column-wise multi-vector.
 *
 * Lastly, when the row-wise transpose multi-vector form of
 * <tt>d(h)/d(p)^T</tt> is requested, it can be computed as:

 \verbatim

   d(h)/d(p)^T = B^T * d(h)/d(p_orig)^T

 \endverbatim

 * which requires that <tt>d(h)/d(p_orig)^T</tt> be supplied in row-wise
 * transpose multi-vector form but <tt>B</tt> could actually just be a general
 * linear operator.  This would allow for huge spaces for <tt>p_orig</tt> and
 * <tt>p</tt> which may be of some use for adjoint-based sensitivity methods.
 *
 * Since the current implementation in this class requires <tt>B</tt> be a
 * multi-vector, both forms <tt>d(h)/d(p)</tt> and <tt>d(h)/d(p)^T</tt> can be
 * supported.  In the future, it would be possible to support the
 * implementation of <tt>B</tt> as a general linear operator which would mean
 * that very large full and reduced parameter spaces could be supported.
 * However, focusing on small reduced parameter spaces is the very motivation
 * for this decorator subclass and therefore requiring that <tt>B</tt> be
 * represented as a multi-vector is not a serious limitation.
 *
 * \section Thyra_DefaultLumpedParameterModelEvaluator_mapping_sec Mapping between fully and reduced parameters
 *
 * In cases where <tt>p_orig</tt> is given and <tt>p</tt> must be determined,
 * in general there is no solution for <tt>p</tt> that will satisfy
 * <tt>p_orig=B*p+p_orig_base</tt>.
 *
 * To support the (overdetermined) mapping from <tt>p_orig</tt> to <tt>p</tt>,
 * we choose <tt>p</tt> to solve the classic linear least squares problem:
 
 \verbatim

   min   0.5 * (B*p + p_orig_base - p_orig)^T * (B*p + p_orig_base - p_orig)

 \endverbatim

 * This well known linear least squares problem has the solution:
 
 \verbatim

   p = inv(B^T * B) * (B^T * (-p_orig_base+p_oirg))

 \endverbatim
 
 * This approach has the unfortunate side effect that we can not completely
 * represent an arbitrary vector <tt>p_orig</tt> with a reduced <tt>p</tt> but
 * this is the nature of this approximation for both good and bad.
 *
 * The one case in which a unique reduced <tt>p</tt> can be determined is when
 * <tt>p_orig</tt> was computed from the afffine relationship given <tt>p</tt>
 * and therefore we expect a zero residual meaning that
 * <tt>(p_orig_base-p_oirg)</tt> lies in the null-space of <tt>B</tt>.  This
 * is handy when one wants to write out <tt>p</tt> in the form of
 * <tt>p_orig</tt> and then reconstruct <tt>p</tt> again.
 *
 * \section Thyra_DefaultLumpedParameterModelEvaluator_bounds_sec Parameter bounds
 *
 * As mentioned above, one can simply select <tt>p_orig_base</tt> to be the
 * nominal values of the original full parameters <tt>p_orig</tt> and
 * therefore allow <tt>p==0</tt> to give the exact nominal parameter values
 * which is critical for the initial guess for many ANAs.  The problem of
 * handling the bounds on the parameters is more difficult.  This
 * approximation really requires that the simple bounds on <tt>p_orig</tt> be
 * replaced with the general linear inequality constraints:

 \verbatim

   p_orig_l - p_orig_base <= B*p <= p_orig_u - p_orig_base

 \endverbatim

 * Modeling and enforcing these linear inequality constraints correctly would
 * require that <tt>B</tt> and <tt>p_orig_base</tt> be exposed to the client
 * so that the client can build these extra <em>linear</em> inequality
 * constraints into the ANA algorithm.  Certain optimization algorithms could
 * then enforce these general inequalities and therefore guarantee that the
 * original parameter bounds are never violated.  This is easy to do in both
 * active-set and interior-point methods when the size of the space
 * <tt>p_orig.space()->dim()</tt> is not too large.  When
 * <tt>p_orig.space()->dim()</tt> is large, handling these inequality
 * constraints can be very difficult to deal with.
 *
 * An alternative simpler approach would be to try to find lower and upper
 * bounds <tt>p_l</tt> and <tt>p_u</tt> that tried to match the original
 * bounds as close as possible while not restricting the feasible region
 * <tt>p_l <= p <= p_u</tt> too much. For example, one could solve the
 * inequality-constrained least squares problems:

 \verbatim

   min     0.5 * (B*p+p_orig_base-p_orig_l)^T * (B*p+p_orig_base-p_orig_l)
   s.t.    B*p+p_orig_base >= p_orig_l

 \endverbatim

 and

 \verbatim

   min     0.5 * (B*p+p_orig_base-p_orig_u)^T * (B*p+p_orig_base-p_orig_u)
   s.t.    B*p+p_orig_base <= p_orig_u

 \endverbatim

 * but in general it would not be possible to guarantee that the solution
 * <tt>p_l</tt> and <tt>p_u</tt> satisfies <tt>p_l <= p <= p_u</tt>.
 *
 * Because of the challenges of dealing with bounds on the parameters, this
 * subclass currently throws an exception if it is given an underlying model
 * with finite bounds on the parameters.  However, a parameter-list option can
 * be set that will cause the bounds to be ignored and it would be the
 * client's responsibility to deal with the implications of this choice.
 *
 * \ingroup Thyra_Nonlin_ME_support_grp
 */
template<class Scalar>
class DefaultLumpedParameterModelEvaluator
  : virtual public ModelEvaluatorDelegatorBase<Scalar>
  , virtual public Teuchos::ParameterListAcceptor
{
public:

  /** \name Constructors/initializers/accessors/utilities. */
  //@{

  /** \brief . */
  DefaultLumpedParameterModelEvaluator();

  /** \brief . */
  void initialize(
    const RCP<ModelEvaluator<Scalar> > &thyraModel
    );

  /** \brief . */
  void uninitialize(
    RCP<ModelEvaluator<Scalar> > *thyraModel
    );

  // 2007/07/30: rabartl: ToDo: Add functions to set and get the underlying
  // basis matrix!

  //@}

  /** \name Public functions overridden from Teuchos::Describable. */
  //@{

  /** \brief . */
  std::string description() const;

  //@}

  /** @name Overridden from ParameterListAcceptor */
  //@{

  /** \brief .  */
  void setParameterList(RCP<Teuchos::ParameterList> const& paramList);
  /** \brief . */
  RCP<Teuchos::ParameterList> getNonconstParameterList();
  /** \brief . */
  RCP<Teuchos::ParameterList> unsetParameterList();
  /** \brief . */
  RCP<const Teuchos::ParameterList> getParameterList() const;
  /** \brief . */
  RCP<const Teuchos::ParameterList> getValidParameters() const;

  //@}

  /** \name Public functions overridden from ModelEvaulator. */
  //@{

  /** \brief . */
  RCP<const VectorSpaceBase<Scalar> > get_p_space(int l) const;
  /** \brief . */
  RCP<const Array<std::string> > get_p_names(int l) const;
  /** \brief . */
  ModelEvaluatorBase::InArgs<Scalar> getNominalValues() const;
  /** \brief . */
  ModelEvaluatorBase::InArgs<Scalar> getLowerBounds() const;
  /** \brief . */
  ModelEvaluatorBase::InArgs<Scalar> getUpperBounds() const;
  /** \brief . */
  void reportFinalPoint(
    const ModelEvaluatorBase::InArgs<Scalar> &finalPoint,
    const bool wasSolved
    );

  //@}

private:

  /** \name Private functions overridden from ModelEvaulatorDefaultBase. */
  //@{

  /** \brief . */
  ModelEvaluatorBase::OutArgs<Scalar> createOutArgsImpl() const;
  /** \brief . */
  void evalModelImpl(
    const ModelEvaluatorBase::InArgs<Scalar> &inArgs,
    const ModelEvaluatorBase::OutArgs<Scalar> &outArgs
    ) const;

  //@}

private:

  // ////////////////////////////////
  // Private data members

  mutable bool isInitialized_;
  mutable bool nominalValuesAndBoundsUpdated_;

  mutable RCP<const Teuchos::ParameterList> validParamList_;
  RCP<Teuchos::ParameterList> paramList_;

  // Parameters read from the parameter list
  int p_idx_;
  bool autogenerateBasisMatrix_;
  int numberOfBasisColumns_;
  bool nominalValueIsParameterBase_;
  bool ignoreParameterBounds_;
  Teuchos::EVerbosityLevel localVerbLevel_;
  bool dumpBasisMatrix_;

  // Reduced affine parameter model
  mutable RCP<const MultiVectorBase<Scalar> > B_;
  mutable RCP<const VectorBase<Scalar> > p_orig_base_;

  // Nominal values and bounds
  mutable ModelEvaluatorBase::InArgs<Scalar> nominalValues_;
  mutable ModelEvaluatorBase::InArgs<Scalar> lowerBounds_;
  mutable ModelEvaluatorBase::InArgs<Scalar> upperBounds_;

  // Static

  static const std::string ParameterSubvectorIndex_name_;
  static const int ParameterSubvectorIndex_default_;

  static const std::string AutogenerateBasisMatrix_name_;
  static const bool AutogenerateBasisMatrix_default_;

  static const std::string NumberOfBasisColumns_name_;
  static const int NumberOfBasisColumns_default_;

  static const std::string NominalValueIsParameterBase_name_;
  static const bool NominalValueIsParameterBase_default_;

  static const std::string ParameterBaseVector_name_;

  static const std::string IgnoreParameterBounds_name_;
  static const bool IgnoreParameterBounds_default_;

  static const std::string DumpBasisMatrix_name_;
  static const bool DumpBasisMatrix_default_;

  // ////////////////////////////////
  // Private member functions

  // These functions are used to implement late initialization so that the
  // need for clients to order function calls is reduced.

  // Finish enough initialization to defined spaces etc.
  void finishInitialization() const;

  // Generate the parameter basis matrix B.
  void generateParameterBasisMatrix() const;

  // Finish all of initialization needed to define nominal values, bounds, and
  // p_orig_base.  This calls finishInitialization().
  void updateNominalValuesAndBounds() const;

  // Map from p -> p_orig.
  RCP<VectorBase<Scalar> >
  map_from_p_to_p_orig( const VectorBase<Scalar> &p ) const;

  // Set up the arguments for DhDp_orig to be computed by the underlying model.
  void setupWrappedParamDerivOutArgs(
    const ModelEvaluatorBase::OutArgs<Scalar> &outArgs, // in
    ModelEvaluatorBase::OutArgs<Scalar> *wrappedOutArgs // in/out
    ) const;

  // Create DhDp_orig needed to assembled DhDp
  ModelEvaluatorBase::Derivative<Scalar>
  create_deriv_wrt_p_orig(
    const ModelEvaluatorBase::Derivative<Scalar> &DhDp,
    const ModelEvaluatorBase::EDerivativeMultiVectorOrientation requiredOrientation
    ) const;

  // After DhDp_orig has been computed, assemble DhDp or DhDp^T for all deriv
  // output arguments.
  void assembleParamDerivOutArgs(
    const ModelEvaluatorBase::OutArgs<Scalar> &wrappedOutArgs, // in
    const ModelEvaluatorBase::OutArgs<Scalar> &outArgs // in/out
    ) const;

  // Given a single DhDp_orig, assemble DhDp
  void assembleParamDeriv(
    const ModelEvaluatorBase::Derivative<Scalar> &DhDp_orig, // in
    const ModelEvaluatorBase::Derivative<Scalar> &DhDp // in/out
    ) const;

};


/** \brief Non-member constructor.
 *
 * \relates DefaultLumpedParameterModelEvaluator
 */
template<class Scalar>
RCP<DefaultLumpedParameterModelEvaluator<Scalar> >
defaultLumpedParameterModelEvaluator(
  const RCP<ModelEvaluator<Scalar> > &thyraModel
  )
{
  RCP<DefaultLumpedParameterModelEvaluator<Scalar> >
    paramLumpedModel = Teuchos::rcp(new DefaultLumpedParameterModelEvaluator<Scalar>);
  paramLumpedModel->initialize(thyraModel);
  return paramLumpedModel;
}


// /////////////////////////////////
// Implementations


// Static data members


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::ParameterSubvectorIndex_name_
= "Parameter Subvector Index";

template<class Scalar>
const int
DefaultLumpedParameterModelEvaluator<Scalar>::ParameterSubvectorIndex_default_
= 0;


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::AutogenerateBasisMatrix_name_
= "Auto-generate Basis Matrix";

template<class Scalar>
const bool
DefaultLumpedParameterModelEvaluator<Scalar>::AutogenerateBasisMatrix_default_
= true;


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::NumberOfBasisColumns_name_
= "Number of Basis Columns";

template<class Scalar>
const int
DefaultLumpedParameterModelEvaluator<Scalar>::NumberOfBasisColumns_default_
= 1;


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::NominalValueIsParameterBase_name_
= "Nominal Value is Parameter Base";

template<class Scalar>
const bool
DefaultLumpedParameterModelEvaluator<Scalar>::NominalValueIsParameterBase_default_
= true;


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::ParameterBaseVector_name_
= "Parameter Base Vector";


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::IgnoreParameterBounds_name_
= "Ignore Parameter Bounds";

template<class Scalar>
const bool
DefaultLumpedParameterModelEvaluator<Scalar>::IgnoreParameterBounds_default_
= false;


template<class Scalar>
const std::string
DefaultLumpedParameterModelEvaluator<Scalar>::DumpBasisMatrix_name_
= "Dump Basis Matrix";

template<class Scalar>
const bool
DefaultLumpedParameterModelEvaluator<Scalar>::DumpBasisMatrix_default_
= false;


// Constructors/initializers/accessors/utilities


template<class Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::DefaultLumpedParameterModelEvaluator()
  :isInitialized_(false),
   nominalValuesAndBoundsUpdated_(false),
   p_idx_(ParameterSubvectorIndex_default_),
   autogenerateBasisMatrix_(AutogenerateBasisMatrix_default_),
   numberOfBasisColumns_(NumberOfBasisColumns_default_),
   nominalValueIsParameterBase_(NominalValueIsParameterBase_default_),
   ignoreParameterBounds_(IgnoreParameterBounds_default_),
   localVerbLevel_(Teuchos::VERB_DEFAULT),
   dumpBasisMatrix_(DumpBasisMatrix_default_)
{}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::initialize(
  const RCP<ModelEvaluator<Scalar> > &thyraModel
  )
{
  isInitialized_ = false;
  nominalValuesAndBoundsUpdated_ = false;
  this->ModelEvaluatorDelegatorBase<Scalar>::initialize(thyraModel);
}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::uninitialize(
  RCP<ModelEvaluator<Scalar> > *thyraModel
  )
{
  isInitialized_ = false;
  if(thyraModel) *thyraModel = this->getUnderlyingModel();
  this->ModelEvaluatorDelegatorBase<Scalar>::uninitialize();
}


// Public functions overridden from Teuchos::Describable


template<class Scalar>
std::string
DefaultLumpedParameterModelEvaluator<Scalar>::description() const
{
  const RCP<const ModelEvaluator<Scalar> >
    thyraModel = this->getUnderlyingModel();
  std::ostringstream oss;
  oss << "Thyra::DefaultLumpedParameterModelEvaluator{";
  oss << "thyraModel=";
  if(thyraModel.get())
    oss << "\'"<<thyraModel->description()<<"\'";
  else
    oss << "NULL";
  oss << "}";
  return oss.str();
}


// Overridden from Teuchos::ParameterListAcceptor


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::setParameterList(
  RCP<Teuchos::ParameterList> const& paramList
  )
{

  using Teuchos::getParameterPtr;
  using Teuchos::rcp;
  using Teuchos::sublist;

  isInitialized_ = false;
  nominalValuesAndBoundsUpdated_ = false;

  // Validate and set the parameter list
  TEST_FOR_EXCEPT(is_null(paramList));
  paramList->validateParameters(*getValidParameters(),0);
  paramList_ = paramList;

  // Read in parameters
  p_idx_ = paramList_->get(
    ParameterSubvectorIndex_name_, ParameterSubvectorIndex_default_ );
  autogenerateBasisMatrix_ = paramList_->get(
    AutogenerateBasisMatrix_name_, AutogenerateBasisMatrix_default_ );
  if (autogenerateBasisMatrix_) {
    numberOfBasisColumns_ = paramList_->get(
      NumberOfBasisColumns_name_, NumberOfBasisColumns_default_ );
  }
  nominalValueIsParameterBase_ = paramList_->get(
    NominalValueIsParameterBase_name_, NominalValueIsParameterBase_default_ );
  if (!nominalValueIsParameterBase_) {
    TEST_FOR_EXCEPT("ToDo: Implement reading parameter base vector from file!");
  }
  ignoreParameterBounds_ = paramList_->get(
    IgnoreParameterBounds_name_, IgnoreParameterBounds_default_ );
  dumpBasisMatrix_ = paramList_->get(
    DumpBasisMatrix_name_, DumpBasisMatrix_default_ );

  // Verbosity settings
  localVerbLevel_ = this->readLocalVerbosityLevelValidatedParameter(*paramList_);
  Teuchos::readVerboseObjectSublist(&*paramList_,this);

#ifdef TEUCHOS_DEBUG
  paramList_->validateParameters(*getValidParameters(),0);
#endif

}


template<class Scalar>
RCP<Teuchos::ParameterList>
DefaultLumpedParameterModelEvaluator<Scalar>::getNonconstParameterList()
{
  return paramList_;
}


template<class Scalar>
RCP<Teuchos::ParameterList>
DefaultLumpedParameterModelEvaluator<Scalar>::unsetParameterList()
{
  RCP<Teuchos::ParameterList> _paramList = paramList_;
  paramList_ = Teuchos::null;
  return _paramList;
}


template<class Scalar>
RCP<const Teuchos::ParameterList>
DefaultLumpedParameterModelEvaluator<Scalar>::getParameterList() const
{
  return paramList_;
}


template<class Scalar>
RCP<const Teuchos::ParameterList>
DefaultLumpedParameterModelEvaluator<Scalar>::getValidParameters() const
{
  if(validParamList_.get()==NULL) {
    RCP<Teuchos::ParameterList>
      pl = Teuchos::rcp(new Teuchos::ParameterList());
    pl->set( ParameterSubvectorIndex_name_, ParameterSubvectorIndex_default_,
      "Determines the index of the parameter subvector in the underlying model\n"
      "for which the reduced basis representation will be determined." );
    pl->set( AutogenerateBasisMatrix_name_, AutogenerateBasisMatrix_default_,
      "If true, then a basis matrix will be auto-generated for a given number\n"
      " of basis vectors." );
    pl->set( NumberOfBasisColumns_name_, NumberOfBasisColumns_default_,
      "If a basis is auto-generated, then this parameter gives the number\n"
      "of columns in the basis matrix that will be created.  Warning!  This\n"
      "number must be less than or equal to the number of original parameters\n"
      "or an exception will be thrown!" );
    pl->set( NominalValueIsParameterBase_name_, NominalValueIsParameterBase_default_,
      "If true, then the nominal values for the full parameter subvector from the\n"
      "underlying model will be used for p_orig_base.  This allows p==0 to give\n"
      "the nominal values for the parameters." );
    /*
    if(this->get_parameterBaseIO().get())
      parameterBaseReader_.set_fileIO(this->get_parameterBaseIO());
    pl->sublist(ParameterBaseVector_name_).setParameters(
      *parameterBaseReader_.getValidParameters()
      );
    */
    pl->set( IgnoreParameterBounds_name_, IgnoreParameterBounds_default_,
      "If true, then any bounds on the parameter subvector will be ignored." );
    pl->set( DumpBasisMatrix_name_, DumpBasisMatrix_default_,
      "If true, then the basis matrix will be printed the first time it is created\n"
      "as part of the verbose output and as part of the Describable::describe(...)\n"
      "output for any verbositiy level >= \"low\"." );
    this->setLocalVerbosityLevelValidatedParameter(&*pl);
    Teuchos::setupVerboseObjectSublist(&*pl);
    validParamList_ = pl;
  }
  return validParamList_;
}


// Overridden from ModelEvaulator.


template<class Scalar>
RCP<const VectorSpaceBase<Scalar> >
DefaultLumpedParameterModelEvaluator<Scalar>::get_p_space(int l) const
{
  finishInitialization();
  if (l == p_idx_)
    return B_->domain();
  return this->getUnderlyingModel()->get_p_space(l);
}


template<class Scalar>
RCP<const Array<std::string> >
DefaultLumpedParameterModelEvaluator<Scalar>::get_p_names(int l) const
{
  finishInitialization();
  if (l == p_idx_)
    return Teuchos::null; // Names for these parameters would be meaningless!
  return this->getUnderlyingModel()->get_p_names(l);
}


template<class Scalar>
ModelEvaluatorBase::InArgs<Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::getNominalValues() const
{
  updateNominalValuesAndBounds();
  return nominalValues_;
}


template<class Scalar>
ModelEvaluatorBase::InArgs<Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::getLowerBounds() const
{
  updateNominalValuesAndBounds();
  return lowerBounds_;
}


template<class Scalar>
ModelEvaluatorBase::InArgs<Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::getUpperBounds() const
{
  updateNominalValuesAndBounds();
  return upperBounds_;
}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::reportFinalPoint(
  const ModelEvaluatorBase::InArgs<Scalar> &finalPoint,
  const bool wasSolved
  )
{

  typedef ModelEvaluatorBase MEB;

  // Make sure that everything has been initialized
  updateNominalValuesAndBounds();

  const RCP<ModelEvaluator<Scalar> >
    thyraModel = this->getNonconstUnderlyingModel();

  // By default, copy all input arguments since they will all be the same
  // except for the given reduced p.  We will then replace the reduced p with
  // p_orig below.
  MEB::InArgs<Scalar> wrappedFinalPoint = thyraModel->createInArgs();
  wrappedFinalPoint.setArgs(finalPoint);

  // Replace p with p_orig.
  RCP<const VectorBase<Scalar> > p;
  if (!is_null(p=finalPoint.get_p(p_idx_))) {
    wrappedFinalPoint.set_p(p_idx_,map_from_p_to_p_orig(*p));
  }

  thyraModel->reportFinalPoint(wrappedFinalPoint,wasSolved);

}


// Private functions overridden from ModelEvaulatorDefaultBase


template<class Scalar>
ModelEvaluatorBase::OutArgs<Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::createOutArgsImpl() const
{
  ModelEvaluatorBase::OutArgsSetup<Scalar>
    outArgs = this->getUnderlyingModel()->createOutArgs();
  outArgs.setModelEvalDescription(this->description());
  return outArgs;
  // 2007/07/31: rabartl: ToDo: We need to manually set the forms of the
  // derivatives that this class object will support!  This needs to be based
  // on tests of what the forms of derivatives the underlying model supports.
}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::evalModelImpl(
  const ModelEvaluatorBase::InArgs<Scalar> &inArgs,
  const ModelEvaluatorBase::OutArgs<Scalar> &outArgs
  ) const
{

  // This routine is pretty simple for the most part.  By default, we just
  // pass everything through to the underlying model evaluator except for
  // arguments reated to the parameter subvector with index
  // p_idx_.

  using Teuchos::rcp;
  using Teuchos::rcp_const_cast;
  using Teuchos::rcp_dynamic_cast;
  using Teuchos::OSTab;
  typedef Teuchos::ScalarTraits<Scalar>  ST;
  typedef typename ST::magnitudeType ScalarMag;
  typedef ModelEvaluatorBase MEB;

  // Make sure that everything has been initialized
  updateNominalValuesAndBounds();

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_LOCALVERBLEVEL_BEGIN(
    "Thyra::DefaultLumpedParameterModelEvaluator",inArgs,outArgs,localVerbLevel_
    );

  //
  // A) Setup InArgs
  //

  // By default, copy all input arguments since they will all be the same
  // except for the given reduced p.  We will then replace the reduced p with
  // p_orig below.
  MEB::InArgs<Scalar> wrappedInArgs = thyraModel->createInArgs();
  wrappedInArgs.setArgs(inArgs);
  
  // Replace p with p_orig.
  RCP<const VectorBase<Scalar> > p;
  if (!is_null(p=wrappedInArgs.get_p(p_idx_))) {
    if (
      dumpBasisMatrix_
      && includesVerbLevel(localVerbLevel,Teuchos::VERB_MEDIUM)
      )
    {
      *out << "\nB = " << Teuchos::describe(*B_,Teuchos::VERB_EXTREME);
    }
    wrappedInArgs.set_p(p_idx_,map_from_p_to_p_orig(*p));
  }

  //
  // B) Setup OutArgs
  //

  // By default, copy all output arguments since they will all be the same
  // except for those derivatives w.r.t. p(p_idx).  We will then replace the
  // derivative objects w.r.t. given reduced p with the derivarive objects
  // w.r.t. p_orig below.
  MEB::OutArgs<Scalar> wrappedOutArgs = thyraModel->createOutArgs();
  wrappedOutArgs.setArgs(outArgs);

  // Set derivative output arguments for p_orig if derivatives for p are
  // reqeusted in outArgs
  setupWrappedParamDerivOutArgs(outArgs,&wrappedOutArgs);

  //
  // C) Evaluate the underlying model functions
  //

  if (includesVerbLevel(localVerbLevel,Teuchos::VERB_LOW))
    *out << "\nEvaluating the fully parameterized underlying model ...\n";
  // Compute the underlying functions in terms of p_orig, including
  // derivatives w.r.t. p_orig.
  thyraModel->evalModel(wrappedInArgs,wrappedOutArgs);

  //
  // D) Postprocess the output arguments
  //

  // Assemble the derivatives for p given derivatives for p_orig computed
  // above.
  assembleParamDerivOutArgs(wrappedOutArgs,outArgs);
  
  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();
  
}


// private


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::finishInitialization() const
{

  typedef ScalarTraits<Scalar> ST;
  typedef ModelEvaluatorBase MEB;

  if (isInitialized_)
    return;

  //
  // A) Get the underlying model
  //

  const RCP<const ModelEvaluator<Scalar> >
    thyraModel = this->getUnderlyingModel();

  TEST_FOR_EXCEPTION(
    is_null(thyraModel), std::logic_error,
    "Error, the underlying model evaluator must be set!" );

  //
  // B) Create B for the reduced affine model for the given parameter subvector
  //

  if (autogenerateBasisMatrix_) {
    generateParameterBasisMatrix();
  }
  else {
    TEST_FOR_EXCEPTION(
      true, std::logic_error,
      "Error, we don't handle a client-set parameter basis matrix yet!" );
  }

  isInitialized_ = true;

}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::generateParameterBasisMatrix() const
{

  using Teuchos::as;
  typedef ScalarTraits<Scalar> ST;

  const RCP<const ModelEvaluator<Scalar> >
    thyraModel = this->getUnderlyingModel();

  const RCP<const VectorSpaceBase<Scalar> >
    p_orig_space = thyraModel->get_p_space(p_idx_);

  const Ordinal p_orig_dim = p_orig_space->dim();

  TEST_FOR_EXCEPTION(
    !( 1 <= numberOfBasisColumns_ && numberOfBasisColumns_ <= p_orig_dim ),
    std::logic_error,
    "Error, the number of basis columns = " << numberOfBasisColumns_ << " does not\n"
    "fall in the range [1,"<<p_orig_dim<<"]!" );

  //
  // Create and randomize B
  //
  // Here we make the first column all ones and then randomize columns 1
  // through numberOfBasisColumns_-1 so that the average entry is 1.0 with a
  // spread of 1.0.  This is just to give as well a scaled starting matrix as
  // possible that will hopefully yeild a well scaled orthonomal B after we
  // are finished.

  RCP<MultiVectorBase<Scalar> >
    B = createMembers(p_orig_space,numberOfBasisColumns_);
  assign( &*B->col(0), ST::one() );
  if (numberOfBasisColumns_ > 1) {
    seed_randomize<double>(0);
    Thyra::randomize( as<Scalar>(0.5*ST::one()), as<Scalar>(1.5*ST::one()), &*B );
  }

  //
  // Create an orthogonal form of B using a modified Gram Schmidt algorithm
  //

  RCP<MultiVectorBase<double> > R;
  sillyModifiedGramSchmidt( &*B, &R );

  // Above:
  // 1) On output, B will have orthonomal columns which makes it a good basis
  // 2) We just discard the "R" factor since we don't need it for anything 

  B_ = B;

}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::updateNominalValuesAndBounds() const
{

  typedef ScalarTraits<Scalar> ST;
  typedef ModelEvaluatorBase MEB;

  if (nominalValuesAndBoundsUpdated_)
    return;

  finishInitialization();

  const RCP<const ModelEvaluator<Scalar> >
    thyraModel = this->getUnderlyingModel();

  const MEB::InArgs<Scalar> origNominalValues = thyraModel->getNominalValues();
  const MEB::InArgs<Scalar> origLowerBounds = thyraModel->getLowerBounds();
  const MEB::InArgs<Scalar> origUpperBounds = thyraModel->getUpperBounds();

  // p_orig_base

  if (nominalValueIsParameterBase_) {
    const RCP<const VectorBase<Scalar> >
      p_orig_init = origNominalValues.get_p(p_idx_);
    TEST_FOR_EXCEPTION(
      is_null(p_orig_init), std::logic_error,
      "Error, if the user requested that the nominal values be used\n"
      "as the base vector p_orig_base then that vector has to exist!" );
    p_orig_base_ = p_orig_init->clone_v();
  }
  else {
    TEST_FOR_EXCEPTION(
      true, std::logic_error,
      "Error, we don't handle reading in the parameter base vector yet!" );
  }

  // Nominal values

  nominalValues_ = origNominalValues;
  
  if (nominalValueIsParameterBase_) {
    // A value of p==0 will give p_orig = p_orig_init!
    const RCP<VectorBase<Scalar> >
      p_init = createMember(B_->domain());
    assign( &*p_init, ST::zero() );
    nominalValues_.set_p(p_idx_,p_init);
  }
  else {
    TEST_FOR_EXCEPTION(
      true, std::logic_error,
      "Error, we don't handle creating p_init when p_orig_base != p_orig_init yet!" );
  }

  // Bounds

  lowerBounds_ = origLowerBounds;
  upperBounds_ = origUpperBounds;

  lowerBounds_.set_p(p_idx_,Teuchos::null);
  upperBounds_.set_p(p_idx_,Teuchos::null);

  if (!ignoreParameterBounds_) {
    const RCP<const VectorBase<Scalar> >
      p_orig_l = origLowerBounds.get_p(p_idx_),
      p_orig_u = origUpperBounds.get_p(p_idx_);
    if ( !is_null(p_orig_l) || !is_null(p_orig_u) ) {
      TEST_FOR_EXCEPTION(
        true, std::logic_error,
        "Error, we don't handle bounds on p_orig yet!" );
    }
  }

  nominalValuesAndBoundsUpdated_ = true;

}


template<class Scalar>
RCP<VectorBase<Scalar> >
DefaultLumpedParameterModelEvaluator<Scalar>::map_from_p_to_p_orig(
  const VectorBase<Scalar> &p
  ) const
{
  // p_orig = B*p + p_orig_base
  RCP<VectorBase<Scalar> > p_orig = createMember(B_->range());
  apply( *B_, NOTRANS, p, &*p_orig );
  Vp_V( &*p_orig, *p_orig_base_ );
  return p_orig;
}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::setupWrappedParamDerivOutArgs(
  const ModelEvaluatorBase::OutArgs<Scalar> &outArgs, // in
  ModelEvaluatorBase::OutArgs<Scalar> *wrappedOutArgs_inout // in/out
  ) const
{

  typedef ModelEvaluatorBase MEB;
  typedef MEB::Derivative<Scalar> Deriv;

  TEST_FOR_EXCEPT(wrappedOutArgs_inout==0);
  MEB::OutArgs<Scalar> &wrappedOutArgs = *wrappedOutArgs_inout;
    
  Deriv DfDp;
  if ( !(DfDp=outArgs.get_DfDp(p_idx_)).isEmpty() ) {
    wrappedOutArgs.set_DfDp(p_idx_,create_deriv_wrt_p_orig(DfDp,MEB::DERIV_MV_BY_COL));
  }

  const int Ng = outArgs.Ng();
  for ( int j = 0; j < Ng; ++j ) {
    Deriv DgDp;
    if ( !(DgDp=outArgs.get_DgDp(j,p_idx_)).isEmpty() ) {
      wrappedOutArgs.set_DgDp(
        j, p_idx_,
        create_deriv_wrt_p_orig(DgDp,DgDp.getMultiVectorOrientation())
        );
    }
  }

}


template<class Scalar>
ModelEvaluatorBase::Derivative<Scalar>
DefaultLumpedParameterModelEvaluator<Scalar>::create_deriv_wrt_p_orig(
  const ModelEvaluatorBase::Derivative<Scalar> &DhDp,
  const ModelEvaluatorBase::EDerivativeMultiVectorOrientation requiredOrientation
  ) const
{

  typedef ModelEvaluatorBase MEB;

  const RCP<const MultiVectorBase<Scalar> >
    DhDp_mv = DhDp.getMultiVector();
  TEST_FOR_EXCEPTION(
    is_null(DhDp_mv) || (DhDp.getMultiVectorOrientation() != requiredOrientation),
    std::logic_error,
    "Error, we currently can't handle non-multi-vector derivatives!" );

  RCP<MultiVectorBase<Scalar> > DhDp_orig_mv;
  switch (requiredOrientation) {
    case MEB::DERIV_MV_BY_COL:
      // DhDp = DhDp_orig * B
      DhDp_orig_mv = createMembers(DhDp_mv->range(),B_->range()->dim());
      // Above, we could just request DhDp_orig as a LinearOpBase object since
      // we just need to apply it!
      break;
    case MEB::DERIV_TRANS_MV_BY_ROW:
      // (DhDp^T) = B^T * (DhDp_orig^T)  [DhDp_orig_mv is transposed!]
      DhDp_orig_mv = createMembers(B_->range(),DhDp_mv->domain()->dim());
      // Above, we really do need DhDp_orig as the gradient form multi-vector
      // since it must be the RHS for a linear operator apply!
      break;
    default:
      TEST_FOR_EXCEPT(true); // Should never get here!
  }
  
  return MEB::Derivative<Scalar>(DhDp_orig_mv,requiredOrientation);
  
}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::assembleParamDerivOutArgs(
  const ModelEvaluatorBase::OutArgs<Scalar> &wrappedOutArgs, // in
  const ModelEvaluatorBase::OutArgs<Scalar> &outArgs // in/out
  ) const
{

  typedef ModelEvaluatorBase MEB;
  typedef MEB::Derivative<Scalar> Deriv;
    
  Deriv DfDp;
  if ( !(DfDp=outArgs.get_DfDp(p_idx_)).isEmpty() ) {
    assembleParamDeriv( wrappedOutArgs.get_DfDp(p_idx_), DfDp );
  }

  const int Ng = outArgs.Ng();
  for ( int j = 0; j < Ng; ++j ) {
    Deriv DgDp;
    if ( !(DgDp=outArgs.get_DgDp(j,p_idx_)).isEmpty() ) {
      assembleParamDeriv( wrappedOutArgs.get_DgDp(j,p_idx_), DgDp );
    }
  }

}


template<class Scalar>
void DefaultLumpedParameterModelEvaluator<Scalar>::assembleParamDeriv(
  const ModelEvaluatorBase::Derivative<Scalar> &DhDp_orig, // in
  const ModelEvaluatorBase::Derivative<Scalar> &DhDp // in/out
  ) const
{

  typedef ModelEvaluatorBase MEB;

  const RCP<const MultiVectorBase<Scalar> >
    DhDp_orig_mv = DhDp_orig.getMultiVector();
  TEST_FOR_EXCEPTION(
    is_null(DhDp_orig_mv), std::logic_error,
    "Error, we currently can't handle non-multi-vector derivatives!" );

  const RCP<MultiVectorBase<Scalar> >
    DhDp_mv = DhDp.getMultiVector();
  TEST_FOR_EXCEPTION(
    is_null(DhDp_mv), std::logic_error,
    "Error, we currently can't handle non-multi-vector derivatives!" );

  switch( DhDp_orig.getMultiVectorOrientation() ) {
    case MEB::DERIV_MV_BY_COL:
      // DhDp = DhDp_orig * B
#ifdef TEUCHSO_DEBUG
      TEUCHOS_ASSERT(
        DhDp.getMultiVectorOrientation() == MEB::DERIV_MV_BY_COL );
#endif
      apply( *DhDp_orig_mv, NOTRANS, *B_, &*DhDp_mv );
      // Above, we could generalize DhDp_oirg to just be a general linear
      // operator.
      break;
    case MEB::DERIV_TRANS_MV_BY_ROW:
      // (DhDp^T) = B^T * (DhDp_orig^T)  [DhDp_orig_mv is transposed!]
#ifdef TEUCHSO_DEBUG
      TEUCHOS_ASSERT(
        DhDp.getMultiVectorOrientation() == MEB::DERIV_TRANS_MV_BY_ROW );
#endif
      apply( *B_, CONJTRANS, *DhDp_orig_mv, &*DhDp_mv );
      break;
    default:
      TEST_FOR_EXCEPT(true); // Should never get here!
  }

}


} // namespace Thyra


#endif // THYRA_DEFAUL_LUMPED_PARAMETER_LUMPED_MODEL_EVALUATOR_HPP