/usr/include/trilinos/Sacado_rad.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 | // @HEADER
// ***********************************************************************
//
// Sacado Package
// Copyright (2006) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact David M. Gay (dmgay@sandia.gov) or Eric T. Phipps
// (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
// RAD package (Reverse Automatic Differentiation) --
// a package specialized for function and gradient evaluations.
// Written in 2004 by David M. Gay at Sandia National Labs, Albuquerque, NM.
#ifndef SACADO_RAD_H
#define SACADO_RAD_H
#include <stddef.h>
#include <cmath>
#include <math.h>
namespace Sacado {
namespace Radnt { // nontemplated RAD
// -DRAD_NO_USING_STDCC is needed, e.g., with Sun CC 5.7
#ifndef RAD_NO_USING_STDCC
// Bring math functions into scope
using std::exp;
using std::log;
using std::log10;
using std::sqrt;
using std::cos;
using std::sin;
using std::tan;
using std::acos;
using std::asin;
using std::atan;
using std::cosh;
using std::sinh;
using std::tanh;
using std::abs;
using std::fabs;
using std::atan2;
using std::pow;
#endif //!RAD_NO_USING_STDCC
class ADvar;
class ADvari;
class ADvar1;
class ADvar2;
class ConstADvar;
class Derp;
class IndepADvar;
extern ADvari& ADf1(double f, double g, const ADvari &x);
extern ADvari& ADf2(double f, double gx, double gy, const ADvari &x, const ADvari &y);
extern ADvari& ADfn(double f, int n, const ADvar *x, const double *g);
struct
ADmemblock { // We get memory in ADmemblock chunks and never give it back,
// but reuse it once computations start anew after call(s) on
// ADcontext::Gradcomp() or ADcontext::Weighted_Gradcomp().
ADmemblock *next;
double memblk[1000];
};
class
ADcontext { // A singleton class: one instance in radops.c
ADmemblock *Busy, *Free;
char *Mbase;
size_t Mleft;
ADmemblock First;
void *new_ADmemblock(size_t);
public:
ADcontext();
void *Memalloc(size_t len);
static void Gradcomp(int);
static inline void Gradcomp() { Gradcomp(1); }
static void Weighted_Gradcomp(int, ADvar**, double*);
};
inline void *ADcontext::Memalloc(size_t len) {
if (Mleft >= len)
return Mbase + (Mleft -= len);
return new_ADmemblock(len);
}
class
CADcontext: public ADcontext {
protected:
bool fpval_implies_const;
public:
friend class ADvar;
CADcontext(): ADcontext() { fpval_implies_const = false; }
static const double One, negOne;
};
class
Derp { // one derivative-propagation operation
public:
friend class ADvarn;
static Derp *LastDerp;
Derp *next;
const double *a;
const ADvari *b;
const ADvari *c;
void *operator new(size_t);
void operator delete(void*) {} /*Should never be called.*/
inline Derp(){};
Derp(const ADvari *);
Derp(const double *, const ADvari *);
Derp(const double *, const ADvari *, const ADvari *);
/* c->aval += a * b->aval; */
};
inline Derp::Derp(const ADvari *c1): c(c1) {
next = LastDerp;
LastDerp = this;
}
inline Derp::Derp(const double *a1, const ADvari *c1): a(a1), c(c1) {
next = LastDerp;
LastDerp = this;
}
inline Derp::Derp(const double *a1, const ADvari *b1, const ADvari *c1): a(a1), b(b1), c(c1) {
next = LastDerp;
LastDerp = this;
}
class
ADvari { // implementation of an ADvar
public:
double Val; // result of this operation
mutable double aval; // adjoint -- partial of final result w.r.t. this Val
void *operator new(size_t len) { return ADvari::adc.Memalloc(len); }
void operator delete(void*) {} /*Should never be called.*/
inline ADvari(double t): Val(t), aval(0.) {}
inline ADvari(double t, double ta): Val(t), aval(ta) {}
inline ADvari(): Val(0.), aval(0.) {}
static ADcontext adc;
#ifdef RAD_AUTO_AD_Const
friend class ADcontext;
friend class ADvar1;
friend class ADvar;
friend class ConstADvar;
friend class IndepADvar;
private:
ADvari *Next;
static ADvari *First_ADvari, **Last_ADvari;
protected:
IndepADvar *padv;
public:
ADvari(const IndepADvar *, double);
#endif
#define F friend
#define R ADvari&
#define Ai const ADvari&
#define T1(r,f) F r f(Ai);
#define T2(r,f) \
F r f(Ai,Ai); \
F r f(double,Ai); \
F r f(Ai,double);
T1(R,operator+)
T2(R,operator+)
T1(R,operator-)
T2(R,operator-)
T2(R,operator*)
T2(R,operator/)
T1(R,abs)
T1(R,acos)
T1(R,acosh)
T1(R,asin)
T1(R,asinh)
T1(R,atan)
T1(R,atanh)
T2(R,atan2)
T2(R,max)
T2(R,min)
T1(R,cos)
T1(R,cosh)
T1(R,exp)
T1(R,log)
T1(R,log10)
T2(R,pow)
T1(R,sin)
T1(R,sinh)
T1(R,sqrt)
T1(R,tan)
T1(R,tanh)
T1(R,fabs)
T1(R,copy)
T2(int,operator<)
T2(int,operator<=)
T2(int,operator==)
T2(int,operator!=)
T2(int,operator>=)
T2(int,operator>)
#undef T2
#undef T1
#undef Ai
#undef R
#undef F
friend ADvari& ADf1(double f, double g, const ADvari &x);
friend ADvari& ADf2(double f, double gx, double gy, const ADvari &x, const ADvari &y);
friend ADvari& ADfn(double f, int n, const ADvar *x, const double *g);
};
inline void* Derp::operator new(size_t len) { return ADvari::adc.Memalloc(len); }
class
ADvar1: public ADvari { // simplest unary ops
public:
Derp d;
ADvar1(double val1): ADvari(val1) {}
ADvar1(double val1, const ADvari *c1): d(c1) { Val = val1; }
ADvar1(double val1, const double *a1, const ADvari *c1): d(a1,this,c1) { Val = val1; }
#ifdef RAD_AUTO_AD_Const
ADvar1(const IndepADvar *, const IndepADvar &);
ADvar1(const IndepADvar *, const ADvari &);
#endif
};
class
ConstADvari: public ADvari {
private:
ConstADvari *prevcad;
ConstADvari() {}; // prevent construction without value (?)
static ConstADvari *lastcad;
public:
static CADcontext cadc;
inline void *operator new(size_t len) { return ConstADvari::cadc.Memalloc(len); }
inline ConstADvari(double t): ADvari(t) { prevcad = lastcad; lastcad = this; }
static void aval_reset(void);
};
class
IndepADvar
{
private:
inline IndepADvar& operator=(const IndepADvar &x) {
/* private to prevent assignment */
#ifdef RAD_AUTO_AD_Const
if (cv)
cv->padv = 0;
cv = new ADvar1(this,x);
return *this;
#else
#ifdef RAD_EQ_ALIAS
cv = x.cv;
return *this;
#else
return ADvar_operatoreq(this,*x.cv);
#endif
#endif /* RAD_AUTO_AD_Const */
}
protected:
static void AD_Const(const IndepADvar&);
ADvari *cv;
public:
typedef double value_type;
friend class ADvar;
friend class ADvar1;
friend class ADvarn;
friend class ADcontext;
IndepADvar(double);
IndepADvar(int);
IndepADvar(long);
IndepADvar& operator=(double);
#ifdef RAD_AUTO_AD_Const
inline IndepADvar(const IndepADvar &x) { cv = x.cv ? new ADvar1(this, x) : 0; };
inline IndepADvar() { cv = 0; }
inline ~IndepADvar() {
if (cv)
cv->padv = 0;
}
#else
inline IndepADvar() {
#ifndef RAD_EQ_ALIAS
cv = 0;
#endif
}
inline ~IndepADvar() {}
friend IndepADvar& ADvar_operatoreq(IndepADvar*, const ADvari&);
#endif
friend void AD_Const(const IndepADvar&);
inline operator ADvari&() { return *cv; }
inline operator ADvari&() const { return *(ADvari*)cv; }
inline double val() const { return cv->Val; }
inline double adj() const { return cv->aval; }
static inline void Gradcomp(int wantgrad)
{ ADcontext::Gradcomp(wantgrad); }
static inline void Gradcomp()
{ ADcontext::Gradcomp(1); }
static inline void aval_reset() { ConstADvari::aval_reset(); }
static inline void Weighted_Gradcomp(int n, ADvar **v, double *w)
{ ADcontext::Weighted_Gradcomp(n, v, w); }
#define Ai const ADvari&
#define AI const IndepADvar&
#define T2(r,f) \
r f(AI,AI);\
r f(Ai,AI);\
r f(AI,Ai);\
r f(double,AI);\
r f(AI,double);
#define T1(f) friend ADvari& f(AI);
#define F friend ADvari&
T2(F, operator+)
T2(F, operator-)
T2(F, operator*)
T2(F, operator/)
T2(F, atan2)
T2(F, max)
T2(F, min)
T2(F, pow)
#undef F
#define F friend int
T2(F, operator<)
T2(F, operator<=)
T2(F, operator==)
T2(F, operator!=)
T2(F, operator>=)
T2(F, operator>)
T1(operator+)
T1(operator-)
T1(abs)
T1(acos)
T1(acosh)
T1(asin)
T1(asinh)
T1(atan)
T1(atanh)
T1(cos)
T1(cosh)
T1(exp)
T1(log)
T1(log10)
T1(sin)
T1(sinh)
T1(sqrt)
T1(tan)
T1(tanh)
T1(fabs)
T1(copy)
#undef T1
#undef T2
#undef F
#undef Ai
#undef AI
};
class
ADvar: public IndepADvar { // an "active" variable
void ADvar_ctr(double d);
public:
inline ADvar() { /* cv = 0; */ }
inline ADvar(double d) { ADvar_ctr(d); }
inline ADvar(int i) { ADvar_ctr((double)i); }
inline ADvar(long i) { ADvar_ctr((double)i); }
inline ~ADvar() {}
#ifdef RAD_AUTO_AD_Const
friend class ADvar1;
inline ADvar(const IndepADvar &x) { cv = x.cv ? new ADvar1(this, x) : 0; }
inline ADvar(ADvari &x) { cv = &x; x.padv = this; }
inline ADvar& operator=(const IndepADvar &x) {
if (cv)
cv->padv = 0;
cv = new ADvar1(this,x);
return *this;
}
inline ADvar& operator=(const ADvari &x) {
if (cv)
cv->padv = 0;
cv = new ADvar1(this, x);
return *this;
}
#else
friend ADvar& ADvar_operatoreq(ADvar*, const ADvari&);
#ifdef RAD_EQ_ALIAS
/* allow aliasing v and w after "v = w;" */
inline ADvar(const IndepADvar &x) { cv = x.cv; }
inline ADvar(const ADvari &x) { cv = (ADvari*)&x; }
inline ADvar& operator=(const ADvari &x) { cv = (ADvari*)&x; return *this; }
inline ADvar& operator=(const IndepADvar &x) { cv = (ADvari*)x.cv; return *this; }
#else
ADvar(const IndepADvar &x) { cv = x.cv ? new ADvar1(x.cv->Val, &CADcontext::One, x.cv) : 0; }
ADvar(const ADvari &x) { cv = new ADvar1(x.Val, &CADcontext::One, &x); }
inline ADvar& operator=(const ADvari &x) { return ADvar_operatoreq(this,x); }
inline ADvar& operator=(const IndepADvar &x) { return ADvar_operatoreq(this,*x.cv); }
#endif /* RAD_EQ_ALIAS */
#endif /* RAD_AUTO_AD_Const */
ADvar& operator=(double);
ADvar& operator+=(const ADvari&);
ADvar& operator+=(double);
ADvar& operator-=(const ADvari&);
ADvar& operator-=(double);
ADvar& operator*=(const ADvari&);
ADvar& operator*=(double);
ADvar& operator/=(const ADvari&);
ADvar& operator/=(double);
inline static bool get_fpval_implies_const(void)
{ return ConstADvari::cadc.fpval_implies_const; }
inline static void set_fpval_implies_const(bool newval)
{ ConstADvari::cadc.fpval_implies_const = newval; }
inline static bool setget_fpval_implies_const(bool newval) {
bool oldval = ConstADvari::cadc.fpval_implies_const;
ConstADvari::cadc.fpval_implies_const = newval;
return oldval;
}
static inline void Gradcomp(int wantgrad)
{ ADcontext::Gradcomp(wantgrad); }
static inline void Gradcomp()
{ ADcontext::Gradcomp(1); }
static inline void aval_reset() { ConstADvari::aval_reset(); }
static inline void Weighted_Gradcomp(int n, ADvar **v, double *w)
{ ADcontext::Weighted_Gradcomp(n, v, w); }
};
inline void AD_Const(const IndepADvar&v) { IndepADvar::AD_Const(v); }
class
ConstADvar: public ADvar {
private: // disable op=
ConstADvar& operator+=(const ADvari&);
ConstADvar& operator+=(double);
ConstADvar& operator-=(const ADvari&);
ConstADvar& operator-=(double);
ConstADvar& operator*=(const ADvari&);
ConstADvar& operator*=(double);
ConstADvar& operator/=(const ADvari&);
ConstADvar& operator/=(double);
void ConstADvar_ctr(double);
public:
inline ConstADvar(double d) { ConstADvar_ctr(d); }
inline ConstADvar(int i) { ConstADvar_ctr((double)i); }
inline ConstADvar(long i) { ConstADvar_ctr((double)i); }
ConstADvar(const ADvari &x);
#ifdef RAD_AUTO_AD_Const
ConstADvar(const IndepADvar &x) { cv = new ADvar1(this,x); }
#endif
inline ~ConstADvar(){}
#ifdef RAD_NO_CONST_UPDATE
private:
#endif
ConstADvar();
inline ConstADvar& operator=(double d) { cv->Val = d; return *this; }
inline ConstADvar& operator=(const IndepADvar& d) { cv->Val = d.val(); return *this; }
};
class
ADvar1s: public ADvar1 { // unary ops with partial "a"
public:
double a;
ADvar1s(double val1, double a1, const ADvari *c1): ADvar1(val1,&a,c1), a(a1) {}
};
class
ADvar2: public ADvari { // basic binary ops
public:
Derp dL, dR;
ADvar2(double val1): ADvari(val1) {}
ADvar2(double val1, const ADvari *Lcv, const double *Lc, const ADvari *Rcv,
const double *Rc): ADvari(val1) {
dR.next = Derp::LastDerp;
dL.next = &dR;
Derp::LastDerp = &dL;
dL.a = Lc;
dL.c = Lcv;
dR.a = Rc;
dR.c = Rcv;
dL.b = dR.b = this;
}
};
class
ADvar2q: public ADvar2 { // binary ops with partials "a", "b"
public:
double a, b;
ADvar2q(double val1, double Lp, double Rp, const ADvari *Lcv, const ADvari *Rcv):
ADvar2(val1), a(Lp), b(Rp) {
dR.next = Derp::LastDerp;
dL.next = &dR;
Derp::LastDerp = &dL;
dL.a = &a;
dL.c = Lcv;
dR.a = &b;
dR.c = Rcv;
dL.b = dR.b = this;
}
};
class
ADvarn: public ADvari { // n-ary ops with partials "a"
public:
int n;
double *a;
Derp *Da;
ADvarn(double val1, int n1, const ADvar *x, const double *g);
};
inline ADvari &operator+(ADvari &T) { return T; }
inline ADvari &operator+(const ADvari &T) { return (ADvari&) T; }
inline int operator<(const ADvari &L, const ADvari &R) { return L.Val < R.Val; }
inline int operator<(const ADvari &L, double R) { return L.Val < R; }
inline int operator<(double L, const ADvari &R) { return L < R.Val; }
inline int operator<=(const ADvari &L, const ADvari &R) { return L.Val <= R.Val; }
inline int operator<=(const ADvari &L, double R) { return L.Val <= R; }
inline int operator<=(double L, const ADvari &R) { return L <= R.Val; }
inline int operator==(const ADvari &L, const ADvari &R) { return L.Val == R.Val; }
inline int operator==(const ADvari &L, double R) { return L.Val == R; }
inline int operator==(double L, const ADvari &R) { return L == R.Val; }
inline int operator!=(const ADvari &L, const ADvari &R) { return L.Val != R.Val; }
inline int operator!=(const ADvari &L, double R) { return L.Val != R; }
inline int operator!=(double L, const ADvari &R) { return L != R.Val; }
inline int operator>=(const ADvari &L, const ADvari &R) { return L.Val >= R.Val; }
inline int operator>=(const ADvari &L, double R) { return L.Val >= R; }
inline int operator>=(double L, const ADvari &R) { return L >= R.Val; }
inline int operator>(const ADvari &L, const ADvari &R) { return L.Val > R.Val; }
inline int operator>(const ADvari &L, double R) { return L.Val > R; }
inline int operator>(double L, const ADvari &R) { return L > R.Val; }
inline ADvari& copy(const IndepADvar &x)
{ return *(new ADvar1(x.cv->Val, &CADcontext::One, x.cv)); }
inline ADvari& copy(const ADvari &x)
{ return *(new ADvar1(x.Val, &CADcontext::One, &x)); }
inline ADvari& abs(const ADvari &x)
{ return fabs(x); }
#define A (ADvari*)
#define T inline
#define F ADvari&
#define Ai const ADvari&
#define AI const IndepADvar&
#define D double
#define T2(r,f) \
T r f(Ai L, AI R) { return f(L, *A R.cv); }\
T r f(AI L, Ai R) { return f(*A L.cv, R); }\
T r f(AI L, AI R) { return f(*A L.cv, *A R.cv); }\
T r f(AI L, D R) { return f(*A L.cv, R); }\
T r f(D L, AI R) { return f(L, *A R.cv); }
T2(F, operator+)
T2(F, operator-)
T2(F, operator*)
T2(F, operator/)
T2(F, atan2)
T2(F, pow)
T2(F, max)
T2(F, min)
T2(int, operator<)
T2(int, operator<=)
T2(int, operator==)
T2(int, operator!=)
T2(int, operator>=)
T2(int, operator>)
#undef T2
#undef D
#define T1(f)\
T F f(AI x) { return f(*A x.cv); }
T1(operator+)
T1(operator-)
T1(abs)
T1(acos)
T1(acosh)
T1(asin)
T1(asinh)
T1(atan)
T1(atanh)
T1(cos)
T1(cosh)
T1(exp)
T1(log)
T1(log10)
T1(sin)
T1(sinh)
T1(sqrt)
T1(tan)
T1(tanh)
T1(fabs)
#undef T1
#undef AI
#undef Ai
#undef F
#undef T
#undef A
} // namespace Radnt
} // namespace Sacado
#endif /* SACADO_RAD_H */
|