This file is indexed.

/usr/include/trilinos/Rythmos_StepperHelpers_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef RYTHMOS_STEPPER_HELPERS_DEF_HPP
#define RYTHMOS_STEPPER_HELPERS_DEF_HPP

#include "Rythmos_StepperHelpers_decl.hpp"
#include "Rythmos_InterpolationBufferHelpers.hpp"
#include "Rythmos_InterpolatorBaseHelpers.hpp"
#include "Teuchos_Assert.hpp"
#include "Thyra_AssertOp.hpp"
#include "Thyra_VectorStdOps.hpp"


namespace Rythmos {

using Teuchos::ConstNonconstObjectContainer;

template<class Scalar>
void assertValidModel(
  const StepperBase<Scalar>& stepper,
  const Thyra::ModelEvaluator<Scalar>& model
  )
{

  typedef Thyra::ModelEvaluatorBase MEB;

  TEUCHOS_ASSERT(stepper.acceptsModel());

  const MEB::InArgs<Scalar> inArgs = model.createInArgs();
  const MEB::OutArgs<Scalar> outArgs = model.createOutArgs();

  //TEUCHOS_ASSERT(inArgs.supports(MEB::IN_ARG_t));
  TEUCHOS_ASSERT(inArgs.supports(MEB::IN_ARG_x));
  TEUCHOS_ASSERT(outArgs.supports(MEB::OUT_ARG_f));
  
  if (stepper.isImplicit()) { // implicit stepper
    TEUCHOS_ASSERT( inArgs.supports(MEB::IN_ARG_x_dot) );
    TEUCHOS_ASSERT( inArgs.supports(MEB::IN_ARG_alpha) );
    TEUCHOS_ASSERT( inArgs.supports(MEB::IN_ARG_beta) );
    TEUCHOS_ASSERT( outArgs.supports(MEB::OUT_ARG_W) );
  } 
  //else { // explicit stepper
  //  TEUCHOS_ASSERT( !inArgs.supports(MEB::IN_ARG_x_dot) );
  //  TEUCHOS_ASSERT( !inArgs.supports(MEB::IN_ARG_alpha) );
  //  TEUCHOS_ASSERT( !inArgs.supports(MEB::IN_ARG_beta) );
  //  TEUCHOS_ASSERT( !outArgs.supports(MEB::OUT_ARG_W) );
  //}

}


template<class Scalar>
bool setDefaultInitialConditionFromNominalValues(
  const Thyra::ModelEvaluator<Scalar>& model,
  const Ptr<StepperBase<Scalar> >& stepper
  )
{

  typedef ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;

  if (isInitialized(*stepper))
    return false;  // Already has an initial condition
  
  MEB::InArgs<Scalar> initCond = model.getNominalValues();

  if (!is_null(initCond.get_x())) {
    // IC has x, we will assume that initCont.get_t() is the valid start time.
    // Therefore, we just need to check that x_dot is also set or we will
    // create a zero x_dot
#ifdef RYTHMOS_DEBUG
    THYRA_ASSERT_VEC_SPACES( "setInitialConditionIfExists(...)", 
      *model.get_x_space(), *initCond.get_x()->space() );
#endif
    if (initCond.supports(MEB::IN_ARG_x_dot)) {
      if (is_null(initCond.get_x_dot())) {
        const RCP<Thyra::VectorBase<Scalar> > x_dot =
          createMember(model.get_x_space());
        assign(x_dot.ptr(), ST::zero());
      }
      else {
#ifdef RYTHMOS_DEBUG
        THYRA_ASSERT_VEC_SPACES( "setInitialConditionIfExists(...)", 
          *model.get_x_space(), *initCond.get_x_dot()->space() );
#endif
      }
    }
    stepper->setInitialCondition(initCond);
    return true;
  }

  // The model has not nominal values for which to set the initial
  // conditions so wo don't do anything!  The stepper will still have not
  return false;

}


template<class Scalar>
void restart( StepperBase<Scalar> *stepper )
{
#ifdef RYTHMOS_DEBUG
  TEST_FOR_EXCEPT(0==stepper);
#endif // RYTHMOS_DEBUG
  typedef Thyra::ModelEvaluatorBase MEB;
  const Rythmos::StepStatus<double>
    stepStatus = stepper->getStepStatus();
  const RCP<const Thyra::ModelEvaluator<Scalar> >
    model = stepper->getModel();
  // First, copy all of the model's state, including parameter values etc.
  MEB::InArgs<double> initialCondition = model->createInArgs();
  initialCondition.setArgs(model->getNominalValues());
  // Set the current values of the state and time
  RCP<const Thyra::VectorBase<double> > x, x_dot;
  Rythmos::get_x_and_x_dot(*stepper,stepStatus.time,&x,&x_dot);
  initialCondition.set_x(x);
  initialCondition.set_x_dot(x_dot);
  initialCondition.set_t(stepStatus.time);
  // Set the new initial condition back on the stepper.  This will effectively
  // reset the stepper to think that it is starting over again (which it is).
  stepper->setInitialCondition(initialCondition);
}

template<class Scalar>
void eval_model_explicit(
    const Thyra::ModelEvaluator<Scalar> &model,
    Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint,
    const VectorBase<Scalar>& x_in,
    const typename Thyra::ModelEvaluatorBase::InArgs<Scalar>::ScalarMag &t_in,
    const Ptr<VectorBase<Scalar> >& f_out
    )
{
  typedef Thyra::ModelEvaluatorBase MEB;
  MEB::InArgs<Scalar> inArgs = model.createInArgs();
  MEB::OutArgs<Scalar> outArgs = model.createOutArgs();
  inArgs.setArgs(basePoint);
  inArgs.set_x(Teuchos::rcp(&x_in,false));
  if (inArgs.supports(MEB::IN_ARG_t)) {
    inArgs.set_t(t_in);
  }
  outArgs.set_f(Teuchos::rcp(&*f_out,false));
  model.evalModel(inArgs,outArgs);
}


#ifdef HAVE_THYRA_ME_POLYNOMIAL


template<class Scalar>
void eval_model_explicit_poly(
    const Thyra::ModelEvaluator<Scalar> &model,
    Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint,
    const Teuchos::Polynomial< VectorBase<Scalar> > &x_poly,
    const typename Thyra::ModelEvaluatorBase::InArgs<Scalar>::ScalarMag &t,
    const Ptr<Teuchos::Polynomial<VectorBase<Scalar> > >& f_poly
    )
{
  typedef Thyra::ModelEvaluatorBase MEB;
  MEB::InArgs<Scalar> inArgs = model.createInArgs();
  MEB::OutArgs<Scalar> outArgs = model.createOutArgs();
  inArgs.setArgs(basePoint);
  inArgs.set_x_poly(Teuchos::rcp(&x_poly,false));
  if (inArgs.supports(MEB::IN_ARG_t)) {
    inArgs.set_t(t);
  }
  outArgs.set_f_poly(Teuchos::rcp(&*f_poly,false));

  model.evalModel(inArgs,outArgs);
}


#endif // HAVE_THYRA_ME_POLYNOMIAL


template<class Scalar>
void defaultGetPoints(
    const Scalar& t_old, // required inArg
    const Ptr<const VectorBase<Scalar> >& x_old, // optional inArg
    const Ptr<const VectorBase<Scalar> >& xdot_old, // optional inArg
    const Scalar& t, // required inArg
    const Ptr<const VectorBase<Scalar> >& x, // optional inArg
    const Ptr<const VectorBase<Scalar> >& xdot, // optional inArg
    const Array<Scalar>& time_vec, // required inArg
    const Ptr<Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > > >& x_vec, // optional outArg
    const Ptr<Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > > >& xdot_vec, // optional outArg
    const Ptr<Array<typename Teuchos::ScalarTraits<Scalar>::magnitudeType> >& accuracy_vec, // optional outArg
    const Ptr<InterpolatorBase<Scalar> > interpolator // optional inArg (note:  not const)
    ) 
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  assertTimePointsAreSorted(time_vec);
  TimeRange<Scalar> tr(t_old, t);
  TEUCHOS_ASSERT( tr.isValid() );
  if (!is_null(x_vec)) {
    x_vec->clear();
  }
  if (!is_null(xdot_vec)) {
    xdot_vec->clear();
  }
  if (!is_null(accuracy_vec)) {
    accuracy_vec->clear();
  }
  typename Array<Scalar>::const_iterator time_it = time_vec.begin();
  RCP<const VectorBase<Scalar> > tmpVec;
  RCP<const VectorBase<Scalar> > tmpVecDot;
  for (; time_it != time_vec.end() ; time_it++) {
    Scalar time = *time_it;
    asssertInTimeRange(tr, time);
    Scalar accuracy = ST::zero();
    if (compareTimeValues(time,t_old)==0) {
      if (!is_null(x_old)) {
        tmpVec = x_old->clone_v();
      }
      if (!is_null(xdot_old)) {
        tmpVecDot = xdot_old->clone_v();
      }
    } else if (compareTimeValues(time,t)==0) {
      if (!is_null(x)) {
        tmpVec = x->clone_v();
      }
      if (!is_null(xdot)) {
        tmpVecDot = xdot->clone_v();
      }
    } else {
      TEST_FOR_EXCEPTION(
          is_null(interpolator), std::logic_error,
          "Error, getPoints:  This stepper only supports time values on the boundaries!\n"
          );
      // At this point, we know time != t_old, time != t, interpolator != null, 
      // and time in [t_old,t], therefore, time in (t_old,t).  
      // t_old != t at this point because otherwise it would have been caught above.
      // Now use the interpolator to pass out the interior points
      typename DataStore<Scalar>::DataStoreVector_t ds_nodes;
      typename DataStore<Scalar>::DataStoreVector_t ds_out;
      {
        // t_old
        DataStore<Scalar> ds;
        ds.time = t_old;
        ds.x = rcp(x_old.get(),false);
        ds.xdot = rcp(xdot_old.get(),false);
        ds_nodes.push_back(ds);
      }
      {
        // t
        DataStore<Scalar> ds;
        ds.time = t;
        ds.x = rcp(x.get(),false);
        ds.xdot = rcp(xdot.get(),false);
        ds_nodes.push_back(ds);
      }
      Array<Scalar> time_vec_in;
      time_vec_in.push_back(time);
      interpolate<Scalar>(*interpolator,rcp(&ds_nodes,false),time_vec_in,&ds_out);
      Array<Scalar> time_vec_out;
      Array<RCP<const VectorBase<Scalar> > > x_vec_out;
      Array<RCP<const VectorBase<Scalar> > > xdot_vec_out;
      Array<typename Teuchos::ScalarTraits<Scalar>::magnitudeType> accuracy_vec_out;
      dataStoreVectorToVector(ds_out,&time_vec_out,&x_vec_out,&xdot_vec_out,&accuracy_vec_out);
      TEUCHOS_ASSERT( time_vec_out.length()==1 );
      tmpVec = x_vec_out[0];
      tmpVecDot = xdot_vec_out[0];
      accuracy = accuracy_vec_out[0];
    }
    if (!is_null(x_vec)) {
      x_vec->push_back(tmpVec);
    }
    if (!is_null(xdot_vec)) {
      xdot_vec->push_back(tmpVecDot);
    }
    if (!is_null(accuracy_vec)) {
      accuracy_vec->push_back(accuracy);
    }
    tmpVec = Teuchos::null;
    tmpVecDot = Teuchos::null;
  }
}


template<class Scalar>
  void setStepperModel(
      const Ptr<StepperBase<Scalar> >& stepper,
      const RCP<const Thyra::ModelEvaluator<Scalar> >& model
      )
{
  stepper->setModel(model);
}

template<class Scalar>
  void setStepperModel(
      const Ptr<StepperBase<Scalar> >& stepper,
      const RCP<Thyra::ModelEvaluator<Scalar> >& model
      )
{
  stepper->setNonconstModel(model);
}

template<class Scalar>
  void setStepperModel(
      const Ptr<StepperBase<Scalar> >& stepper,
      ConstNonconstObjectContainer<Thyra::ModelEvaluator<Scalar> >& model
      )
{
  if (model.isConst()) {
    stepper->setModel(model.getConstObj());
  } 
  else {
    stepper->setNonconstModel(model.getNonconstObj());
  }
}


// 
// Explicit Instantiation macro
//
// Must be expanded from within the Rythmos namespace!
//


#ifdef HAVE_THYRA_ME_POLYNOMIAL

#define RYTHMOS_STEPPER_HELPERS_POLY_INSTANT(SCALAR) \
  template void eval_model_explicit_poly( \
      const Thyra::ModelEvaluator< SCALAR > &model, \
      Thyra::ModelEvaluatorBase::InArgs< SCALAR > &basePoint, \
      const Teuchos::Polynomial< VectorBase< SCALAR > > &x_poly, \
      const Thyra::ModelEvaluatorBase::InArgs< SCALAR >::ScalarMag &t, \
      const Ptr<Teuchos::Polynomial<VectorBase< SCALAR > > >& f_poly \
      );

#else // HAVE_THYRA_ME_POLYNOMIAL

#define RYTHMOS_STEPPER_HELPERS_POLY_INSTANT(SCALAR)

#endif // HAVE_THYRA_ME_POLYNOMIAL


#define RYTHMOS_STEPPER_HELPERS_INSTANT(SCALAR) \
  \
  template void assertValidModel( \
    const StepperBase< SCALAR >& stepper, \
    const Thyra::ModelEvaluator< SCALAR >& model \
    ); \
  template bool setDefaultInitialConditionFromNominalValues( \
    const Thyra::ModelEvaluator< SCALAR >& model, \
    const Ptr<StepperBase< SCALAR > >& stepper \
    ); \
  template void restart( StepperBase< SCALAR > *stepper ); \
  \
  template void eval_model_explicit( \
      const Thyra::ModelEvaluator< SCALAR > &model, \
      Thyra::ModelEvaluatorBase::InArgs< SCALAR > &basePoint, \
      const VectorBase< SCALAR >& x_in, \
      const Thyra::ModelEvaluatorBase::InArgs< SCALAR >::ScalarMag &t_in, \
      const Ptr<VectorBase< SCALAR > >& f_out \
      ); \
  \
  RYTHMOS_STEPPER_HELPERS_POLY_INSTANT(SCALAR) \
  \
  template void defaultGetPoints( \
      const  SCALAR & t_old, \
      const Ptr<const VectorBase< SCALAR > >& x_old, \
      const Ptr<const VectorBase< SCALAR > >& xdot_old, \
      const  SCALAR & t, \
      const Ptr<const VectorBase< SCALAR > >& x, \
      const Ptr<const VectorBase< SCALAR > >& xdot, \
      const Array< SCALAR >& time_vec, \
      const Ptr<Array<Teuchos::RCP<const Thyra::VectorBase< SCALAR > > > >& x_vec, \
      const Ptr<Array<Teuchos::RCP<const Thyra::VectorBase< SCALAR > > > >& xdot_vec, \
      const Ptr<Array<Teuchos::ScalarTraits< SCALAR >::magnitudeType> >& accuracy_vec, \
      const Ptr<InterpolatorBase< SCALAR > > interpolator  \
      );  \
  \
  template void setStepperModel( \
        const Ptr<StepperBase< SCALAR > >& stepper, \
        const RCP<const Thyra::ModelEvaluator< SCALAR > >& model \
        ); \
  \
  template void setStepperModel( \
        const Ptr<StepperBase< SCALAR > >& stepper, \
        const RCP<Thyra::ModelEvaluator< SCALAR > >& model \
        ); \
  \
  template void setStepperModel( \
        const Ptr<StepperBase< SCALAR > >& stepper, \
        Teuchos::ConstNonconstObjectContainer<Thyra::ModelEvaluator< SCALAR > >& model \
        );

} // namespace Rythmos


#endif // RYTHMOS_STEPPER_HELPERS_DEF_HPP