This file is indexed.

/usr/include/trilinos/TargetMetric3D.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* ***************************************************************** 
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2006 Sandia National Laboratories.  Developed at the
    University of Wisconsin--Madison under SNL contract number
    624796.  The U.S. Government and the University of Wisconsin
    retain certain rights to this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License 
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 
    (2006) kraftche@cae.wisc.edu
   
  ***************************************************************** */


/** \file TargetMetric3D.hpp
 *  \brief 
 *  \author Jason Kraftcheck 
 */

#ifndef MSQ_TARGET_METRIC_3D_HPP
#define MSQ_TARGET_METRIC_3D_HPP

#include "Mesquite.hpp"
#include <string>

namespace MESQUITE_NS {

class MsqError;
template <unsigned R, unsigned C> class MsqMatrix;

/**\brief A metric for comparing a 3x3 matrix A with a 3x3 target matrix W
 *
 * Implement a scalar function \f$\mu(A,W)\f$ where A and W are 3x3 matrices.
 */
class TargetMetric3D {
public:
    // used by code templatized to work with either this class or TargetMetric2D
  enum { MATRIX_DIM = 3 };

  MESQUITE_EXPORT virtual
  ~TargetMetric3D();

  MESQUITE_EXPORT virtual
  std::string get_name() const = 0;

    /**\brief Evaluate \f$\mu(A,W)\f$
     *
     *\param A 3x3 active matrix
     *\param W 3x3 target matrix
     *\param result Output: value of function
     *\return false if function cannot be evaluated for given A and W
     *          (e.g. division by zero, etc.), true otherwise.
     */
  MESQUITE_EXPORT virtual
  bool evaluate( const MsqMatrix<3,3>& A, 
                 const MsqMatrix<3,3>& W, 
                 double& result, 
                 MsqError& err ) = 0;
  
    /**\brief Gradient of \f$\mu(A,W)\f$ with respect to components of A
     *
     *\param A 3x3 active matrix
     *\param W 3x3 target matrix
     *\param result Output: value of function
     *\param deriv_wrt_A Output: partial deriviatve of \f$\mu\f$ wrt each term of A,
     *                           evaluated at passed A.
     *                           \f[\left[\begin{array}{ccc} 
     *                            \frac{\partial\mu}{\partial A_{0,0}} & 
     *                            \frac{\partial\mu}{\partial A_{0,1}} & 
     *                            \frac{\partial\mu}{\partial A_{0,2}} \\ 
     *                            \frac{\partial\mu}{\partial A_{1,0}} & 
     *                            \frac{\partial\mu}{\partial A_{1,1}} & 
     *                            \frac{\partial\mu}{\partial A_{1,2}} \\ 
     *                            \frac{\partial\mu}{\partial A_{2,0}} & 
     *                            \frac{\partial\mu}{\partial A_{2,1}} & 
     *                            \frac{\partial\mu}{\partial A_{2,2}}
     *                            \end{array}\right]\f]
     *\return false if function cannot be evaluated for given A and W
     *          (e.g. division by zero, etc.), true otherwise.
     */
  MESQUITE_EXPORT virtual
  bool evaluate_with_grad( const MsqMatrix<3,3>& A,
                           const MsqMatrix<3,3>& W,
                           double& result,
                           MsqMatrix<3,3>& deriv_wrt_A,
                           MsqError& err );
  
    /**\brief Hessian of \f$\mu(A,W)\f$ with respect to components of A
     *
     *\param A 3x3 active matrix
     *\param W 3x3 target matrix
     *\param result Output: value of function
     *\param deriv_wrt_A Output: partial deriviatve of \f$\mu\f$ wrt each term of A,
     *                           evaluated at passed A.
     *\param second_wrt_A Output: 9x9 matrix of second partial deriviatve of \f$\mu\f$ wrt 
     *                           each term of A, in row-major order.  The symmetric 
     *                           matrix is decomposed into 3x3 blocks and only the upper diagonal
     *                           blocks, in row-major order, are returned.
     *                           \f[\left[\begin{array}{ccc|ccc|ccc}
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{2,2}} \\
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{2,2}} \\
     *                           \frac{\partial^{2}\mu}{\partial A_{0,0}\partial A_{0,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,1}\partial A_{0,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{0,2}\partial A_{2,2}} \\
     *                           \hline & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{2,2}} \\
     *                           & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{2,2}} \\
     *                           & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,0}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,1}\partial A_{1,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,2}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,0}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{1,2}\partial A_{2,2}} \\
     *                           \hline & & & & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,0}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} \\
     *                           & & & & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,1}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,1}^2} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} \\
     *                           & & & & & &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,0}\partial A_{2,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,1}\partial A_{2,2}} &
     *                           \frac{\partial^{2}\mu}{\partial A_{2,2}^2} \\
     *                            \end{array}\right]\f]
     *        
     *\return false if function cannot be evaluated for given A and W
     *          (e.g. division by zero, etc.), true otherwise.
     */
  MESQUITE_EXPORT virtual
  bool evaluate_with_hess( const MsqMatrix<3,3>& A,
                           const MsqMatrix<3,3>& W,
                           double& result,
                           MsqMatrix<3,3>& deriv_wrt_A,
                           MsqMatrix<3,3> second_wrt_A[6],
                           MsqError& err );
                           
protected:
  static inline bool invalid_determinant( double d )
    { return d < 1e-12; }
};

} // namespace Mesquite

#endif