/usr/include/trilinos/SymMatrix3D.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2007 Sandia National Laboratories. Developed at the
University of Wisconsin--Madison under SNL contract number
624796. The U.S. Government and the University of Wisconsin
retain certain rights to this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2008) kraftche@cae.wisc.edu
***************************************************************** */
/** \file SymMatrix3D.hpp
* \brief Symetric 3x3 Matrix
* \author Jason Kraftcheck
*/
#ifndef MSQ_SYM_MATRIX_3D_HPP
#define MSQ_SYM_MATRIX_3D_HPP
#include "Mesquite.hpp"
#include "Vector3D.hpp"
namespace MESQUITE_NS {
class SymMatrix3D {
private:
double d_[6];
public:
enum Term {
T00 = 0,
T01 = 1,
T02 = 2,
T10 = T01,
T11 = 3,
T12 = 4,
T20 = T02,
T21 = T12,
T22 = 5
};
inline static Term term( unsigned r, unsigned c )
{ return (Term)(r <= c ? 3*r - r*(r+1)/2 + c : 3*c - c*(c+1)/2 + r); }
SymMatrix3D() {}
SymMatrix3D( double diagonal_value ) {
d_[T00] = d_[T11] = d_[T22] = diagonal_value;
d_[T01] = d_[T02] = d_[T12] = 0.0;
}
SymMatrix3D( double t00, double t01, double t02,
double t11, double t12,
double t22 )
{
d_[T00] = t00;
d_[T01] = t01;
d_[T02] = t02;
d_[T11] = t11;
d_[T12] = t12;
d_[T22] = t22;
}
/**\brief Outer product */
SymMatrix3D( const Vector3D& u )
{
d_[T00] = u[0] * u[0];
d_[T01] = u[0] * u[1];
d_[T02] = u[0] * u[2];
d_[T11] = u[1] * u[1];
d_[T12] = u[1] * u[2];
d_[T22] = u[2] * u[2];
}
double& operator[]( unsigned t ) { return d_[t]; }
double operator[]( unsigned t ) const { return d_[t]; }
double& operator()( unsigned short r, unsigned short c )
{ return d_[term(r,c)]; }
double operator()( unsigned short r, unsigned short c ) const
{ return d_[term(r,c)]; }
inline SymMatrix3D& operator+=( const SymMatrix3D& other );
inline SymMatrix3D& operator-=( const SymMatrix3D& other );
inline SymMatrix3D& operator*=( double scalar );
inline SymMatrix3D& operator/=( double scalar );
};
inline SymMatrix3D operator-( const SymMatrix3D& m )
{
return SymMatrix3D(
-m[SymMatrix3D::T00], -m[SymMatrix3D::T01], -m[SymMatrix3D::T02],
-m[SymMatrix3D::T11], -m[SymMatrix3D::T12],
-m[SymMatrix3D::T22] );
}
inline SymMatrix3D& SymMatrix3D::operator+=( const SymMatrix3D& other )
{
d_[0] += other.d_[0];
d_[1] += other.d_[1];
d_[2] += other.d_[2];
d_[3] += other.d_[3];
d_[4] += other.d_[4];
d_[5] += other.d_[5];
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator-=( const SymMatrix3D& other )
{
d_[0] -= other.d_[0];
d_[1] -= other.d_[1];
d_[2] -= other.d_[2];
d_[3] -= other.d_[3];
d_[4] -= other.d_[4];
d_[5] -= other.d_[5];
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator*=( double s )
{
d_[0] *= s;
d_[1] *= s;
d_[2] *= s;
d_[3] *= s;
d_[4] *= s;
d_[5] *= s;
return *this;
}
inline SymMatrix3D& SymMatrix3D::operator/=( double s )
{
d_[0] /= s;
d_[1] /= s;
d_[2] /= s;
d_[3] /= s;
d_[4] /= s;
d_[5] /= s;
return *this;
}
inline SymMatrix3D operator+( const SymMatrix3D& a, const SymMatrix3D& b )
{ SymMatrix3D r(a); r += b; return r; }
inline SymMatrix3D operator-( const SymMatrix3D& a, const SymMatrix3D& b )
{ SymMatrix3D r(a); r -= b; return r; }
inline SymMatrix3D operator*( const SymMatrix3D& a, double s )
{ SymMatrix3D r(a); r *= s; return r; }
inline SymMatrix3D operator*( double s, const SymMatrix3D& a )
{ SymMatrix3D r(a); r *= s; return r; }
inline SymMatrix3D operator/( const SymMatrix3D& a, double s )
{ SymMatrix3D r(a); r /= s; return r; }
inline SymMatrix3D operator/( double s, const SymMatrix3D& a )
{ SymMatrix3D r(a); r /= s; return r; }
inline Vector3D operator*( const Vector3D& v, const SymMatrix3D& m )
{
return Vector3D( v[0]*m[0] + v[1]*m[1] + v[2]*m[2],
v[0]*m[1] + v[1]*m[3] + v[2]*m[4],
v[0]*m[2] + v[1]*m[4] + v[2]*m[5] );
}
inline Vector3D operator*( const SymMatrix3D& m, const Vector3D& v )
{
return v * m;
}
/** Calculate the outer product of a vector with itself */
inline SymMatrix3D outer( const Vector3D& v )
{
return SymMatrix3D( v[0]*v[0], v[0]*v[1], v[0]*v[2],
v[1]*v[1], v[1]*v[2],
v[2]*v[2] );
}
/** Given to vectors u and v, calculate the symmetric matrix
* equal to outer(u,v) + transpose(outer(u,v))
* equal to outer(v,u) + transpose(outer(v,u))
*/
inline SymMatrix3D outer_plus_transpose( const Vector3D& u,
const Vector3D& v )
{
return SymMatrix3D( 2*u[0]*v[0], u[0]*v[1] + u[1]*v[0], u[0]*v[2] + u[2]*v[0],
2*u[1]*v[1] , u[1]*v[2] + u[2]*v[1],
2*u[2]*v[2] );
}
inline const SymMatrix3D& transpose( const SymMatrix3D& a )
{ return a; }
inline double det( const SymMatrix3D& a )
{
return a[0]*a[3]*a[5] + 2.0*a[1]*a[2]*a[4]
- a[0]*a[4]*a[4] - a[3]*a[2]*a[2] - a[5]*a[1]*a[1];
}
inline SymMatrix3D inverse( const SymMatrix3D& a )
{
SymMatrix3D result( a[3]*a[5] - a[4]*a[4],
a[2]*a[4] - a[1]*a[5],
a[1]*a[4] - a[2]*a[3],
a[0]*a[5] - a[2]*a[2],
a[1]*a[2] - a[0]*a[4],
a[0]*a[3] - a[1]*a[1] );
result /= det( a );
return result;
}
} // namespace Mesquite
#endif
|