This file is indexed.

/usr/include/trilinos/Thyra_DampenedNewtonNonlinearSolver.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// @HEADER
// ***********************************************************************
// 
//    Thyra: Interfaces and Support for Abstract Numerical Algorithms
//                 Copyright (2004) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
// @HEADER

#ifndef THYRA_DAMPENED_NEWTON_NONLINEAR_SOLVER_HPP
#define THYRA_DAMPENED_NEWTON_NONLINEAR_SOLVER_HPP

#include "Thyra_NonlinearSolverBase.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_TestingTools.hpp"
#include "Teuchos_StandardMemberCompositionMacros.hpp"
#include "Teuchos_StandardCompositionMacros.hpp"
#include "Teuchos_VerboseObject.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_StandardParameterEntryValidators.hpp"
#include "Teuchos_as.hpp"


namespace Thyra {


/** \brief Simple dampended Newton solver using a Armijo line search :-)
 * 
 * This class derives from <tt>Teuchos::VerboseObject</tt> and therefore will
 * send output to <tt>*this->getOStream()</tt> if
 * <tt>!Teuchos::isNull(this->getOStream())</tt>. The amount of output sent to
 * <tt>*this->getOStream()</tt> depends on the verbosity level returned by
 * <tt>this->getVerbLevel()</tt>:
 * <ul>
 * <li><tt>Teuchos::VERB_DEFAULT</tt>: Same as <tt>Teuchos::VERB_LOW</tt>.
 * <li><tt>Teuchos::VERB_NONE</tt>: Output nothing
 * <li><tt>Teuchos::VERB_LOW</tt>: Ouput only two lines of output for each Newton iteration
 * <li><tt>Teuchos::VERB_MEDIUM</tt>: Output lines for each Newton iteration and line search iteration
 * <li><tt>Teuchos::VERB_HIGH</tt>: Output more details about the Newton and line search iterations (good for basic debugging) 
 * <li><tt>Teuchos::VERB_EXTREME</tt>: Dump all the matrices and vectors that are computed. 
 * </ul>
 *
 * ToDo: Finish documentation.
 *
 * \ingroup Thyra_Nonlin_ME_solvers_grp
 */
template <class Scalar>
class DampenedNewtonNonlinearSolver : public NonlinearSolverBase<Scalar> {
public:

  /** \brief. */
  typedef Teuchos::ScalarTraits<Scalar> ST;
  /** \brief. */
  typedef typename ST::magnitudeType ScalarMag;
  /** \brief. */
  typedef Teuchos::ScalarTraits<ScalarMag> SMT;

  /** \brief The default solution tolerance. */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( ScalarMag, defaultTol );

  /** \brief The default maximum number of iterations. */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( int, defaultMaxNewtonIterations );

  /** \brief The default maximum number of iterations. */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, useDampenedLineSearch  );
  
  /** \brief Set the armijo constant for the line search */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( Scalar, armijoConstant );
  
  /** \brief Set the maximum number of backtracking line search iterations to take. */
  STANDARD_MEMBER_COMPOSITION_MEMBERS( int, maxLineSearchIterations );

  /** \brief . */
  DampenedNewtonNonlinearSolver(
    const ScalarMag defaultTol = 1e-2
    ,const int defaultMaxNewtonIterations = 1000
    ,const bool useDampenedLineSearch = true
    ,const Scalar armijoConstant = 1e-4
    ,const int maxLineSearchIterations = 20
    );

  /** \brief . */
  static RCP<const Teuchos::ParameterList>
  getValidSolveCriteriaExtraParameters();

  /** @name Overridden from ParameterListAcceptor */
  //@{

  /** \brief . */
  void setParameterList(RCP<Teuchos::ParameterList> const& paramList);
  /** \brief . */
  RCP<Teuchos::ParameterList> getNonconstParameterList();
  /** \brief . */
  RCP<Teuchos::ParameterList> unsetParameterList();
  /** \brief . */
  RCP<const Teuchos::ParameterList> getParameterList() const;
  /** \brief . */
  RCP<const Teuchos::ParameterList> getValidParameters() const;

  //@}

  /** @name Overridden from NonlinearSolverBase */
  //@{

  /** \brief . */
  void setModel(
    const RCP<const ModelEvaluator<Scalar> > &model
    );
  /** \brief . */
  RCP<const ModelEvaluator<Scalar> > getModel() const;
  /** \brief . */
  SolveStatus<Scalar> solve(
    VectorBase<Scalar> *x,
    const SolveCriteria<Scalar> *solveCriteria,
    VectorBase<Scalar> *delta
    );
  /** \brief . */
  RCP<const VectorBase<Scalar> > get_current_x() const;
  /** \brief . */
  bool is_W_current() const;
  /** \brief . */
  RCP<LinearOpWithSolveBase<Scalar> > get_nonconst_W(const bool forceUpToDate);
  /** \brief . */
  RCP<const LinearOpWithSolveBase<Scalar> > get_W() const;
  /** \brief . */
  void set_W_is_current(bool W_is_current);

  //@}

private:

  RCP<Teuchos::ParameterList> paramList_;
  RCP<const ModelEvaluator<Scalar> > model_;
  RCP<LinearOpWithSolveBase<Scalar> > J_;
  RCP<VectorBase<Scalar> > current_x_;
  bool J_is_current_;

};

// ////////////////////////
// Defintions

template <class Scalar>
DampenedNewtonNonlinearSolver<Scalar>::DampenedNewtonNonlinearSolver(
  const ScalarMag defaultTol
  ,const int defaultMaxNewtonIterations
  ,const bool useDampenedLineSearch
  ,const Scalar armijoConstant
  ,const int maxLineSearchIterations
  )
  :defaultTol_(defaultTol)
  ,defaultMaxNewtonIterations_(defaultMaxNewtonIterations)
  ,useDampenedLineSearch_(useDampenedLineSearch)
  ,armijoConstant_(armijoConstant)
  ,maxLineSearchIterations_(maxLineSearchIterations)
  ,J_is_current_(false)
{}

template <class Scalar>
RCP<const Teuchos::ParameterList>
DampenedNewtonNonlinearSolver<Scalar>::getValidSolveCriteriaExtraParameters()
{
  static RCP<const Teuchos::ParameterList> validSolveCriteriaExtraParameters;
  if(!validSolveCriteriaExtraParameters.get()) {
    RCP<Teuchos::ParameterList>
      paramList = Teuchos::rcp(new Teuchos::ParameterList);
    paramList->set("Max Iters",int(1000));
    validSolveCriteriaExtraParameters = paramList;
  }
  return validSolveCriteriaExtraParameters;
}

// Overridden from Teuchos::ParameterListAcceptor

template<class Scalar>
void DampenedNewtonNonlinearSolver<Scalar>::setParameterList(
  RCP<Teuchos::ParameterList> const& paramList
  )
{
  using Teuchos::get;
  TEST_FOR_EXCEPT(is_null(paramList));
  paramList->validateParametersAndSetDefaults(*getValidParameters(),0);
  paramList_ = paramList;
  TEST_FOR_EXCEPT("ToDo: Implement!");
  Teuchos::readVerboseObjectSublist(&*paramList_,this);
#ifdef TEUCHOS_DEBUG
  paramList_->validateParameters(*getValidParameters(),0);
#endif // TEUCHOS_DEBUG
}

template<class Scalar>
RCP<Teuchos::ParameterList>
DampenedNewtonNonlinearSolver<Scalar>::getNonconstParameterList()
{
  return paramList_;
}

template<class Scalar>
RCP<Teuchos::ParameterList>
DampenedNewtonNonlinearSolver<Scalar>::unsetParameterList()
{
  RCP<Teuchos::ParameterList> _paramList = paramList_;
  paramList_ = Teuchos::null;
  return _paramList;
}

template<class Scalar>
RCP<const Teuchos::ParameterList>
DampenedNewtonNonlinearSolver<Scalar>::getParameterList() const
{
  return paramList_;
}

template<class Scalar>
RCP<const Teuchos::ParameterList>
DampenedNewtonNonlinearSolver<Scalar>::getValidParameters() const
{
  using Teuchos::setDoubleParameter; using Teuchos::setIntParameter;
  static RCP<const Teuchos::ParameterList> validPL;
  if (is_null(validPL)) {
    RCP<Teuchos::ParameterList>
      pl = Teuchos::parameterList();
    TEST_FOR_EXCEPT("ToDo: Implement!");
    Teuchos::setupVerboseObjectSublist(&*pl);
    validPL = pl;
  }
  return validPL;
}

// Overridden from NonlinearSolverBase

template <class Scalar>
void DampenedNewtonNonlinearSolver<Scalar>::setModel(
  const RCP<const ModelEvaluator<Scalar> > &model
  )
{
  TEST_FOR_EXCEPT(model.get()==NULL);
  model_ = model;
  J_ = Teuchos::null;
  current_x_ = Teuchos::null;
  J_is_current_ = false;
}

template <class Scalar>
RCP<const ModelEvaluator<Scalar> >
DampenedNewtonNonlinearSolver<Scalar>::getModel() const
{
  return model_;
}

template <class Scalar>
SolveStatus<Scalar>
DampenedNewtonNonlinearSolver<Scalar>::solve(
  VectorBase<Scalar> *x_inout
  ,const SolveCriteria<Scalar> *solveCriteria
  ,VectorBase<Scalar> *delta
  ) 
{

  using std::endl;
  using Teuchos::as;

  // Validate input
#ifdef TEUCHOS_DEBUG
  TEST_FOR_EXCEPT(0==x_inout);
  THYRA_ASSERT_VEC_SPACES(
    "DampenedNewtonNonlinearSolver<Scalar>::solve(...)",
    *x_inout->space(), *model_->get_x_space() );
#endif

  // Get the output stream and verbosity level
  const RCP<Teuchos::FancyOStream> out = this->getOStream();
  const Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
  const bool showNewtonIters = (verbLevel==Teuchos::VERB_LOW);
  const bool showLineSearchIters = (as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM));
  const bool showNewtonDetails = (as<int>(verbLevel) >= as<int>(Teuchos::VERB_HIGH));
  const bool dumpAll = (as<int>(verbLevel) == as<int>(Teuchos::VERB_EXTREME)); 
  TEUCHOS_OSTAB;
  if(out.get() && showNewtonIters) {
    *out << "\nBeginning dampended Newton solve of model = " << model_->description() << "\n\n";
    if (!useDampenedLineSearch())
      *out << "\nDoing undampened newton ...\n\n";
  }

  // Initialize storage for algorithm
  if(!J_.get()) J_ = model_->create_W();
  RCP<VectorBase<Scalar> > f = createMember(model_->get_f_space());
  RCP<VectorBase<Scalar> > x = Teuchos::rcp(x_inout,false);
  RCP<VectorBase<Scalar> > dx = createMember(model_->get_x_space());
  RCP<VectorBase<Scalar> > x_new = createMember(model_->get_x_space());
  RCP<VectorBase<Scalar> > ee = createMember(model_->get_x_space());
  V_S(&*ee,ST::zero());

  // Get convergence criteria
  ScalarMag tol = this->defaultTol();
  int maxIters = this->defaultMaxNewtonIterations();
  if(solveCriteria && !solveCriteria->solveMeasureType.useDefault()) {
    TEST_FOR_EXCEPTION(
      !solveCriteria->solveMeasureType(SOLVE_MEASURE_NORM_RESIDUAL,SOLVE_MEASURE_NORM_RHS), CatastrophicSolveFailure
      ,"DampenedNewtonNonlinearSolver<Scalar>::solve(...): Error, can only support resudual-based"
      " convergence criteria!");
    tol = solveCriteria->requestedTol;
    if(solveCriteria->extraParameters.get()) {
      solveCriteria->extraParameters->validateParameters(*getValidSolveCriteriaExtraParameters());
      maxIters = solveCriteria->extraParameters->get("Max Iters",int(maxIters));
    }
  }

  if(out.get() && showNewtonDetails)
    *out << "\nCompute the initial starting point ...\n";

  eval_f_W( *model_, *x, &*f, &*J_ );
  if(out.get() && dumpAll) {
    *out << "\nInitial starting point:\n";
    *out << "\nx =\n" << *x;
    *out << "\nf =\n" << *f;
    *out << "\nJ =\n" << *J_;
  }

  // Peform the Newton iterations
  int newtonIter, num_residual_evals = 1;
  SolveStatus<Scalar> solveStatus;
  solveStatus.solveStatus = SOLVE_STATUS_UNCONVERGED;

  for( newtonIter = 1; newtonIter <= maxIters; ++newtonIter ) {

    if(out.get() && showNewtonDetails) *out << "\n*** newtonIter = " << newtonIter << endl;

    // Check convergence
    if(out.get() && showNewtonDetails) *out << "\nChecking for convergence ... : ";
    const Scalar phi = scalarProd(*f,*f), sqrt_phi = ST::squareroot(phi); // merit function: phi(f) = <f,f>
    solveStatus.achievedTol = sqrt_phi;
    const bool isConverged = sqrt_phi <= tol;
    if(out.get() && showNewtonDetails) *out
      << "sqrt(phi) = sqrt(<f,f>) = ||f|| = " << sqrt_phi << ( isConverged ? " <= " : " > " ) << "tol = " << tol << endl;
    if(out.get() && showNewtonIters) *out
      << "newton_iter="<<newtonIter<<": Check convergence: ||f|| = "
      << sqrt_phi << ( isConverged ? " <= " : " > " ) << "tol = " << tol << ( isConverged ? ", Converged!!!" : "" ) << endl;
    if(isConverged) {
      if(x_inout != x.get()) assign( x_inout, *x ); // Assign the solution if we have to
      if(out.get() && showNewtonDetails) {
        *out << "\nWe have converged :-)\n"
             << "\n||x||inf = " << norm_inf(*x) << endl;
        if(dumpAll) *out << "\nx =\n" << *x;
        *out << "\nExiting SimpleNewtonSolver::solve(...)\n";
      }
      std::ostringstream oss;
      oss << "Converged! ||f|| = " << sqrt_phi << ", num_newton_iters="<<newtonIter<<", num_residual_evals="<<num_residual_evals<<".";
      solveStatus.solveStatus = SOLVE_STATUS_CONVERGED;
      solveStatus.message = oss.str();
      break;
    }
    if(out.get() && showNewtonDetails) *out << "\nWe have to keep going :-(\n";

    // Compute the Jacobian if we have not already
    if(newtonIter > 1) {
      if(out.get() && showNewtonDetails) *out << "\nComputing the Jacobian J_ at current point ...\n";
      eval_f_W<Scalar>( *model_, *x, NULL, &*J_ );
      if(out.get() && dumpAll) *out << "\nJ =\n" << *J_;
    }

    // Compute the newton step: dx = -inv(J)*f
    if(out.get() && showNewtonDetails) *out << "\nComputing the Newton step: dx = - inv(J)*f ...\n";
    if(out.get() && showNewtonIters) *out << "newton_iter="<<newtonIter<<": Computing Newton step ...\n";
    assign( &*dx, ST::zero() ); // Initial guess for the linear solve
    Thyra::solve(*J_,NOTRANS,*f,&*dx); // Solve: J*dx = f
    Vt_S( &*dx, Scalar(-ST::one()) ); // dx *= -1.0
    Vp_V( &*ee, *dx); // ee += dx
    if(out.get() && showNewtonDetails) *out << "\n||dx||inf = " << norm_inf(*dx) << endl;
    if(out.get() && dumpAll) *out << "\ndy =\n" << *dx;

    // Perform backtracking armijo line search
    if(out.get() && showNewtonDetails) *out << "\nStarting backtracking line search iterations ...\n";
    if(out.get() && showNewtonIters) *out << "newton_iter="<<newtonIter<<": Starting backtracking line search ...\n";
    const Scalar Dphi = -2.0*phi; // D(phi(x+alpha*dx))/D(alpha) at alpha=0.0 => -2.0*<f,c>: where dx = -inv(J)*f
    Scalar alpha = 1.0; // Try a full step initially since it will eventually be accepted near solution
    int lineSearchIter;
    ++num_residual_evals;
    for( lineSearchIter = 1; lineSearchIter <= maxLineSearchIterations(); ++lineSearchIter, ++num_residual_evals ) {
      TEUCHOS_OSTAB;
      if(out.get() && showNewtonDetails) *out << "\n*** lineSearchIter = " << lineSearchIter << endl;
      // x_new = x + alpha*dx
      assign( &*x_new, *x ); Vp_StV( &*x_new, alpha, *dx );
      if(out.get() && showNewtonDetails) *out << "\n||x_new||inf = " << norm_inf(*x_new) << endl;
      if(out.get() && dumpAll) *out << "\nx_new =\n" << *x_new;
      // Compute the residual at the updated point
      eval_f(*model_,*x_new,&*f);
      if(out.get() && dumpAll) *out << "\nf_new =\n" << *f;
      const Scalar phi_new = scalarProd(*f,*f), phi_frac = phi + alpha * armijoConstant() * Dphi;
      if(out.get() && showNewtonDetails) *out << "\nphi_new = <f_new,f_new> = " << phi_new << endl;
      if( Teuchos::ScalarTraits<Scalar>::isnaninf(phi_new) ) {
        if(out.get() && showNewtonDetails) *out << "\nphi_new is not a valid number, backtracking (alpha = 0.1*alpha) ...\n";
        alpha *= 0.1;
        continue;
      }
      const bool acceptPoint = (phi_new <= phi_frac);
      if(out.get() && showNewtonDetails) *out
        << "\nphi_new = " << phi_new << ( acceptPoint ? " <= " : " > " )
        << "phi + alpha * eta * Dphi = " << phi << " + " << alpha << " * " << armijoConstant() << " * " << Dphi
        << " = " << phi_frac << endl;
      if(out.get() && (showLineSearchIters || (showNewtonIters && acceptPoint))) *out
        << "newton_iter="<<newtonIter<<", ls_iter="<<lineSearchIter<<" : "
        << "phi(alpha="<<alpha<<") = "<<phi_new<<(acceptPoint ? " <=" : " >")<<" armijo_cord = " << phi_frac << endl;
      if (out.get() && showNewtonDetails && !useDampenedLineSearch())
        *out << "\nUndamped newton, always accpeting the point!\n";
      if( acceptPoint || !useDampenedLineSearch() ) {
        if(out.get() && showNewtonDetails) *out << "\nAccepting the current step with step length alpha = " << alpha << "!\n";
        break;
      }
      if(out.get() && showNewtonDetails) *out << "\nBacktracking (alpha = 0.5*alpha) ...\n";
      alpha *= 0.5;
    }

    // Check for line search failure
    if( lineSearchIter > maxLineSearchIterations() ) {
      std::ostringstream oss;
      oss
        << "lineSearchIter = " << lineSearchIter << " > maxLineSearchIterations = " << maxLineSearchIterations()
        << ": Linear search failure! Algorithm terminated!";
      solveStatus.message = oss.str();
      if(out.get() && (showNewtonIters || showNewtonDetails)) *out << endl << oss.str() << endl;
      goto exit;
    }

    // Take the Newton step
    std::swap<RCP<VectorBase<Scalar> > >( x_new, x ); // Now x is current point!

  }

exit:

  if(out.get() && showNewtonIters) *out
    << "\n[Final] newton_iters="<<newtonIter<<", num_residual_evals="<<num_residual_evals<<"\n";

  if(newtonIter > maxIters) {
    std::ostringstream oss;
    oss
      << "newton_iter = " << newtonIter << " > maxIters = " << maxIters
      << ": Newton algorithm terminated!";
    solveStatus.message = oss.str();
    if( out.get() && (showNewtonIters || showNewtonDetails)) *out << endl << oss.str() << endl;
  }

  if(x_inout != x.get()) assign( x_inout, *x ); // Assign the final point
  if(delta != NULL) assign( delta, *ee );
  current_x_ = x_inout->clone_v(); // Remember the final point
  J_is_current_ = newtonIter==1; // J is only current with x if initial point was converged!

  if(out.get() && showNewtonDetails) *out
    << "\n*** Ending dampended Newton solve." << endl; 

  return solveStatus;

}

template <class Scalar>
RCP<const VectorBase<Scalar> >
DampenedNewtonNonlinearSolver<Scalar>::get_current_x() const
{
  return current_x_;
}

template <class Scalar>
bool DampenedNewtonNonlinearSolver<Scalar>::is_W_current() const
{
  return J_is_current_;
}

template <class Scalar>
RCP<LinearOpWithSolveBase<Scalar> >
DampenedNewtonNonlinearSolver<Scalar>::get_nonconst_W(const bool forceUpToDate)
{
  if (forceUpToDate) {
    TEST_FOR_EXCEPT(forceUpToDate);
  }
  return J_;
}

template <class Scalar>
RCP<const LinearOpWithSolveBase<Scalar> >
DampenedNewtonNonlinearSolver<Scalar>::get_W() const
{
  return J_;
}

template <class Scalar>
void DampenedNewtonNonlinearSolver<Scalar>::set_W_is_current(bool W_is_current)
{
  J_is_current_ = W_is_current;
}


} // namespace Thyra


#endif // THYRA_DAMPENED_NEWTON_NONLINEAR_SOLVER_HPP