/usr/include/trilinos/Teuchos_ArrayRCPDecl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 | // @HEADER
// ***********************************************************************
//
// Teuchos: Common Tools Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef TEUCHOS_ARRAY_RCP_DECL_HPP
#define TEUCHOS_ARRAY_RCP_DECL_HPP
#include "Teuchos_RCP.hpp"
#include "Teuchos_Exceptions.hpp"
#include "Teuchos_ArrayViewDecl.hpp"
namespace Teuchos {
/** \brief Array reference-counted pointer class.
*
* This is a reference-counted class similar to <tt>RCP</tt> except
* that it is designed to use reference counting to manage an array of objects
* that use value semantics. Managing an array of objects is very different
* from managing a pointer to an individual, possibly polymorphic, object. For
* example, while implicit conversions from derived to base types is a good
* thing when dealing with pointers to single objects, it is a very bad thing
* when working with arrays of objects. Therefore, this class contains those
* capabilities of raw pointers that are good dealing with arrays of objects
* but excludes those that are bad, such as implicit conversions from derived
* to base types.
*
* Note that all access will be checked at runtime to avoid reading invalid
* memory if <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is defined which it is if
* <tt>--enable-teuchos-abc</tt> is given to the <tt>configure</tt> script.
* In order to be able to check access, every <tt>%ArrayRCP</tt> must
* be constructed given a range. When <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt>
* is defined, this class simply does not give up a raw pointer or raw
* reference to any internally referenced object if that object does not fall
* with the range of valid data.
*
* <b>Type <tt>T</tt> requirements:</b><ul>
* <li> Must have a valid <tt>Teuchos::TypeNameTraits<T></tt> specialization
* </ul>
*
* ToDo: Finish documentation!
*
* \ingroup teuchos_mem_mng_grp
*/
template<class T>
class ArrayRCP {
public:
//! @name Public types
//@{
/** \brief. */
typedef Teuchos_Ordinal Ordinal;
/** \brief . */
typedef Ordinal size_type;
/** \brief . */
typedef Ordinal difference_type;
/** \brief . */
typedef std::random_access_iterator_tag iterator_category;
/** \brief . */
typedef T* iterator_type;
/** \brief . */
typedef T value_type;
/** \brief . */
typedef T& reference;
/** \brief . */
typedef const T& const_reference;
/** \brief . */
typedef T* pointer;
/** \brief . */
typedef T* const_pointer;
/** \brief . */
typedef T element_type;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
/** \brief . */
typedef ArrayRCP<T> iterator;
/** \brief . */
typedef ArrayRCP<const T> const_iterator;
#else
typedef T* iterator;
typedef const T* const_iterator;
#endif
//@}
//! @name Constructors/Destructors/Initializers
//@{
/** \brief Initialize <tt>ArrayRCP<T></tt> to NULL.
*
* This allows clients to write code like:
\code
ArrayRCP<int> p = null;
\endcode
* or
\code
ArrayRCP<int> p;
\endcode
* and construct to <tt>NULL</tt>
*/
inline ArrayRCP( ENull null_arg = null );
/** \brief Construct from a raw pointer and a valid range.
*
* Postconditions:<ul>
* <li><tt>this->get() == p</tt>
* <li><tt>this->lowerOffset() == lowerOffset</tt>
* <li><tt>this->upperOffset() == size + lowerOffset - 1</tt>
* <li><tt>this->has_ownership() == has_ownership</tt>
* </ul>
*
* WARNING! You should avoid manipulating raw pointers and use other
* methods to construct an ArrayRCP object instead!
*/
inline ArrayRCP( T* p, size_type lowerOffset, size_type size,
bool has_ownership, const ERCPNodeLookup rcpNodeLookup = RCP_ENABLE_NODE_LOOKUP );
/** \brief Construct from a raw pointer, a valid range, and a deallocator.
*
* Postconditions:<ul>
* <li><tt>this->get() == p</tt>
* <li><tt>this->lowerOffset() == lowerOffset</tt>
* <li><tt>this->upperOffset() == size + lowerOffset - 1</tt>
* <li><tt>this->has_ownership() == has_ownership</tt>
* </ul>
*
* WARNING! You should avoid manipulating raw pointers and use other
* methods to construct an ArrayRCP object instead!
*/
template<class Dealloc_T>
inline ArrayRCP( T* p, size_type lowerOffset, size_type size, Dealloc_T dealloc,
bool has_ownership );
/** \brief Construct allocating an array of size n and filling.
*
* Postconditions:<ul>
* <li><tt>this->lowerOffset() == 0</tt>
* <li><tt>this->upperOffset() == size-1</tt>
* <li><tt>this->has_ownership() == true</tt>
* </ul>
*/
inline explicit ArrayRCP( size_type size, const T& val = T() );
/** \brief Initialize from another <tt>ArrayRCP<T></tt> object.
*
* After construction, <tt>this</tt> and <tt>r_ptr</tt> will
* reference the same array.
*
* This form of the copy constructor is required even though the
* below more general templated version is sufficient since some
* compilers will generate this function automatically which will
* give an incorrect implementation.
*
* Postconditions:<ul>
* <li><tt>this->get() == r_ptr.get()</tt>
* <li><tt>this->count() == r_ptr.count()</tt>
* <li><tt>this->has_ownership() == r_ptr.has_ownership()</tt>
* <li> If <tt>r_ptr.get() != NULL</tt> then <tt>r_ptr.count()</tt> is incremented by 1
* </ul>
*/
inline ArrayRCP(const ArrayRCP<T>& r_ptr);
/** \brief Removes a reference to a dynamically allocated array and possibly deletes
* the array if owned.
*
* Deallocates array if <tt>this->has_ownership() == true</tt> and
* <tt>this->count() == 1</tt>. If <tt>this->count() == 1</tt> but
* <tt>this->has_ownership() == false</tt> then the array is not deleted
* (usually using <tt>delete []</tt>). If <tt>this->count() > 1</tt> then
* the internal reference count shared by all the other related
* <tt>ArrayRCP<...></tt> objects for this shared array is
* deincremented by one. If <tt>this->get() == NULL</tt> then nothing
* happens.
*/
inline ~ArrayRCP();
/** \brief Copy the pointer to the referenced array and increment the
* reference count.
*
* If <tt>this->has_ownership() == true</tt> and <tt>this->count() == 1</tt>
* before this operation is called, then the array will be deleted prior to
* binding to the pointer (possibly <tt>NULL</tt>) pointed to in
* <tt>r_ptr</tt>. Assignment to self (i.e. <tt>this->get() ==
* r_ptr.get()</tt>) is harmless and this function does nothing.
*
* Postconditions:
* <ul>
* <li><tt>this->get() == r_ptr.get()</tt>
* <li><tt>this->count() == r_ptr.count()</tt>
* <li><tt>this->has_ownership() == r_ptr.has_ownership()</tt>
* <li> If <tt>r_ptr.get() != NULL</tt> then <tt>r_ptr.count()</tt> is incremented by 1
* </ul>
*/
inline ArrayRCP<T>& operator=(const ArrayRCP<T>& r_ptr);
//@}
//! @name Object/Pointer Access Functions
//@{
/** \brief Returns true if the underlying pointer is null. */
inline bool is_null() const;
/** \brief Pointer (<tt>-></tt>) access to members of underlying object for
* current position.
*
* <b>Preconditions:</b><ul>
* <li><tt>this->get() != NULL</tt>
* <li><tt>this->lowerOffset() <= 0</tt>
* <li><tt>this->upperOffset() >= 0</tt>
* </ul>
*/
inline T* operator->() const;
/** \brief Dereference the underlying object for the current pointer
* position.
*
* <b>Preconditions:</b><ul>
* <li><tt>this->get() != NULL</tt>
* <li><tt>this->lowerOffset() <= 0</tt>
* <li><tt>this->upperOffset() >= 0</tt>
* </ul>
*/
inline T& operator*() const;
/** \brief Get the raw C++ pointer to the underlying object.
*
* <b>Preconditions:</b><ul>
* <li>[<tt>*this != null</tt>] <tt>this->lowerOffset() <= 0</tt>
* <li>[<tt>*this != null</tt>] <tt>this->upperOffset() >= 0</tt>
* </ul>
*/
inline T* get() const;
/** \brief Get the raw C++ pointer to the underlying object.
*
* <b>Preconditions:</b><ul>
* <li>[<tt>*this != null</tt>] <tt>this->lowerOffset() <= 0</tt>
* <li>[<tt>*this != null</tt>] <tt>this->upperOffset() >= 0</tt>
* </ul>
*/
inline T* getRawPtr() const;
/** \brief Random object access.
*
* <b>Preconditions:</b><ul>
* <li><tt>this->get() != NULL</tt>
* <li><tt>this->lowerOffset() <= offset && offset <= this->upperOffset()</tt>
* </ul>
*/
inline T& operator[](size_type offset) const;
//@}
//! @name Pointer Arithmetic Functions
//@{
/** \brief Prefix increment of pointer (i.e. ++ptr).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is incremented by <tt>1</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is deincremented by <tt>1</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is deincremented by <tt>1</tt>
* </ul>
*/
inline ArrayRCP<T>& operator++();
/** \brief Postfix increment of pointer (i.e. ptr++).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li><tt>this->get()</tt> is incremented by <tt>1</tt>
* <li><tt>this->lowerOffset()</tt> is deincremented by <tt>1</tt>
* <li><tt>this->upperOffset()</tt> is deincremented by <tt>1</tt>
* </ul>
*/
inline ArrayRCP<T> operator++(int);
/** \brief Prefix deincrement of pointer (i.e. --ptr).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is deincremented by <tt>1</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is incremented by <tt>1</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is incremented by <tt>1</tt>
* </ul>
*/
inline ArrayRCP<T>& operator--();
/** \brief Postfix deincrement of pointer (i.e. ptr--).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li><tt>this->get()</tt> is dincremented by <tt>1</tt>
* <li><tt>this->lowerOffset()</tt> is incremented by <tt>1</tt>
* <li><tt>this->upperOffset()</tt> is incremented by <tt>1</tt>
* </ul>
*/
inline ArrayRCP<T> operator--(int);
/** \brief Pointer integer increment (i.e. ptr+=offset).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is incremented by <tt>offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is deincremented by <tt>offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is deincremented by <tt>offset</tt>
* </ul>
*/
inline ArrayRCP<T>& operator+=(size_type offset);
/** \brief Pointer integer increment (i.e. ptr-=offset).
*
* Does nothing if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->get()</tt> is deincremented by <tt>offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->lowerOffset()</tt> is incremented by <tt>offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>this->upperOffset()</tt> is incremented by <tt>offset</tt>
* </ul>
*/
inline ArrayRCP<T>& operator-=(size_type offset);
/** \brief Pointer integer increment (i.e. ptr+offset).
*
* Returns a null pointer if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->get() == this->get() + offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->lowerOffset() == this->lowerOffset() - offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->upperOffset() == this->upperOffset() - offset</tt>
* </ul>
*
* Note that since implicit conversion of <tt>ArrayRCP<T></tt>
* objects is not allowed that it does not help at all to make this function
* into a non-member function.
*/
inline ArrayRCP<T> operator+(size_type offset) const;
/** \brief Pointer integer deincrement (i.e. ptr-offset).
*
* Returns a null pointer if <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->get() == this->get() - offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->lowerOffset() == this->lowerOffset() + offset</tt>
* <li>[<tt>this->get()!=NULL</tt>] <tt>return->upperOffset() == this->upperOffset() + offset</tt>
* </ul>
*
* Note that since implicit conversion of <tt>ArrayRCP<T></tt>
* objects is not allowed that it does not help at all to make this function
* into a non-member function.
*/
inline ArrayRCP<T> operator-(size_type offset) const;
//@}
//! @name Standard Container-Like Functions
//@{
/** \brief Return an iterator to beginning of the array of data.
*
* If <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is defined then the iterator
* returned is an <tt>ArrayRCP<T></tt> object and all operations are
* checked at runtime. When <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is not
* defined, the a raw pointer <tt>T*</tt> is returned for fast execution.
*
* <b>Postconditions:</b><ul>
* <li>[this->get()!=NULL</tt>] <tt>&*return == this->get()</tt>
* <li>[<tt>this->get()==NULL</tt>] <tt>return == (null or NULL)</tt>
* </ul>
*/
inline iterator begin() const;
/** \brief Return an iterator to past the end of the array of data.
*
* If <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is defined then the iterator
* returned is an <tt>ArrayRCP<T></tt> object and all operations are
* checked at runtime. When <tt>HAVE_TEUCHOS_ARRAY_BOUNDSCHECK</tt> is not
* defined, the a raw pointer <tt>T*</tt> is returned for fast execution.
*
* <b>Postconditions:</b><ul>
* <li>[<tt>this->get()!=NULL</tt>] <tt>&*end == this->get()+(this->upperOffset()+1)</tt>
* <li>[<tt>this->get()==NULL</tt>] <tt>return == (null or NULL)</tt>
* </ul>
*/
inline iterator end() const;
//@}
//! @name ArrayRCP Views
//@{
/** \brief Return object for only const access to data.
*
* This function should only compile successfully if the type <tt>T</tt> is
* not already declared <tt>const</tt>!
*/
inline ArrayRCP<const T> getConst() const;
/** \brief Return a persisting view of a contiguous range of elements.
*
* <b>Preconditions:</b><ul>
* <li><tt>this->get() != NULL</tt>
* <li><tt>this->lowerOffset() <= lowerOffset</tt>
* <li><tt>lowerOffset + size - 1 <= this->upperOffset()</tt>
* </ul>
*
* <b>Postconditions:</b><ul>
* <li><tt>return->get() == this->get() + lowerOffset</tt>
* <li><tt>return->lowerOffset() == 0</tt>
* <li><tt>return->upperOffset() == size-1</tt>
* </ul>
*/
inline ArrayRCP<T> persistingView( size_type lowerOffset, size_type size ) const;
//@}
//! @name Size and extent query functions
//@{
/** \brief Return the lower offset to valid data. */
inline size_type lowerOffset() const;
/** \brief Return the upper offset to valid data. */
inline size_type upperOffset() const;
/** \brief The total number of items in the managed array
* (i.e. <tt>upperOffset()-lowerOffset()+1</tt>).
*/
inline size_type size() const;
//@}
//! @name ArrayView views
//@{
/** \brief Return view of a contiguous range of elements.
*
* <b>Preconditions:</b><ul>
* <li><tt>this->get() != NULL</tt>
* <li><tt>this->lowerOffset() <= lowerOffset</tt>
* <li><tt>lowerOffset + size - 1 <= this->upperOffset()</tt>
* </ul>
*
* <b>Postconditions:</b><ul>
* <li><tt>return->get() == this->get() + lowerOffset</tt>
* <li><tt>return->lowerOffset() == 0</tt>
* <li><tt>return->upperOffset() == size-1</tt>
* </ul>
*/
inline ArrayView<T> view( size_type lowerOffset, size_type size ) const;
/** \brief Return a view of a contiguous range of elements (calls
* view(offset,size)).
*/
inline ArrayView<T> operator()( size_type lowerOffset, size_type size ) const;
/** \brief Return an ArrayView of *this.
*
* NOTE: This will return a null ArrayView if this->size() == 0.
*/
inline ArrayView<T> operator()() const;
//@}
//! @name Implicit conversions
//@{
/** \brief Convert from ArrayRCP<T> to ArrayRCP<const T>. */
inline operator ArrayRCP<const T>() const;
//@}
//! @name std::vector like and other misc functions
//@{
/** \brief Resize and assign n elements of val.
*
* \postconditions <tt>size() == n</tt>
*/
inline void assign(size_type n, const T &val);
/** \brief Resize and assign to iterator sequence [first, last)
*
* \postconditions <tt>size() == std::distance(first, last)</tt>
*
* This will not change the underlying pointer array if the size does not
* change.
*/
template<class Iter>
inline void assign(Iter first, Iter last);
/** \brief Deep copy the elements from one ArrayView object into this
* object.
*
* Simply calls <tt>assign(av.begin(), av.end())</tt>
*/
inline void deepCopy(const ArrayView<const T>& av);
/** \brief Resize and append new elements if enlarging.
*
*/
inline void resize(const size_type n, const T &val = T());
/** \brief Resize to zero..
*
* \postconditions <tt>size()==0</tt>
*/
inline void clear();
//@}
//! @name Reference counting
//@{
/** \brief Strength of the pointer.
*
* Return values:<ul>
* <li><tt>RCP_STRONG</tt>: Underlying reference-counted object will be deleted
* when <tt>*this</tt> is destroyed if <tt>strong_count()==1</tt>.
* <li><tt>RCP_WEAK</tt>: Underlying reference-counted object will not be deleted
* when <tt>*this</tt> is destroyed if <tt>strong_count() > 0</tt>.
* <li><tt>RCP_STRENGTH_INVALID</tt>: <tt>*this</tt> is not strong or weak but
* is null.
* </ul>
*/
inline ERCPStrength strength() const;
/** \brief Return if the underlying object pointer is still valid or not.
*
* The underlying object will not be valid if the strong count has gone to
* zero but the weak count thas not.
*
* NOTE: Null is a valid object pointer. If you want to know if there is a
* non-null object and it is valid then <tt>!is_null() &&
* is_valid_ptr()</tt> will be <tt>true</tt>.
*/
inline bool is_valid_ptr() const;
/** \brief Return the number of active <tt>RCP<></tt> objects that have a
* "strong" reference to the underlying reference-counted object.
*
* \return If <tt>this->get() == NULL</tt> then this function returns 0.
*/
inline int strong_count() const;
/** \brief Return the number of active <tt>RCP<></tt> objects that have a
* "weak" reference to the underlying reference-counted object.
*
* \return If <tt>this->get() == NULL</tt> then this function returns 0.
*/
inline int weak_count() const;
/** \brief Total count (strong_count() + weak_count()). */
inline int total_count() const;
/** \brief Give <tt>this</tt> and other <tt>ArrayRCP<></tt> objects
* ownership of the underlying referenced array to delete it.
*
* See <tt>~ArrayRCP()</tt> above. This function does nothing if
* <tt>this->get() == NULL</tt>.
*
* <b>Postconditions:</b><ul>
* <li> If <tt>this->get() == NULL</tt> then
* <ul>
* <li><tt>this->has_ownership() == false</tt> (always!).
* </ul>
* <li> else
* <ul>
* <li><tt>this->has_ownership() == true</tt>
* </ul>
* </ul>
*/
inline void set_has_ownership();
/** \brief Returns true if <tt>this</tt> has ownership of object pointed to
* by <tt>this->get()</tt> in order to delete it.
*
* See <tt>~ArrayRCP()</tt> above.
*
* \return If this->get() <tt>== NULL</tt> then this function always returns
* <tt>false</tt>. Otherwise the value returned from this function depends
* on which function was called most recently, if any;
* <tt>set_has_ownership()</tt> (<tt>true</tt>) or <tt>release()</tt>
* (<tt>false</tt>).
*/
inline bool has_ownership() const;
/** \brief Release the ownership of the underlying array.
*
* After this function is called then the client is responsible for deleting
* the returned pointer no matter how many <tt>ref_count_ptr<T></tt> objects
* have a reference to it. If <tt>this-></tt>get() <tt>== NULL</tt>, then
* this call is meaningless.
*
* Note that this function does not have the exact same semantics as does
* <tt>auto_ptr<T>::release()</tt>. In <tt>auto_ptr<T>::release()</tt>,
* <tt>this</tt> is set to <tt>NULL</tt> while here in ArrayRCP<T>::
* release() only an ownership flag is set and <tt>this</tt> still points to
* the same array. It would be difficult to duplicate the behavior of
* <tt>auto_ptr<T>::release()</tt> for this class.
*
* <b>Postconditions:</b><ul>
* <li><tt>this->has_ownership() == false</tt>
* </ul>
*
* \returns Returns the value of <tt>this->get()</tt>
*/
inline T* release();
/** \brief Create a new weak RCP object from another (strong) RCP object.
*
* ToDo: Explain this!
*
* <b>Preconditons:</b> <ul>
* <li> <tt>returnVal.is_valid_ptr()==true</tt>
* </ul>
*
* <b>Postconditons:</b> <ul>
* <li> <tt>returnVal.get() == this->get()</tt>
* <li> <tt>returnVal.strong_count() == this->strong_count()</tt>
* <li> <tt>returnVal.weak_count() == this->weak_count()+1</tt>
* <li> <tt>returnVal.strength() == RCP_WEAK</tt>
* <li> <tt>returnVal.has_ownership() == this->has_ownership()</tt>
* </ul>
*/
inline ArrayRCP<T> create_weak() const;
/** \brief Create a new strong RCP object from another (weak) RCP object.
*
* ToDo: Explain this!
*
* <b>Preconditons:</b> <ul>
* <li> <tt>returnVal.is_valid_ptr()==true</tt>
* </ul>
*
* <b>Postconditons:</b> <ul>
* <li> <tt>returnVal.get() == this->get()</tt>
* <li> <tt>returnVal.strong_count() == this->strong_count()+1</tt>
* <li> <tt>returnVal.weak_count() == this->weak_count()</tt>
* <li> <tt>returnVal.strength() == RCP_STRONG</tt>
* <li> <tt>returnVal.has_ownership() == this->has_ownership()</tt>
* </ul>
*/
inline ArrayRCP<T> create_strong() const;
/** \brief Returns true if the smart pointers share the same underlying reference-counted object.
*
* This method does more than just check if <tt>this->get() == r_ptr.get()</tt>.
* It also checks to see if the underlying reference counting machinery is the
* same.
*/
template<class T2>
inline bool shares_resource(const ArrayRCP<T2>& r_ptr) const;
//@}
//! @name Assertion Functions.
//@{
/** \brief Throws <tt>NullReferenceError</tt> if <tt>this->get()==NULL</tt>,
* otherwise returns reference to <tt>*this</tt>.
*/
inline const ArrayRCP<T>& assert_not_null() const;
/** \brief Throws <tt>NullReferenceError</tt> if <tt>this->get()==NULL</tt>
* or<tt>this->get()!=NULL</tt>, throws <tt>RangeError</tt> if
* <tt>(lowerOffset < this->lowerOffset() || this->upperOffset() <
* upperOffset</tt>, otherwise returns reference to <tt>*this</tt>
*/
inline const ArrayRCP<T>& assert_in_range( size_type lowerOffset, size_type size ) const;
/** \brief If the object pointer is non-null, assert that it is still valid.
*
* If <tt>is_null()==false && strong_count()==0</tt>, this will throw
* <tt>DanglingReferenceErorr</tt> with a great error message.
*
* If <tt>is_null()==true</tt>, then this will not throw any exception.
*
* In this context, null is a valid object.
*/
inline const ArrayRCP<T>& assert_valid_ptr() const;
//@}
/** \name Deprecated */
//@{
/** \brief Returns <tt>strong_count()</tt> [deprecated]. */
inline int count() const;
//@}
private:
// //////////////////////////////////////////////////////////////
// Private data members
T *ptr_; // NULL if this pointer is null
RCPNodeHandle node_; // NULL if this pointer is null
size_type lowerOffset_; // 0 if this pointer is null
size_type upperOffset_; // -1 if this pointer is null
inline void debug_assert_not_null() const
{
#ifdef TEUCHOS_REFCOUNTPTR_ASSERT_NONNULL
assert_not_null();
#endif
}
inline void debug_assert_in_range( size_type lowerOffset_in,
size_type size_in ) const
{
(void)lowerOffset_in; (void)size_in;
#ifdef HAVE_TEUCHOS_ARRAY_BOUNDSCHECK
assert_in_range(lowerOffset_in, size_in);
#endif
}
inline void debug_assert_valid_ptr() const
{
#ifdef TEUCHOS_DEBUG
assert_valid_ptr();
#endif
}
public:
/** \name Deprecated. */
//@{
/** \brief Deprecated.
*/
TEUCHOS_DEPRECATED operator ArrayView<T>() const;
//@}
#ifndef DOXYGEN_COMPILE
// These constructors should be private but I have not had good luck making
// this portable (i.e. using friendship etc.) in the past
// This is a very bad breach of encapsulation that is needed since MS VC++
// 5.0 will not allow me to declare template functions as friends.
ArrayRCP( T* p, size_type lowerOffset, size_type size,
const RCPNodeHandle& node );
T* access_private_ptr() const;
RCPNodeHandle& nonconst_access_private_node();
const RCPNodeHandle& access_private_node() const;
#endif
}; // end class ArrayRCP<...>
// 2008/09/22: rabartl: NOTE: I removed the TypeNameTraits<ArrayRCP<T> >
// specialization since I want to be able to print the type name of an
// ArrayRCP that does not have the type T fully defined!
/** \brief Traits specialization for ArrayRCP.
*
* \relates ArrayRCP
*/
template<typename T>
class NullIteratorTraits<ArrayRCP<T> > {
public:
static ArrayRCP<T> getNull() { return null; }
};
/** \brief Wraps a preallocated array of data with the assumption to call the
* array version of delete.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
bool owns_mem = true
);
/** \brief Wraps a preallocated array of data and uses a templated
* deallocation strategy object to define deletion .
*
* \relates ArrayRCP
*/
template<class T, class Dealloc_T>
ArrayRCP<T> arcp(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
Dealloc_T dealloc, bool owns_mem
);
/** \brief Allocate a new array just given a dimension.
*
* <b>Warning!</b> The memory is allocated using <tt>new T[size]</tt> and is
* *not* initialized (unless there is a default constructor for a user-defined
* type).
*
* When called with 'size == 0' it returns a null ArrayRCP object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp( typename ArrayRCP<T>::size_type size );
/** \brief Allocate a new ArrayRCP object with a new RCPNode with memory
* pointing to the initial node.
*
* The purpose of this function is to create a new "handle" to the array of
* memory with its own seprate reference count. The new ArrayRCP object will
* have a new RCPNodeTmpl object that has a copy of the input ArrayRCP object
* embedded in it. This maintains the correct reference counting behaviors
* but now gives a private count. One would want to use arcpCloneNode(...)
* whenever it is important to keep a private reference count which is needed
* for some types of use cases.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpCloneNode( const ArrayRCP<T> &a );
/** \brief Allocate a new array by cloning data from an input array view.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpClone( const ArrayView<const T> &v );
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* In this case the embedded object is destroyed (by setting to Embedded())
* before the object at <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObjPreDestroy(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* In this case the embedded object is destroyed (by setting to Embedded())
* after the object at <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObjPostDestroy(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Create an ArrayRCP with and also put in an embedded object.
*
* This function should be called when it is not important when the embedded
* object is destroyed (by setting to Embedded()) with respect to when
* <tt>*p</tt> is destroyed.
*
* The embedded object can be extracted using <tt>getEmbeddedObj()</tt> and
* <tt>getNonconstEmbeddedObject()</tt>.
*
* \relates ArrayRCP
*/
template<class T, class Embedded>
ArrayRCP<T>
arcpWithEmbeddedObj(
T* p,
typename ArrayRCP<T>::size_type lowerOffset,
typename ArrayRCP<T>::size_type size,
const Embedded &embedded,
bool owns_mem = true
);
/** \brief Wrap an <tt>std::vector<T></tt> object as an
* <tt>ArrayRCP<T></tt> object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcp( const RCP<std::vector<T> > &v );
/** \brief Wrap a <tt>const std::vector<T></tt> object as an
* <tt>ArrayRCP<const T></tt> object.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<const T> arcp( const RCP<const std::vector<T> > &v );
/** \brief Get an ArrayRCP object out of an ArrayView object.
*
* This conversion is required an proper in certain types of situations. In a
* debug build, a dangling reference will be detected with an exception being
* thrown.
*
* \relates ArrayRCP
*/
template<class T>
ArrayRCP<T> arcpFromArrayView(const ArrayView<T> &av);
/** \brief Get an <tt>std::vector<T></tt> object out of an
* <tt>ArrayRCP<T></tt> object that was created using the
* <tt>arcp()</tt> above to wrap the std::vector in the first place..
*
* \relates ArrayRCP
*/
template<class T>
RCP<std::vector<T> > get_std_vector( const ArrayRCP<T> &ptr );
/** \brief Get a <tt>const std::vector<T></tt> object out of an
* <tt>ArrayRCP<const T></tt> object that was created using the
* <tt>arcp()</tt> above to wrap the std::vector in the first place.
*
* \relates ArrayRCP
*/
template<class T>
RCP<const std::vector<T> > get_std_vector( const ArrayRCP<const T> &ptr );
/** \brief Returns true if <tt>p.get()==NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool is_null( const ArrayRCP<T> &p );
/** \brief Returns true if <tt>p.get()!=NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool nonnull( const ArrayRCP<T> &p );
/** \brief Returns true if <tt>p.get()==NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool operator==( const ArrayRCP<T> &p, ENull );
/** \brief Returns true if <tt>p.get()!=NULL</tt>.
*
* \relates ArrayRCP
*/
template<class T>
bool operator!=( const ArrayRCP<T> &p, ENull );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator==( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator!=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator<( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator<=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator>( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief .
*
* \relates ArrayRCP
*/
template<class T1, class T2>
bool operator>=( const ArrayRCP<T1> &p1, const ArrayRCP<T2> &p2 );
/** \brief Returns difference of two ArrayRCP object</tt>.
*
* \relates ArrayRCP
*/
template<class T>
typename ArrayRCP<T>::difference_type
operator-( const ArrayRCP<T> &p1, const ArrayRCP<T> &p2 );
/** \brief Const cast of underlying <tt>ArrayRCP</tt> type from <tt>const T*</tt>
* to <tt>T*</tt>.
*
* The function will compile only if (<tt>const_cast<T2*>(p1.get());</tt>)
* compiles.
*
* \relates ArrayRCP
*/
template<class T2, class T1>
inline
ArrayRCP<T2> arcp_const_cast(const ArrayRCP<T1>& p1);
/** \brief Reinterpret cast of underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt>.
*
* The function will compile only if (<tt>reinterpret_cast<T2*>(p1.get());</tt>) compiles.
*
* <b>Warning!</b> Do not use this function unless you absolutely know what
* you are doing. Doing a reinterpret cast is always a tricking thing and
* must only be done by developers who are 100% comfortable with what they are
* doing.
*
* \relates ArrayRCP
*/
template<class T2, class T1>
ArrayRCP<T2> arcp_reinterpret_cast(const ArrayRCP<T1>& p1);
/** \brief Reinterpret cast of underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt> where <tt>T2</tt> is a non-POD
* (non-plain-old-data).
*
* The function will compile only if (<tt>reinterpret_cast<T2*>(p1.get());</tt>) compiles.
*
* This function is used to reinterpret cast an array of plain-old-data (POD)
* (e.g. <tt>int>/tt> or <tt>char</tt>) into an array of real objects. The
* constructors will be called on each of the memory locations with placement
* new and the destructors will get called when the last RCP goes away.
*
* <b>Warning!</b> Do not use this function unless you absolutely know what
* you are doing. Doing a reinterpret cast is always a tricking thing and
* must only be done by developers who are 100% comfortable with what they are
* doing.
*
* \relates ArrayRCP
*/
template<class T2, class T1>
ArrayRCP<T2> arcp_reinterpret_cast_nonpod(const ArrayRCP<T1>& p1, const T2& val=T2());
/** \brief Implicit case the underlying <tt>ArrayRCP</tt> type from
* <tt>T1*</tt> to <tt>T2*</tt>.
*
* The function will compile only if (<tt>T2 *p = p1.get();</tt>) compiles.
*
* <b>Warning!</b> Do not use this function unless you absolutely know what you
* are doing. While implicit casting of pointers to single objects is usually
* 100% safe, implicit casting pointers to arrays of objects can be very
* dangerous. One std::exception that is always safe is when you are implicit
* casting an array of pointers to non-const objects to an array of const
* pointers to const objects. For example, the following implicit conversion
* from a array pointer objects <tt>aptr1</tt> of type
* <tt>ArrayRCP<T*></tt> to
\code
ArrayRCP<const T * const>
aptr2 = arcp_implicit_cast<const T * const>(ptr1);
\endcode
* is always legal and safe to do.
*
* \relates ArrayRCP
*/
template<class T2, class T1>
inline
ArrayRCP<T2> arcp_implicit_cast(const ArrayRCP<T1>& p1);
/** \brief Set extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param extra_data [in] Data object that will be set (copied)
*
* \param name [in] The name given to the extra data. The value of
* <tt>name</tt> together with the data type <tt>T1</tt> of the extra data
* must be unique from any other such data or the other data will be
* overwritten.
*
* \param p [out] On output, will be updated with the input
* <tt>extra_data</tt>
*
* \param destroy_when [in] Determines when <tt>extra_data</tt> will be
* destroyed in relation to the underlying reference-counted object. If
* <tt>destroy_when==PRE_DESTROY</tt> then <tt>extra_data</tt> will be deleted
* before the underlying reference-counted object. If
* <tt>destroy_when==POST_DESTROY</tt> (the default) then <tt>extra_data</tt>
* will be deleted after the underlying reference-counted object.
*
* \param force_unique [in] Determines if this type and name pair must be
* unique in which case if an object with this same type and name already
* exists, then an std::exception will be thrown. The default is
* <tt>true</tt> for safety.
*
* If there is a call to this function with the same type of extra
* data <tt>T1</tt> and same arguments <tt>p</tt> and <tt>name</tt>
* has already been made, then the current piece of extra data already
* set will be overwritten with <tt>extra_data</tt>. However, if the
* type of the extra data <tt>T1</tt> is different, then the extra
* data can be added and not overwrite existing extra data. This
* means that extra data is keyed on both the type and name. This
* helps to minimize the chance that clients will unexpectedly
* overwrite data by accident.
*
* When the last <tt>RefcountPtr</tt> object is removed and the
* reference-count node is deleted, then objects are deleted in the following
* order: (1) All of the extra data that where added with
* <tt>destroy_when==PRE_DESTROY</tt> are first, (2) then the underlying
* reference-counted object is deleted, and (3) the rest of the extra data
* that was added with <tt>destroy_when==PRE_DESTROY</tt> is then deleted.
* The order in which the objects are destroyed is not guaranteed. Therefore,
* clients should be careful not to add extra data that has deletion
* dependencies (instead consider using nested ArrayRCP objects as extra
* data which will guarantee the order of deletion).
*
* <b>Preconditions:</b><ul>
* <li><tt>p->get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> If this function has already been called with the same template
* type <tt>T1</tt> for <tt>extra_data</tt> and the same std::string <tt>name</tt>
* and <tt>force_unique==true</tt>, then an <tt>std::invalid_argument</tt>
* std::exception will be thrown.
* </ul>
*
* Note, this function is made a non-member function to be consistent
* with the non-member <tt>get_extra_data()</tt> functions.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
void set_extra_data(
const T1 &extra_data, const std::string& name,
const Ptr<ArrayRCP<T2> > &p, EPrePostDestruction destroy_when = POST_DESTROY,
bool force_unique = true );
/** \brief Get a non-const reference to extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a non-const reference to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li><tt>name</tt> and <tt>T1</tt> must have been used in a previous
* call to <tt>set_extra_data()</tt> (throws <tt>std::invalid_argument</tt>).
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
T1& get_extra_data( ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a const reference to extra data associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a const reference to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li><tt>name</tt> and <tt>T1</tt> must have been used in a previous
* call to <tt>set_extra_data()</tt> (throws <tt>std::invalid_argument</tt>).
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* Also note that this const version is a false sense of security
* since a client can always copy a const <tt>ArrayRCP</tt> object
* into a non-const object and then use the non-const version to
* change the data. However, its presence will help to avoid some
* types of accidental changes to this extra data.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
const T1& get_extra_data( const ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a pointer to non-const extra data (if it exists) associated
* with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a non-const pointer to the extra_data object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If <tt>name</tt> and <tt>T1</tt> have been used in a previous
* call to <tt>set_extra_data()</tt> then <tt>return !=NULL</tt>
* and otherwise <tt>return == NULL</tt>.
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
T1* get_optional_extra_data( ArrayRCP<T2>& p, const std::string& name );
/** \brief Get a pointer to const extra data (if it exists) associated with a <tt>ArrayRCP</tt> object.
*
* \param p [in] Smart pointer object that extra data is being extracted from.
*
* \param name [in] Name of the extra data.
*
* \returns Returns a const pointer to the extra_data object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If <tt>name</tt> and <tt>T1</tt> have been used in a previous
* call to <tt>set_extra_data()</tt> then <tt>return !=NULL</tt>
* and otherwise <tt>return == NULL</tt>.
* </ul>
*
* Note, this function must be a non-member function since the client
* must manually select the first template argument.
*
* Also note that this const version is a false sense of security
* since a client can always copy a const <tt>ArrayRCP</tt> object
* into a non-const object and then use the non-const version to
* change the data. However, its presence will help to avoid some
* types of accidental changes to this extra data.
*
* \relates ArrayRCP
*/
template<class T1, class T2>
const T1* get_optional_extra_data( const ArrayRCP<T2>& p, const std::string& name );
/** \brief Return a non-<tt>const</tt> reference to the underlying deallocator object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> The deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* (throws <tt>NullReferenceError</tt>)
* </ul>
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
Dealloc_T& get_nonconst_dealloc( const ArrayRCP<T>& p );
/** \brief Return a <tt>const</tt> reference to the underlying deallocator object.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* <li> The deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* (throws <tt>NullReferenceError</tt>)
* </ul>
*
* Note that the <tt>const</tt> version of this function provides only
* a very ineffective attempt to avoid accidental changes to the
* deallocation object. A client can always just create a new
* non-<tt>const</tt> <tt>ArrayRCP<T></tt> object from any
* <tt>const</tt> <tt>ArrayRCP<T></tt> object and then call the
* non-<tt>const</tt> version of this function.
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
const Dealloc_T& get_dealloc( const ArrayRCP<T>& p );
/** \brief Return a pointer to the underlying non-<tt>const</tt> deallocator
* object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If the deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* then <tt>return!=NULL</tt>, otherwise <tt>return==NULL</tt>
* </ul>
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
const Dealloc_T* get_optional_dealloc( const ArrayRCP<T>& p );
/** \brief Return a pointer to the underlying <tt>const</tt> deallocator
* object if it exists.
*
* <b>Preconditions:</b><ul>
* <li><tt>p.get() != NULL</tt> (throws <tt>NullReferenceError</tt>)
* </ul>
*
* <b>Postconditions:</b><ul>
* <li> If the deallocator object type used to construct <tt>p</tt> is same as <tt>Dealloc_T</tt>
* then <tt>return!=NULL</tt>, otherwise <tt>return==NULL</tt>
* </ul>
*
* Note that the <tt>const</tt> version of this function provides only
* a very ineffective attempt to avoid accidental changes to the
* deallocation object. A client can always just create a new
* non-<tt>const</tt> <tt>ArrayRCP<T></tt> object from any
* <tt>const</tt> <tt>ArrayRCP<T></tt> object and then call the
* non-<tt>const</tt> version of this function.
*
* \relates ArrayRCP
*/
template<class Dealloc_T, class T>
Dealloc_T* get_optional_nonconst_dealloc( const ArrayRCP<T>& p );
/** \brief Get a const reference to an embedded object that was set by calling
* <tt>arcpWithEmbeddedObjPreDestroy()</tt>,
* <tt>arcpWithEmbeddedObjPostDestory()</tt>, or <tt>arcpWithEmbeddedObj()</tt>.
*
* \relates ArrayRCP
*/
template<class TOrig, class Embedded, class T>
const Embedded& getEmbeddedObj( const ArrayRCP<T>& p );
/** \brief Get a const reference to an embedded object that was set by calling
* <tt>arcpWithEmbeddedObjPreDestroy()</tt>,
* <tt>arcpWithEmbeddedObjPostDestory()</tt>, or <tt>arcpWithEmbeddedObj()</tt>.
*
* \relates ArrayRCP
*/
template<class TOrig, class Embedded, class T>
Embedded& getNonconstEmbeddedObj( const ArrayRCP<T>& p );
/** \brief Output stream inserter.
*
* The implementation of this function just print pointer addresses and
* therefore puts not restrictions on the data types involved.
*
* \relates ArrayRCP
*/
template<class T>
std::ostream& operator<<( std::ostream& out, const ArrayRCP<T>& p );
} // end namespace Teuchos
#endif // TEUCHOS_ARRAY_RCP_DECL_HPP
|