This file is indexed.

/usr/include/trilinos/SymMatrix3D.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/* ***************************************************************** 
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2007 Sandia National Laboratories.  Developed at the
    University of Wisconsin--Madison under SNL contract number
    624796.  The U.S. Government and the University of Wisconsin
    retain certain rights to this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License 
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    (2008) kraftche@cae.wisc.edu    

  ***************************************************************** */


/** \file SymMatrix3D.hpp
 *  \brief Symetric 3x3 Matrix
 *  \author Jason Kraftcheck 
 */

#ifndef MSQ_SYM_MATRIX_3D_HPP
#define MSQ_SYM_MATRIX_3D_HPP

#include "Mesquite.hpp"
#include "Vector3D.hpp"

namespace MESQUITE_NS {

class SymMatrix3D {
private:
  double d_[6];

public:
  enum Term {
    T00 = 0,
    T01 = 1,
    T02 = 2,
    T10 = T01,
    T11 = 3,
    T12 = 4,
    T20 = T02,
    T21 = T12,
    T22 = 5
  };
  
  inline static Term term( unsigned r, unsigned c )
    { return (Term)(r <= c ? 3*r - r*(r+1)/2 + c : 3*c - c*(c+1)/2 + r); }
  
  SymMatrix3D() {}
  
  SymMatrix3D( double diagonal_value ) {
    d_[T00] = d_[T11] = d_[T22] = diagonal_value;
    d_[T01] = d_[T02] = d_[T12] = 0.0;
  }
  
  SymMatrix3D( double t00, double t01, double t02,
                           double t11, double t12,
                                       double t22 ) 
  {
    d_[T00] = t00;
    d_[T01] = t01;
    d_[T02] = t02;
    d_[T11] = t11;
    d_[T12] = t12;
    d_[T22] = t22;
  }
    
    /**\brief Outer product */
  SymMatrix3D( const Vector3D& u )
  {
    d_[T00] = u[0] * u[0];
    d_[T01] = u[0] * u[1];
    d_[T02] = u[0] * u[2];
    d_[T11] = u[1] * u[1];
    d_[T12] = u[1] * u[2];
    d_[T22] = u[2] * u[2];
  }
    
 
  double& operator[]( unsigned t )       { return d_[t]; }
  double  operator[]( unsigned t ) const { return d_[t]; }
  
  double& operator()( unsigned short r, unsigned short c )
    { return d_[term(r,c)]; }
  double  operator()( unsigned short r, unsigned short c ) const
    { return d_[term(r,c)]; }
  
  inline SymMatrix3D& operator+=( const SymMatrix3D& other );
  inline SymMatrix3D& operator-=( const SymMatrix3D& other );
  inline SymMatrix3D& operator*=( double scalar );
  inline SymMatrix3D& operator/=( double scalar );
};

inline SymMatrix3D operator-( const SymMatrix3D& m )
{
  return SymMatrix3D( 
    -m[SymMatrix3D::T00], -m[SymMatrix3D::T01], -m[SymMatrix3D::T02],
                          -m[SymMatrix3D::T11], -m[SymMatrix3D::T12],
                                                -m[SymMatrix3D::T22] );
}

inline SymMatrix3D& SymMatrix3D::operator+=( const SymMatrix3D& other )
{
  d_[0] += other.d_[0];
  d_[1] += other.d_[1];
  d_[2] += other.d_[2];
  d_[3] += other.d_[3];
  d_[4] += other.d_[4];
  d_[5] += other.d_[5];
  return *this;
}

inline SymMatrix3D& SymMatrix3D::operator-=( const SymMatrix3D& other )
{
  d_[0] -= other.d_[0];
  d_[1] -= other.d_[1];
  d_[2] -= other.d_[2];
  d_[3] -= other.d_[3];
  d_[4] -= other.d_[4];
  d_[5] -= other.d_[5];
  return *this;
}

inline SymMatrix3D& SymMatrix3D::operator*=( double s )
{
  d_[0] *= s;
  d_[1] *= s;
  d_[2] *= s;
  d_[3] *= s;
  d_[4] *= s;
  d_[5] *= s;
  return *this;
}

inline SymMatrix3D& SymMatrix3D::operator/=( double s )
{
  d_[0] /= s;
  d_[1] /= s;
  d_[2] /= s;
  d_[3] /= s;
  d_[4] /= s;
  d_[5] /= s;
  return *this;
}


inline SymMatrix3D operator+( const SymMatrix3D& a, const SymMatrix3D& b )
  { SymMatrix3D r(a); r += b; return r; }
inline SymMatrix3D operator-( const SymMatrix3D& a, const SymMatrix3D& b )
  { SymMatrix3D r(a); r -= b; return r; }
inline SymMatrix3D operator*( const SymMatrix3D& a, double s )
  { SymMatrix3D r(a); r *= s; return r; }
inline SymMatrix3D operator*( double s, const SymMatrix3D& a )
  { SymMatrix3D r(a); r *= s; return r; }
inline SymMatrix3D operator/( const SymMatrix3D& a, double s )
  { SymMatrix3D r(a); r /= s; return r; }
inline SymMatrix3D operator/( double s, const SymMatrix3D& a )
  { SymMatrix3D r(a); r /= s; return r; }

inline Vector3D operator*( const Vector3D& v, const SymMatrix3D& m )
{
  return Vector3D( v[0]*m[0] + v[1]*m[1] + v[2]*m[2],
                   v[0]*m[1] + v[1]*m[3] + v[2]*m[4],
                   v[0]*m[2] + v[1]*m[4] + v[2]*m[5] );
}
inline Vector3D operator*( const SymMatrix3D& m, const Vector3D& v )
{
  return v * m;
}

/** Calculate the outer product of a vector with itself */
inline SymMatrix3D outer( const Vector3D& v )
{
  return SymMatrix3D( v[0]*v[0], v[0]*v[1], v[0]*v[2],
                                 v[1]*v[1], v[1]*v[2],
                                            v[2]*v[2] );
}

/** Given to vectors u and v, calculate the symmetric matrix
 *  equal to outer(u,v) + transpose(outer(u,v))
 *  equal to outer(v,u) + transpose(outer(v,u))
 */
inline SymMatrix3D outer_plus_transpose( const Vector3D& u,
                                         const Vector3D& v )
{
  return SymMatrix3D( 2*u[0]*v[0], u[0]*v[1] + u[1]*v[0], u[0]*v[2] + u[2]*v[0],
                                   2*u[1]*v[1]          , u[1]*v[2] + u[2]*v[1],
                                                          2*u[2]*v[2] );
}

inline const SymMatrix3D& transpose( const SymMatrix3D& a )
  { return a; }

inline double det( const SymMatrix3D& a )
{
  return a[0]*a[3]*a[5] + 2.0*a[1]*a[2]*a[4]
       - a[0]*a[4]*a[4] - a[3]*a[2]*a[2] - a[5]*a[1]*a[1];
}

inline SymMatrix3D inverse( const SymMatrix3D& a )
{
  SymMatrix3D result( a[3]*a[5] - a[4]*a[4],
                      a[2]*a[4] - a[1]*a[5],
                      a[1]*a[4] - a[2]*a[3],
                      a[0]*a[5] - a[2]*a[2],
                      a[1]*a[2] - a[0]*a[4],
                      a[0]*a[3] - a[1]*a[1] );
  result /= det( a );
  return result;
}

} // namespace Mesquite

#endif