/usr/include/trilinos/Teuchos_ScalarTraits.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 | // @HEADER
// ***********************************************************************
//
// Teuchos: Common Tools Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
// Kris
// 06.18.03 -- Minor formatting changes
// -- Changed calls to LAPACK objects to use new <OType, SType> templates
// 07.08.03 -- Move into Teuchos package/namespace
// 07.11.03 -- Added ScalarTraits for ARPREC mp_real
// 07.14.03 -- Fixed int rand() function (was set up to return a floating-point style random number)
// 07.17.03 -- Added squareroot() function
// NOTE: Before adding specializations of ScalarTraits, make sure that they do not duplicate
// specializations already present in PyTrilinos (see packages/PyTrilinos/src/Teuchos_Traits.i)
// NOTE: halfPrecision and doublePrecision are not currently implemented for ARPREC, GMP or the ordinal types (e.g., int, char)
#ifndef _TEUCHOS_SCALARTRAITS_HPP_
#define _TEUCHOS_SCALARTRAITS_HPP_
/*! \file Teuchos_ScalarTraits.hpp
\brief Defines basic traits for the scalar field type.
*/
#include "Teuchos_ConfigDefs.hpp"
#ifdef HAVE_TEUCHOS_ARPREC
#include <arprec/mp_real.h>
#endif
#ifdef HAVE_TEUCHOS_QD
#include <qd/qd_real.h>
#include <qd/dd_real.h>
#endif
#ifdef HAVE_TEUCHOS_GNU_MP
#include <gmp.h>
#include <gmpxx.h>
#endif
#include "Teuchos_ScalarTraitsDecl.hpp"
namespace Teuchos {
#ifndef DOXYGEN_SHOULD_SKIP_THIS
void throwScalarTraitsNanInfError( const std::string &errMsg );
template<class Scalar>
bool generic_real_isnaninf(const Scalar &x)
{
typedef std::numeric_limits<Scalar> NL;
// IEEE says this should fail for NaN (not all compilers do not obey IEEE)
const Scalar tol = 1.0; // Any (bounded) number should do!
if (!(x <= tol) && !(x > tol)) return true;
// Use fact that Inf*0 = NaN (again, all compilers do not obey IEEE)
Scalar z = static_cast<Scalar>(0.0) * x;
if (!(z <= tol) && !(z > tol)) return true;
// As a last result use comparisons
if (x == NL::infinity() || x == -NL::infinity()) return true;
// We give up and assume the number is finite
return false;
}
#define TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR( VALUE, MSG ) \
if (isnaninf(VALUE)) { \
std::ostringstream omsg; \
omsg << MSG; \
Teuchos::throwScalarTraitsNanInfError(omsg.str()); \
}
template<>
struct ScalarTraits<char>
{
typedef char magnitudeType;
typedef char halfPrecision;
typedef char doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(char a) { return static_cast<char>(std::fabs(static_cast<double>(a))); }
static inline char zero() { return 0; }
static inline char one() { return 1; }
static inline char conjugate(char x) { return x; }
static inline char real(char x) { return x; }
static inline char imag(char) { return 0; }
static inline bool isnaninf(char ) { return false; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline char random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline char random() { return std::rand(); } // RAB: This version should be used for an unsigned char, not char
static inline std::string name() { return "char"; }
static inline char squareroot(char x) { return (char) std::sqrt((double) x); }
static inline char pow(char x, char y) { return (char) std::pow((double)x,(double)y); }
};
template<>
struct ScalarTraits<short int>
{
typedef short int magnitudeType;
typedef short int halfPrecision;
typedef short int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(short int a) { return static_cast<short int>(std::fabs(static_cast<double>(a))); }
static inline short int zero() { return 0; }
static inline short int one() { return 1; }
static inline short int conjugate(short int x) { return x; }
static inline short int real(short int x) { return x; }
static inline short int imag(short int) { return 0; }
static inline bool isnaninf(short int) { return false; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline short int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "short int"; }
static inline short int squareroot(short int x) { return (short int) std::sqrt((double) x); }
static inline short int pow(short int x, short int y) { return (short int) std::pow((double)x,(double)y); }
};
template<>
struct ScalarTraits<int>
{
typedef int magnitudeType;
typedef int halfPrecision;
typedef int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(int a) { return static_cast<int>(std::fabs(static_cast<double>(a))); }
static inline int zero() { return 0; }
static inline int one() { return 1; }
static inline int conjugate(int x) { return x; }
static inline int real(int x) { return x; }
static inline int imag(int) { return 0; }
static inline bool isnaninf(int) { return false; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "int"; }
static inline int squareroot(int x) { return (int) std::sqrt((double) x); }
static inline int pow(int x, int y) { return (int) std::pow((double)x,(double)y); }
};
template<>
struct ScalarTraits<unsigned int>
{
typedef unsigned int magnitudeType;
typedef unsigned int halfPrecision;
typedef unsigned int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(unsigned int a) { return static_cast<unsigned int>(std::fabs(static_cast<double>(a))); }
static inline unsigned int zero() { return 0; }
static inline unsigned int one() { return 1; }
static inline unsigned int conjugate(unsigned int x) { return x; }
static inline unsigned int real(unsigned int x) { return x; }
static inline unsigned int imag(unsigned int) { return 0; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline unsigned int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "unsigned int"; }
static inline unsigned int squareroot(unsigned int x) { return (unsigned int) std::sqrt((double) x); }
static inline unsigned int pow(unsigned int x, unsigned int y) { return (unsigned int) std::pow((double)x,(double)y); }
};
template<>
struct ScalarTraits<long int>
{
typedef long int magnitudeType;
typedef long int halfPrecision;
typedef long int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(long int a) { return static_cast<long int>(std::fabs(static_cast<double>(a))); }
static inline long int zero() { return 0; }
static inline long int one() { return 1; }
static inline long int conjugate(long int x) { return x; }
static inline long int real(long int x) { return x; }
static inline long int imag(long int) { return 0; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline long int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "long int"; }
static inline long int squareroot(long int x) { return (long int) std::sqrt((double) x); }
static inline long int pow(long int x, long int y) { return (long int) std::pow((double)x,(double)y); }
};
template<>
struct ScalarTraits<long unsigned int>
{
typedef long unsigned int magnitudeType;
typedef long unsigned int halfPrecision;
typedef long unsigned int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(long unsigned int a) { return static_cast<long unsigned int>(std::fabs(static_cast<double>(a))); }
static inline long unsigned int zero() { return 0; }
static inline long unsigned int one() { return 1; }
static inline long unsigned int conjugate(long unsigned int x) { return x; }
static inline long unsigned int real(long unsigned int x) { return x; }
static inline long unsigned int imag(long unsigned int) { return 0; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline long unsigned int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "long unsigned int"; }
static inline long unsigned int squareroot(long unsigned int x) { return (long unsigned int) std::sqrt((double) x); }
static inline long unsigned int pow(long unsigned int x, long unsigned int y) { return (long unsigned int) std::pow((double)x,(double)y); }
};
#ifdef HAVE_TEUCHOS_LONG_LONG_INT
template<>
struct ScalarTraits<long long int>
{
typedef long long int magnitudeType;
typedef long long int halfPrecision;
typedef long long int doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = true;
static const bool isComparable = true;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static inline magnitudeType magnitude(long long int a) { return static_cast<long long int>(std::fabs(static_cast<double>(a))); }
static inline long long int zero() { return 0; }
static inline long long int one() { return 1; }
static inline long long int conjugate(long long int x) { return x; }
static inline long long int real(long long int x) { return x; }
static inline long long int imag(long long int) { return 0; }
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
//static inline int random() { return (-1 + 2*rand()); } // RAB: This version should be used to be consistent with others
static inline long long int random() { return std::rand(); } // RAB: This version should be used for an unsigned int, not int
static inline std::string name() { return "long long int"; }
static inline long long int squareroot(long long int x) { return (long long int) std::sqrt((double) x); }
static inline long long int pow(long long int x, long long int y) { return (long long int) std::pow((double)x,(double)y); }
};
#endif // HAVE_TEUCHOS_LONG_LONG_INT
#ifndef __sun
extern TEUCHOS_LIB_DLL_EXPORT const float flt_nan;
#endif
template<>
struct ScalarTraits<float>
{
typedef float magnitudeType;
typedef float halfPrecision; // should become IEEE754-2008 binary16 or fp16 later, perhaps specified at configure according to architectural support
typedef double doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = true;
static const bool hasMachineParameters = true;
static inline float eps() {
return std::numeric_limits<float>::epsilon();
}
static inline float sfmin() {
return std::numeric_limits<float>::min();
}
static inline float base() {
return static_cast<float>(std::numeric_limits<float>::radix);
}
static inline float prec() {
return eps()*base();
}
static inline float t() {
return static_cast<float>(std::numeric_limits<float>::digits);
}
static inline float rnd() {
return ( std::numeric_limits<float>::round_style == std::round_to_nearest ? one() : zero() );
}
static inline float emin() {
return static_cast<float>(std::numeric_limits<float>::min_exponent);
}
static inline float rmin() {
return std::numeric_limits<float>::min();
}
static inline float emax() {
return static_cast<float>(std::numeric_limits<float>::max_exponent);
}
static inline float rmax() {
return std::numeric_limits<float>::max();
}
static inline magnitudeType magnitude(float a)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
a, "Error, the input value to magnitude(...) a = " << a << " can not be NaN!" );
#endif
return std::fabs(a);
}
static inline float zero() { return(0.0f); }
static inline float one() { return(1.0f); }
static inline float conjugate(float x) { return(x); }
static inline float real(float x) { return x; }
static inline float imag(float) { return zero(); }
static inline float nan() {
#ifdef __sun
return 0.0f/std::sin(0.0f);
#else
return flt_nan;
#endif
}
static inline bool isnaninf(float x) {
return generic_real_isnaninf<float>(x);
}
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
static inline float random() { float rnd = (float) std::rand() / RAND_MAX; return (-1.0f + 2.0f * rnd); }
static inline std::string name() { return "float"; }
static inline float squareroot(float x)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
x, "Error, the input value to squareroot(...) x = " << x << " can not be NaN!" );
#endif
errno = 0;
const float rtn = std::sqrt(x);
if (errno)
return nan();
return rtn;
}
static inline float pow(float x, float y) { return std::pow(x,y); }
};
#ifndef __sun
extern TEUCHOS_LIB_DLL_EXPORT const double dbl_nan;
#endif
template<>
struct ScalarTraits<double>
{
typedef double magnitudeType;
typedef float halfPrecision;
/* there are different options as to how to double "double"
- QD's DD (if available)
- ARPREC
- GNU MP
- a true hardware quad
in the shortterm, this should be specified at configure time. I have inserted a configure-time option (--enable-teuchos-double-to-dd)
which uses QD's DD when available. This must be used alongside --enable-teuchos-qd.
*/
#if defined(HAVE_TEUCHOS_DOUBLE_TO_QD)
typedef dd_real doublePrecision;
#elif defined(HAVE_TEUCHOS_DOUBLE_TO_ARPREC)
typedef mp_real doublePrecision;
#else
typedef double doublePrecision; // don't double "double" in this case
#endif
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = true;
static const bool hasMachineParameters = true;
static inline double eps() {
return std::numeric_limits<double>::epsilon();
}
static inline double sfmin() {
return std::numeric_limits<double>::min();
}
static inline double base() {
return std::numeric_limits<double>::radix;
}
static inline double prec() {
return eps()*base();
}
static inline double t() {
return std::numeric_limits<double>::digits;
}
static inline double rnd() {
return ( std::numeric_limits<double>::round_style == std::round_to_nearest ? double(1.0) : double(0.0) );
}
static inline double emin() {
return std::numeric_limits<double>::min_exponent;
}
static inline double rmin() {
return std::numeric_limits<double>::min();
}
static inline double emax() {
return std::numeric_limits<double>::max_exponent;
}
static inline double rmax() {
return std::numeric_limits<double>::max();
}
static inline magnitudeType magnitude(double a)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
a, "Error, the input value to magnitude(...) a = " << a << " can not be NaN!" );
#endif
return std::fabs(a);
}
static inline double zero() { return 0.0; }
static inline double one() { return 1.0; }
static inline double conjugate(double x) { return(x); }
static inline double real(double x) { return(x); }
static inline double imag(double) { return(0); }
static inline double nan() {
#ifdef __sun
return 0.0/std::sin(0.0);
#else
return dbl_nan;
#endif
}
static inline bool isnaninf(double x) {
return generic_real_isnaninf<double>(x);
}
static inline void seedrandom(unsigned int s) {
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
static inline double random() { double rnd = (double) std::rand() / RAND_MAX; return (double)(-1.0 + 2.0 * rnd); }
static inline std::string name() { return "double"; }
static inline double squareroot(double x)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
x, "Error, the input value to squareroot(...) x = " << x << " can not be NaN!" );
#endif
errno = 0;
const double rtn = std::sqrt(x);
if (errno)
return nan();
return rtn;
}
static inline double pow(double x, double y) { return std::pow(x,y); }
};
#ifdef HAVE_TEUCHOS_QD
bool operator&&(const dd_real &a, const dd_real &b);
bool operator&&(const qd_real &a, const qd_real &b);
template<>
struct ScalarTraits<dd_real>
{
typedef dd_real magnitudeType;
typedef double halfPrecision;
typedef qd_real doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = true;
static const bool hasMachineParameters = true;
static inline dd_real eps() { return std::numeric_limits<dd_real>::epsilon(); }
static inline dd_real sfmin() { return std::numeric_limits<dd_real>::min(); }
static inline dd_real base() { return std::numeric_limits<dd_real>::radix; }
static inline dd_real prec() { return eps()*base(); }
static inline dd_real t() { return std::numeric_limits<dd_real>::digits; }
static inline dd_real rnd() { return ( std::numeric_limits<dd_real>::round_style == std::round_to_nearest ? dd_real(1.0) : dd_real(0.0) ); }
static inline dd_real emin() { return std::numeric_limits<dd_real>::min_exponent; }
static inline dd_real rmin() { return std::numeric_limits<dd_real>::min(); }
static inline dd_real emax() { return std::numeric_limits<dd_real>::max_exponent; }
static inline dd_real rmax() { return std::numeric_limits<dd_real>::max(); }
static inline magnitudeType magnitude(dd_real a)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
a, "Error, the input value to magnitude(...) a = " << a << " can not be NaN!" );
#endif
return abs(a);
}
static inline dd_real zero() { return dd_real(0.0); }
static inline dd_real one() { return dd_real(1.0); }
static inline dd_real conjugate(dd_real x) { return(x); }
static inline dd_real real(dd_real x) { return x ; }
static inline dd_real imag(dd_real) { return zero(); }
static inline dd_real nan() { return dd_real::_nan; }
static inline bool isnaninf(dd_real x) { return isnan(x) || isinf(x); }
static inline void seedrandom(unsigned int s) {
// ddrand() uses std::rand(), so the std::srand() is our seed
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
static inline dd_real random() { return ddrand(); }
static inline std::string name() { return "dd_real"; }
static inline dd_real squareroot(dd_real x)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
x, "Error, the input value to squareroot(...) x = " << x << " can not be NaN!" );
#endif
return sqrt(x);
}
static inline dd_real pow(dd_real x, dd_real y) { return pow(x,y); }
};
template<>
struct ScalarTraits<qd_real>
{
typedef qd_real magnitudeType;
typedef dd_real halfPrecision;
typedef qd_real doublePrecision;
static const bool isComplex = false;
static const bool isOrdinal = false;
static const bool isComparable = true;
static const bool hasMachineParameters = true;
static inline qd_real eps() { return std::numeric_limits<qd_real>::epsilon(); }
static inline qd_real sfmin() { return std::numeric_limits<qd_real>::min(); }
static inline qd_real base() { return std::numeric_limits<qd_real>::radix; }
static inline qd_real prec() { return eps()*base(); }
static inline qd_real t() { return std::numeric_limits<qd_real>::digits; }
static inline qd_real rnd() { return ( std::numeric_limits<qd_real>::round_style == std::round_to_nearest ? qd_real(1.0) : qd_real(0.0) ); }
static inline qd_real emin() { return std::numeric_limits<qd_real>::min_exponent; }
static inline qd_real rmin() { return std::numeric_limits<qd_real>::min(); }
static inline qd_real emax() { return std::numeric_limits<qd_real>::max_exponent; }
static inline qd_real rmax() { return std::numeric_limits<qd_real>::max(); }
static inline magnitudeType magnitude(qd_real a)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
a, "Error, the input value to magnitude(...) a = " << a << " can not be NaN!" );
#endif
return abs(a);
}
static inline qd_real zero() { return qd_real(0.0); }
static inline qd_real one() { return qd_real(1.0); }
static inline qd_real conjugate(qd_real x) { return(x); }
static inline qd_real real(qd_real x) { return x ; }
static inline qd_real imag(qd_real) { return zero(); }
static inline qd_real nan() { return qd_real::_nan; }
static inline bool isnaninf(qd_real x) { return isnan(x) || isinf(x); }
static inline void seedrandom(unsigned int s) {
// qdrand() uses std::rand(), so the std::srand() is our seed
std::srand(s);
#ifdef __APPLE__
// throw away first random number to address bug 3655
// http://software.sandia.gov/bugzilla/show_bug.cgi?id=3655
random();
#endif
}
static inline qd_real random() { return qdrand(); }
static inline std::string name() { return "qd_real"; }
static inline qd_real squareroot(qd_real x)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
x, "Error, the input value to squareroot(...) x = " << x << " can not be NaN!" );
#endif
return sqrt(x);
}
static inline qd_real pow(qd_real x, qd_real y) { return pow(x,y); }
};
#endif // HAVE_TEUCHOS_QD
#ifdef HAVE_TEUCHOS_GNU_MP
extern gmp_randclass gmp_rng;
/* Regarding halfPrecision, doublePrecision and mpf_class:
Because the precision of an mpf_class float is not determined by the data type,
there is no way to fill the typedefs for this object.
Instead, we could create new data classes (e.g., Teuchos::MPF128, Teuchos::MPF256) for
commonly used levels of precision, and fill out ScalarTraits for these. This would allow us
to typedef the promotions and demotions in the appropriate way. These classes would serve to
wrap an mpf_class object, calling the constructor for the appropriate precision, exposing the
arithmetic routines but hiding the precision-altering routines.
Alternatively (perhaps, preferably), would could create a single class templated on the precision (e.g., Teuchos::MPF<N>).
Then we have a single (partially-specialized) implementation of ScalarTraits. This class, as above, must expose all of the
operations expected of a scalar type; however, most of these can be trivially stolen from the gmpcxx.h header file
CGB/RAB, 01/05/2009
*/
template<>
struct ScalarTraits<mpf_class>
{
typedef mpf_class magnitudeType;
typedef mpf_class halfPrecision;
typedef mpf_class doublePrecision;
static const bool isComplex = false;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static magnitudeType magnitude(mpf_class a) { return std::abs(a); }
static inline mpf_class zero() { mpf_class zero = 0.0; return zero; }
static inline mpf_class one() { mpf_class one = 1.0; return one; }
static inline mpf_class conjugate(mpf_class x) { return x; }
static inline mpf_class real(mpf_class x) { return(x); }
static inline mpf_class imag(mpf_class x) { return(0); }
static inline bool isnaninf(mpf_class x) { return false; } // mpf_class currently can't handle nan or inf!
static inline void seedrandom(unsigned int s) {
unsigned long int seedVal = static_cast<unsigned long int>(s);
gmp_rng.seed( seedVal );
}
static inline mpf_class random() {
return gmp_rng.get_f();
}
static inline std::string name() { return "mpf_class"; }
static inline mpf_class squareroot(mpf_class x) { return std::sqrt(x); }
static inline mpf_class pow(mpf_class x, mpf_class y) { return pow(x,y); }
// Todo: RAB: 2004/05/28: Add nan() and isnaninf() functions when needed!
};
#endif // HAVE_TEUCHOS_GNU_MP
#ifdef HAVE_TEUCHOS_ARPREC
/* See discussion above for mpf_class, regarding halfPrecision and doublePrecision. Something similar will need to be done
for ARPREC. */
template<>
struct ScalarTraits<mp_real>
{
typedef mp_real magnitudeType;
typedef double halfPrecision;
typedef mp_real doublePrecision;
static const bool isComplex = false;
static const bool isComparable = true;
static const bool isOrdinal = false;
static const bool hasMachineParameters = false;
// Not defined: eps(), sfmin(), base(), prec(), t(), rnd(), emin(), rmin(), emax(), rmax()
static magnitudeType magnitude(mp_real a) { return abs(a); }
static inline mp_real zero() { mp_real zero = 0.0; return zero; }
static inline mp_real one() { mp_real one = 1.0; return one; }
static inline mp_real conjugate(mp_real x) { return x; }
static inline mp_real real(mp_real x) { return(x); }
static inline mp_real imag(mp_real x) { return zero(); }
static inline bool isnaninf(mp_real x) { return false; } // ToDo: Change this?
static inline void seedrandom(unsigned int s) {
long int seedVal = static_cast<long int>(s);
srand48(seedVal);
}
static inline mp_real random() { return mp_rand(); }
static inline std::string name() { return "mp_real"; }
static inline mp_real squareroot(mp_real x) { return sqrt(x); }
static inline mp_real pow(mp_real x, mp_real y) { return pow(x,y); }
// Todo: RAB: 2004/05/28: Add nan() and isnaninf() functions when needed!
};
#endif // HAVE_TEUCHOS_ARPREC
#ifdef HAVE_TEUCHOS_COMPLEX
// Partial specialization for std::complex numbers templated on real type T
template<class T>
struct ScalarTraits<
std::complex<T>
>
{
typedef std::complex<T> ComplexT;
typedef std::complex<typename ScalarTraits<T>::halfPrecision> halfPrecision;
typedef std::complex<typename ScalarTraits<T>::doublePrecision> doublePrecision;
typedef typename ScalarTraits<T>::magnitudeType magnitudeType;
static const bool isComplex = true;
static const bool isOrdinal = ScalarTraits<T>::isOrdinal;
static const bool isComparable = false;
static const bool hasMachineParameters = true;
static inline magnitudeType eps() { return ScalarTraits<magnitudeType>::eps(); }
static inline magnitudeType sfmin() { return ScalarTraits<magnitudeType>::sfmin(); }
static inline magnitudeType base() { return ScalarTraits<magnitudeType>::base(); }
static inline magnitudeType prec() { return ScalarTraits<magnitudeType>::prec(); }
static inline magnitudeType t() { return ScalarTraits<magnitudeType>::t(); }
static inline magnitudeType rnd() { return ScalarTraits<magnitudeType>::rnd(); }
static inline magnitudeType emin() { return ScalarTraits<magnitudeType>::emin(); }
static inline magnitudeType rmin() { return ScalarTraits<magnitudeType>::rmin(); }
static inline magnitudeType emax() { return ScalarTraits<magnitudeType>::emax(); }
static inline magnitudeType rmax() { return ScalarTraits<magnitudeType>::rmax(); }
static magnitudeType magnitude(ComplexT a)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
a, "Error, the input value to magnitude(...) a = " << a << " can not be NaN!" );
#endif
return std::abs(a);
}
static inline ComplexT zero() { return ComplexT(ScalarTraits<magnitudeType>::zero(),ScalarTraits<magnitudeType>::zero()); }
static inline ComplexT one() { return ComplexT(ScalarTraits<magnitudeType>::one(),ScalarTraits<magnitudeType>::zero()); }
static inline ComplexT conjugate(ComplexT a){ return ComplexT(a.real(),-a.imag()); }
static inline magnitudeType real(ComplexT a) { return a.real(); }
static inline magnitudeType imag(ComplexT a) { return a.imag(); }
static inline ComplexT nan() { return ComplexT(ScalarTraits<magnitudeType>::nan(),ScalarTraits<magnitudeType>::nan()); }
static inline bool isnaninf(ComplexT x) { return ScalarTraits<magnitudeType>::isnaninf(x.real()) || ScalarTraits<magnitudeType>::isnaninf(x.imag()); }
static inline void seedrandom(unsigned int s) { ScalarTraits<magnitudeType>::seedrandom(s); }
static inline ComplexT random()
{
const T rnd1 = ScalarTraits<magnitudeType>::random();
const T rnd2 = ScalarTraits<magnitudeType>::random();
return ComplexT(rnd1,rnd2);
}
static inline std::string name() { return std::string("std::complex<")+std::string(ScalarTraits<magnitudeType>::name())+std::string(">"); }
// This will only return one of the square roots of x, the other can be obtained by taking its conjugate
static inline ComplexT squareroot(ComplexT x)
{
#ifdef TEUCHOS_DEBUG
TEUCHOS_SCALAR_TRAITS_NAN_INF_ERR(
x, "Error, the input value to squareroot(...) x = " << x << " can not be NaN!" );
#endif
typedef ScalarTraits<magnitudeType> STMT;
const T r = x.real(), i = x.imag(), zero = STMT::zero(), two = 2.0;
const T a = STMT::squareroot((r*r)+(i*i));
const T nr = STMT::squareroot((a+r)/two);
const T ni = ( i == zero ? zero : STMT::squareroot((a-r)/two) );
return ComplexT(nr,ni);
}
// 2010/03/19: rabartl: Above, I had to add the check for i == zero
// to avoid a returned NaN on the Intel 10.1 compiler. For some
// reason, having these two squareroot calls in a row produce a NaN
// in an optimized build with this compiler. Amazingly, when I put
// in print statements (i.e. std::cout << ...) the NaN went away and
// the second squareroot((a-r)/two) returned zero correctly. I
// guess that calling the output routine flushed the registers or
// something and restarted the squareroot rountine for this compiler
// or something similar. Actually, due to roundoff, it is possible that a-r
// might be slightly less than zero (i.e. -1e-16) and that would cause
// a possbile NaN return. THe above if test is the right thing to do
// I think and is very cheap.
static inline ComplexT pow(ComplexT x, ComplexT y) { return pow(x,y); }
};
#endif // HAVE_TEUCHOS_COMPLEX
#endif // DOXYGEN_SHOULD_SKIP_THIS
} // Teuchos namespace
#endif // _TEUCHOS_SCALARTRAITS_HPP_
|