This file is indexed.

/usr/include/trilinos/Rythmos_ForwardSensitivityStepper.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP
#define RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP


#include "Rythmos_StepperBase.hpp"
#include "Rythmos_StepperHelpers.hpp"
#include "Rythmos_ForwardSensitivityModelEvaluatorBase.hpp"
#include "Rythmos_ForwardSensitivityImplicitModelEvaluator.hpp"
#include "Rythmos_ForwardSensitivityExplicitModelEvaluator.hpp"
#include "Rythmos_StateAndForwardSensitivityModelEvaluator.hpp"
#include "Rythmos_SolverAcceptingStepperBase.hpp"
#include "Rythmos_IntegratorBase.hpp"
#include "Rythmos_SingleResidualModelEvaluatorBase.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_LinearNonlinearSolver.hpp"
#include "Thyra_ProductVectorBase.hpp"
#include "Thyra_AssertOp.hpp"
#include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_ConstNonconstObjectContainer.hpp"
#include "Teuchos_Assert.hpp"
#include "Teuchos_as.hpp"


namespace Rythmos {


/** \brief Foward sensitivity stepper concrete subclass.
 *
 * This class provides a very general implemenation of a forward sensitivity
 * stepper.
 *
 * \section Rythmos_ForwardSensitivityStepper_intro_sec Introduction
 *
 * The most general form of the parameterized state equation is:

 \verbatim

   f(x_dot(t),x(t),p) = 0, over t = [t0,tf]

   x(t0) = x_init(p)

 \endverbatim

 * As shown above, the parameters <tt>p</tt> are assumed to be steady state
 * parameters and can enter through the intial condition and/or through the
 * DAE equation itself.  This class also supports a form of the problem where
 * parameters <tt>p</tt> are only assumed to bin the initial condition
 * <tt>x_init(p)</tt> and not in the state equation.  In this case, you can
 * just drop out all of the terms <tt>d(f)/d(p)</tt> shown in the equations
 * below because they are zero.
 *
 * The forward sensitivity equations that are solved along with the state
 * equation, written in multi-vector form, are:

 \verbatim

   d(f)/d(x_dot)*S_dot + d(f)/d(x)*S + d(f)/d(p) = 0, over t = [t0,tf]

   S(t0) = d(x_init)/d(p)

 \endverbatim

 * where <tt>S</tt> is a multi-vector with <tt>np</tt> columns where each
 * column <tt>S(:,j) = d(x)/d(p_j)</tt> is the sensitivity of <tt>x(t)</tt>
 * with respect to the <tt>p_j</tt> parameter.
 *
 * The forward sensitivity equations are a DAE and must be solved using a time
 * integrator.  Conceptually, the state plus forward sensitivity system can be
 * throught of as a big composite DAE model of the form:

 \verbatim

   f_bar(x_bar_dot(t),x_bar(t)) = 0, over t = [t0,tf]

   x_bar(t0) = x_bar_init

 \endverbatim

 * where

 \verbatim

   x_bar = [ x; s_bar ] 

   s_bar = [ S(:,0); S(:,0); ...; S(:,np-1) ]

 \endverbatim

 * and <tt>f_bar(...)</tt> is the obvious concatenated state and sensitivity
 * system.  See the class <tt>StateAndForwardSensitivityModelEvaluatorBase</tt>
 * for a description of how to get at the components of <tt>x</tt>,
 * <tt>s_bar</tt>, and <tt>S</tt> given <tt>x_bar</tt>.
 *
 * The <tt>InterpolationBufferBase</tt> interface implemented by this class is
 * defined with respect to the full composite solution vector <tt>x_bar</tt>
 * which is returned as a product vector with two components. The first
 * component is <tt>x</tt>.  The second component is another product vector
 * for the implicit concatenation of the columns of the sensitivities shown as
 * <tt>s_bar</tt> above.  The <tt>s_bar</tt> product vector is really
 * implemented directly as a multi-vector and represents an efficient way to
 * represent the forward sensitivities.  Therefore, through the interpolation
 * buffer interface function <tt>getPoints()</tt> a client can access the
 * state and the sensitivities at any point in the range of the current
 * timestep.
 *
 * Note that this class does not implement the function <tt>setModel()</tt>
 * since any arbitrary combined state + sensitivity model can not be
 * supported.
 *
 * \section Rythmos_ForwardSensitivityStepper_details_sec Implementation Details
 *
 * There are a variety of ways that one can go about implementing a state
 * plus forward sensitivity stepper.  Three ways for doing this are described
 * in the report "Design of New DASPK for Sensitivity Analysis" by Shengtai Li
 * and Linda Petzold.  The three ways are the <em>simultaneous corrector</em>,
 * the <em>staggered direct</em> and the <em>staggered corrector</em> methods.
 *
 * The <em>simultaneous corrector</em> method would be equivalent to forming
 * one big ModelEvaluator for the state and sensitivities where the "state"
 * variables would be the <tt>x_bar</tt> variables described above and then
 * this big system would be solved with a single stepper object and as single
 * nonlinear solver.  The advantage of this approach is that it makes great
 * reuse of all of the timestepping software.  Also, by being able to
 * specialize the nonlinear solver (which you can't do in most software) you
 * could set up the nonlinear solver to first solve the nonlinear state
 * timestep equation, and then solve the linear sensitivity equations.  The
 * problem with this approach would be that it would be very wasteful if the
 * timestep had to be cut back in order to reduce the local truncation error
 * of the state solution.  This would result in the sensitivity solution being
 * thrown away for each cut-back iteration.  Because of this fundamental
 * problem, we have not implemented the simultaneous corrector method.
 * Actually, we are not really sure why anyone implements ths method.
 *
 * The <em>staggered direct</em> and <em>staggered corrector</em> methods are
 * similar in several ways.  In each method, the state timestep is first fully
 * solved (including any stepsize reduction iterations that are needed) and
 * then the sensitivities are solved, taking advantage of the pre-computed
 * state timestep Jacobian.  One difference between the two methods is that in
 * the staggered direct method, the sensitivities are solved for directly.
 * This can result in numerical accuracy problems and does not allow the reuse
 * of an inexact solve when a direct factorization is used.  In the staggered
 * corrector method, an implicit corrector solve is used to compute the change
 * in the sensitivity variables using a Newton method.  This results in better
 * numerical stability and allows the reuse of an old Jacobian and
 * factorization in the Newton method.  However, if an exact Jacobian is used
 * for the solve, then the Newton method will converge in one iteration
 * (assuming the linear solver tolerance is made tight enough) with no harm
 * done.
 *
 * Because of the advantages of the staggered corrector method over the other
 * methods, the staggered corrector method is what is implemented in this
 * stepper class.  However, the term "corrector" is not really appropriate to
 * be used in the context of this class since this class does not have to
 * assume anything about how timesteps are computed and does not care if a
 * predictor/corrector method is used or not.
 *
 * While this class does provide a full ModelEvaluator for the full state plus
 * forward sensitivity DAE <tt>f_bar(x_bar_hat,x_bar)</tt> it is not solved
 * all at one time as described above.  Instead, the step is solved first for
 * the state equation and then a ModelEvaluator for just the linear forward
 * sensitivity equations is formed and is solved over the same time step as
 * the forward solve.
 *
 * Currently, timestep control is not performed for the forward sensitivity
 * variables.  In the future, however, it would not be too difficult to allow
 * for the timestep to be reduced for the sensitivity variables but this would
 * require a "undoStep()" operation be implimented for the state stepper
 * object and this is not currently supported by the <tt>StepperBase</tt>
 * interface.
 *
 *
 * 2007/15/21: rabart: ToDo: This class only works for implicit models and
 * steppers right now but it would be easy to get this to work for explicit
 * steppers and models later with a little work.  With an explicit method and
 * model, we don't need to reuse W_tilde so this is easier in a way!
 *
 * ToDo: Finish documentation!
 */
template<class Scalar> 
class ForwardSensitivityStepper
  : virtual public StepperBase<Scalar>,
    virtual public Teuchos::ParameterListAcceptorDefaultBase
{
public:

  /** \brief . */
  typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMag;

  /** \name Constructors, Intializers, Misc. */
  //@{

  /** \brief Constructs to uninitialized. */
  ForwardSensitivityStepper();

  /** \brief Intialize for synced state and sens steppers.
   *
   * \param stateModel [in,persisting] The ModelEvaluator that defines the
   * parameterized state model <tt>f(x_dot,x,p)</tt>.
   *
   * \param p_index [in] The index of the parameter subvector in
   * <tt>stateModel</tt> for which sensitivities will be computed for.
   *
   * \param baseStatePoint [in] Whatever input arguments are needed to define
   * the state of the model including the parameters except x, x_dot, and t!
   *
   * \param stateStepper [in,persisting] The stepper object that will be used
   * to advance the state solution <tt>x(t)</tt>.  This stepper need not be
   * setup with a model or a nonlinear timestep solver.  All this stepper
   * object needs is to be given its parameters to determine exactly what
   * timestepping algorithm will be employed.  The model and the timestep
   * solver objects will be set internally.
   *
   * \param stateTimeStepSolver [in,persisting] The nonlinear solver object
   * that is used to solve for the state timestep equation.  This is needed to
   * extract the Jacobian matrix that is used in the sensitivity model.  If
   * the stepper is not an implicit stepper and does not use an implicit time
   * step solver, then this argument should be left null.
   *
   * \param sensStepper [in,persisting] The stepper object that will be used
   * to advance the sensitivity solution <tt>S(t)</tt>.  This stepper need not
   * be setup with a model or a nonlinear timestep solver.  All this stepper
   * object needs is to be given its parameters to determine exactly what
   * timestepping algorithm will be employed.  The model and the timestep
   * solver objects will be set internally.  If this argument is null, then
   * the <tt>stateStepper</tt> object will be cloned to generate this stepper
   * object.  The most common use cases should just pass in
   * <tt>Teuchos::null</tt> and just use the identical stepper as the state
   * stepper.  However, this argument allows a client to specialize exactly
   * what the sensitivity stepper does and therefore this hook is allowed.
   *
   * \param sensTimeStepSolver [in,persisting] The nonlinear solver object
   * that is used to solve for the (linear) sensitivity timestep equation.  If
   * the stepper is not an implicit stepper and does not use an implicit
   * timestep solver, then this argument can be left null.  If the stepper is
   * implicit, and this argument is left null, then a
   * <tt>Thyra::LinearNonlinearSolver</tt> object will be created and used.
   * The most common use cases should just pass in <tt>Teuchos::null</tt> and
   * just use the simple linear nonlinear solver to will perform just a single
   * linear solve.  However, this argument allows a client to specialize
   * exactly what the nonlinear solver in the sensitivity stepper does and
   * therefore this hook is exposed to clients.
   *
   * Here <tt>*this</tt> is set up to synchronize the state and sensitivity
   * solvers.  Currently, error control is only done by the state stepper and
   * not the sensitivity stepper but the overall implementation has a high
   * degree of resuse and will therefore compute sensitivities quite fast.
   */
  void initializeSyncedSteppers(
    const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
    const int p_index,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
    const RCP<StepperBase<Scalar> > &stateStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
    const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
    );

  /** \brief Intialize for synced state and sens steppers for an
   * initial-condition only parametrized sensitivity problem.
   *
   * \param stateModel [in,persisting] See initializeSyncedSteppers().
   *
   * \param p_space [in] The vector space for the parameterized initial
   * condition parameters.
   *
   * \param baseStatePoint [in]  See initializeSyncedSteppers().
   *
   * \param stateStepper [in,persisting] See initializeSyncedSteppers().
   *
   * \param stateTimeStepSolver [in,persisting] See initializeSyncedSteppers().
   *
   * \param sensStepper [in,persisting] See initializeSyncedSteppers().
   *
   * \param sensTimeStepSolver [in,persisting] See initializeSyncedSteppers().
   *
   * Here <tt>*this</tt> is set up to synchronize the state and sensitivity
   * solvers for an initial-condition only forward sensitivity problem.
   * Currently, error control is only done by the state stepper and not the
   * sensitivity stepper but the overall implementation has a high degree of
   * resuse and will therefore compute sensitivities quite fast.
   */
  void initializeSyncedSteppersInitCondOnly(
    const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
    const RCP<const Thyra::VectorSpaceBase<Scalar> >& p_space,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar>& stateBasePoint,
    const RCP<StepperBase<Scalar> >& stateStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> >& stateTimeStepSolver,
    const RCP<StepperBase<Scalar> >& sensStepper = Teuchos::null,
    const RCP<Thyra::NonlinearSolverBase<Scalar> >& sensTimeStepSolver = Teuchos::null
    );

  /** \brief Intialize for decoupled state and sens steppers.
   *
   * \param stateModel [in,persisting] See <tt>initializeSyncedSteppers()</tt>.
   *
   * \param p_index [in] See <tt>initializeSyncedSteppers()</tt>.
   *
   * \param baseStatePoint [in] See <tt>initializeSyncedSteppers()</tt>.
   *
   * \param stateStepper [in,persisting] See
   * <tt>initializeSyncedSteppers()</tt>.
   *
   * \param stateTimeStepSolver [in,persisting] See
   * <tt>initializeSyncedSteppers()</tt>.
   *
   * \param stateIntegrator [in,persisting] The intergrator that will be used
   * to integrate the state given <tt>stateStepper</tt>.  This integrator must
   * be set up with a trailing interpolation buffer in order to be able to
   * allow for complete flexibility in how the time steps for the sens
   * equations are solved.
   *
   * \param finalTime [in] The final time for the state integrator.  This is
   * needed to initialize <tt>stateIntegrator</tt> with <tt>stateStepper</tt>.
   *
   * \param sensStepper [in,persisting] See
   * <tt>initializeSyncedSteppers()</tt>.
   *
   * \param sensTimeStepSolver [in,persisting] See
   * <tt>initializeSyncedSteppers()</tt>.
   *
   * Here <tt>*this</tt> is set up to run the state and sens steppers
   * completely independently; each with the their own error control
   * strategies.  The state stepper in driven through the state integrator
   * which in turn is driven by the ForwardSensitivityModelEvaluatorBase that is
   * driven by the sens stepper.
   */
  void initializeDecoupledSteppers(
    const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
    const int p_index,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
    const RCP<StepperBase<Scalar> > &stateStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
    const RCP<IntegratorBase<Scalar> > &stateIntegrator,
    const Scalar &finalTime,
    const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
    );

  /** \brief Return if the state model is const-only or not. */
  bool stateModelIsConst() const;

  /** \brief Return the state model that was passed into an initialize
   * function.
   */
  RCP<const Thyra::ModelEvaluator<Scalar> >
  getStateModel() const;

  /** \brief Return the state stepper that was passed into an initialize
   * function.
   */
  RCP<StepperBase<Scalar> >
  getNonconstStateStepper();

  /** \brief Return the forward sensitivity model evaluator object that got
   * created internally when the initialize function was called.
   */
  RCP<const ForwardSensitivityModelEvaluatorBase<Scalar> >
  getFwdSensModel() const;

  /** \brief Return the state and forward sensitivity model evaluator object
   * that got created internally when the nitialize function was called.
   *
   * This is also the same model returned by the function <tt>getModel()</tt>,
   * except through it's concrete subclass type.
   */
  RCP<const StateAndForwardSensitivityModelEvaluator<Scalar> >
  getStateAndFwdSensModel() const;

  //@}

  /** \name Overridden from Teuchos::ParameterListAcceptor */
  //@{

  /** \brief . */
  void setParameterList(RCP<Teuchos::ParameterList> const& paramList);
  /** \brief . */
  RCP<const Teuchos::ParameterList> getValidParameters() const;

  //@}

  /** \name Overridden from StepperBase */
  //@{

  /** \brief Returns false. */
  bool acceptsModel() const;

  /** \brief Throws exception. */
  void setModel(
    const RCP<const Thyra::ModelEvaluator<Scalar> >& model
    );

  /** \brief Throws exception. */
  void setNonconstModel(
    const RCP<Thyra::ModelEvaluator<Scalar> >& model
    );

  /** \brief Returns <tt>getStateAndFwdSensModel()</tt>.
   *
   * Warning, currently the returned model does not implement evalModel(...) 
   * or define a W object.  It is just used for getting the spaces and for
   * creating an InArgs object for setting the initial condition.
   */
  RCP<const Thyra::ModelEvaluator<Scalar> > getModel() const;

  /** \brief . */
  RCP<Thyra::ModelEvaluator<Scalar> > getNonconstModel();

  // RAB: ToDo: 2007/05/15: I need to talk with Todd about potentially
  // removing the setModel() and getModel() functions from the StepperBase
  // interface.  In the case of this forward sensitivity solver, I am not sure
  // that it makes a lot of sense to define a model.  This surely will not be
  // the model that a generic client would expect.  The assumption I am sure
  // would be that this model has the same space for x as the interpolation
  // buffer but that is not true in this case.

  /** \brief Sets the full initial condition for <tt>x_bar = [ x; s_bar] </tt>
   * and <tt>x_bar_dot = [ x_dot; s_bar_dot ]</tt> as well as the initial time
   * and the parameter values.
   *
   * The InArgs object must be created using
   * <tt>this->getModel()->createInArgs()</tt> and then populated with the
   * initial values.  The product vectors for <tt>x_bar</tt> and
   * <tt>x_bar_dot</tt> can be created using
   * <tt>this->getStateAndFwdSensModel()->create_x_bar_vec(...)</tt>.  All of
   * the input objects in <tt>state_and_sens_ic</tt> will be cloned and
   * therefore no memory of the objects in <tt>state_and_sens_ic</tt> will be
   * retained after calling this function.
   */
  void setInitialCondition(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
    );

  /** \brief . */
  Thyra::ModelEvaluatorBase::InArgs<Scalar> getInitialCondition() const;

  /** \brief . */
  Scalar takeStep( Scalar dt, StepSizeType stepType );

  /** \brief . */
  const StepStatus<Scalar> getStepStatus() const;

  //@}

  /** \name Overridden from InterpolationBufferBase */
  //@{

  /** \brief Returns the space for <tt>x_bar</tt> and <tt>x_bar_dot</tt>.
   *
   * This space is a nested product vector space as described above.  Dynamic
   * casting is required to get at the <tt>ProductVectorSapceBase</tt> and
   * <tt>ProductVectorBase</tt> intefaces.
   */
  RCP<const Thyra::VectorSpaceBase<Scalar> >
  get_x_space() const;

  /** \brief . */
  void addPoints(
    const Array<Scalar>& time_vec,
    const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& x_vec,
    const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
    );

  /** \brief . */
  TimeRange<Scalar> getTimeRange() const;

  /** \brief . */
  void getPoints(
    const Array<Scalar>& time_vec,
    Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec,
    Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec,
    Array<ScalarMag>* accuracy_vec
    ) const;

  /** \brief . */
  void getNodes(Array<Scalar>* time_vec) const;

  /** \brief . */
  void removeNodes(Array<Scalar>& time_vec);

  /** \brief . */
  int getOrder() const;

  //@}

  /** \name Deprecated. */
  //@{

  /** \brief Deprecated. */
  void initialize(
    const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
    const int p_index,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
    const RCP<StepperBase<Scalar> > &stateStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
    const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
    )
    {
      initializeSyncedSteppers(
        stateModel, p_index, stateBasePoint, stateStepper, stateTimeStepSolver,
        sensStepper, sensTimeStepSolver
        );
    }

  //@}

private:
  // ///////////////////
  // Private types

  typedef Teuchos::ConstNonconstObjectContainer<Thyra::ModelEvaluator<Scalar> > CNCME;

  // /////////////////////////
  // Private data members

  bool forceUpToDateW_;
  CNCME stateModel_;
  Thyra::ModelEvaluatorBase::InArgs<Scalar> stateBasePoint_;
  RCP<StepperBase<Scalar> > stateStepper_;
  RCP<Thyra::NonlinearSolverBase<Scalar> > stateTimeStepSolver_;
  RCP<IntegratorBase<Scalar> > stateIntegrator_;
  Scalar finalTime_;
  Thyra::ModelEvaluatorBase::InArgs<Scalar> stateAndSensBasePoint_;
  RCP<StepperBase<Scalar> > sensStepper_;
  RCP<Thyra::NonlinearSolverBase<Scalar> > sensTimeStepSolver_;

  bool isSingleResidualStepper_;
  RCP<ForwardSensitivityModelEvaluatorBase<Scalar> > sensModel_;
  RCP<StateAndForwardSensitivityModelEvaluator<Scalar> > stateAndSensModel_;
  Thyra::ModelEvaluatorBase::InArgs<Scalar> stateBasePoint_t_;

  static const std::string forceUpToDateW_name_;
  static const bool forceUpToDateW_default_;

  // /////////////////////////
  // Private member functions
  

  // Common initialization helper
  //
  // Preconditions:
  // (*) p_index >=0 or nonnull(p_space) == true
  //
  void initializeCommon(
    const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
    const int p_index,
    const RCP<const Thyra::VectorSpaceBase<Scalar> > &p_space,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
    const RCP<StepperBase<Scalar> > &stateStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
    const RCP<StepperBase<Scalar> > &sensStepper,
    const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
    );

  Scalar takeSyncedStep( Scalar dt, StepSizeType stepType );

  Scalar takeDecoupledStep( Scalar dt, StepSizeType stepType );

};


// 2009/09/05: rabartl: ToDo: To fix the const and non-const handling of the
// stateModel in this class is going to be a lot of work but here is what
// needs to be done:
//
// (*) Duplicate each function that sets the stateModel, one for const and one
// for non-const.
//
// (*) Create a single a private version for each of these functions that
// accepts a Teuchos::ConstNonconstObjectContainer<> object and will implement
// the guts of the set up same as the existing functions.
//
// (*) Get all of the concrete StepperBase subclasses to implement the
// setModel(const RCP<const ME>&) and modelIsConst() functions and get them to
// use the Teuchos::ConstNonconstObjectContainer<> class as described above.
// This should be pretty easy as the only function that needs to be addressed
// in most cases is just the setModel(...) function.
//


/** \brief Nonmember constructor.
 *
 * \relates ForwardSensitivityStepper
 */
template<class Scalar> 
inline
RCP<ForwardSensitivityStepper<Scalar> >
forwardSensitivityStepper()
{
  return Teuchos::rcp(new ForwardSensitivityStepper<Scalar>());
}


/** \brief Nonmember constructor.
 *
 * \relates ForwardSensitivityStepper
 */
template<class Scalar> 
inline
RCP<ForwardSensitivityStepper<Scalar> >
forwardSensitivityStepper(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
  const int p_index,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
  const RCP<StepperBase<Scalar> > &stateStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
  const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
  )
{
  RCP<ForwardSensitivityStepper<Scalar> >
    fwdSensStepper = Teuchos::rcp(new ForwardSensitivityStepper<Scalar>());
  fwdSensStepper->initializeSyncedSteppers(
    stateModel, p_index, stateBasePoint, stateStepper, stateTimeStepSolver );
  return fwdSensStepper;
}


/** \brief Return the index of the parameter subvector in the underlying state
 * model.
 *
 * \relates ForwardSensitivityStepper
 */
template<class Scalar>
int getParameterIndex(
  const ForwardSensitivityStepper<Scalar> &fwdSensStepper
  )
{
  return fwdSensStepper.getFwdSensModel()->get_p_index();
}


/** \brief Set up default initial conditions for the state and sensitivity
 * stepper with default zero initial conditions for the sensitivity
 * quantities.
 *
 * \relates ForwardSensitivityStepper
 */
template<class Scalar> 
inline
Thyra::ModelEvaluatorBase::InArgs<Scalar>
createStateAndSensInitialCondition(
  const ForwardSensitivityStepper<Scalar> &fwdSensStepper,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_ic,
  const RCP<const Thyra::MultiVectorBase<Scalar> > S_init = Teuchos::null,
  const RCP<const Thyra::MultiVectorBase<Scalar> > S_dot_init = Teuchos::null
  )
{

  using Teuchos::outArg;
  using Thyra::assign;
  typedef Thyra::ModelEvaluatorBase MEB;
  
  RCP<const Thyra::VectorBase<Scalar> > s_bar_init;
  if (nonnull(S_init)) {
    s_bar_init = create_s_bar_given_S(*fwdSensStepper.getFwdSensModel(), S_init);
  }
  else {
    RCP<Thyra::VectorBase<Scalar> > s_bar_init_loc =
      createMember(fwdSensStepper.getFwdSensModel()->get_x_space());
    assign( outArg(*s_bar_init_loc), 0.0 );
    s_bar_init = s_bar_init_loc;
  }

  RCP<const Thyra::VectorBase<Scalar> > s_bar_dot_init;
  if (nonnull(S_dot_init)) {
    s_bar_dot_init = create_s_bar_given_S(*fwdSensStepper.getFwdSensModel(), S_dot_init);
  }
  else {
    RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init_loc =
      createMember(fwdSensStepper.getFwdSensModel()->get_x_space());
    assign( outArg(*s_bar_dot_init_loc), 0.0 );
    s_bar_dot_init = s_bar_dot_init_loc;
  }
  
  RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> >
    stateAndSensModel = fwdSensStepper.getStateAndFwdSensModel();
  
  MEB::InArgs<Scalar>
    state_and_sens_ic = fwdSensStepper.getModel()->createInArgs();
  
  // Copy time, parameters etc.
  state_and_sens_ic.setArgs(state_ic);
  // Set initial condition for x_bar = [ x; s_bar ]
  state_and_sens_ic.set_x(
    stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init)
    );
  // Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ]
  state_and_sens_ic.set_x_dot(
    stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init)
    );

  return state_and_sens_ic;

}


/** \brief Extract out the initial condition for just the state model given
 * the initial condition for the state and sensitivity model.
 *
 * \relates ForwardSensitivityStepper
 */
template<class Scalar> 
inline
Thyra::ModelEvaluatorBase::InArgs<Scalar>
extractStateInitialCondition(
  const ForwardSensitivityStepper<Scalar> &fwdSensStepper,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
  )
{

  using Thyra::productVectorBase;
  typedef Thyra::ModelEvaluatorBase MEB;

  MEB::InArgs<Scalar>
    state_ic = fwdSensStepper.getStateModel()->createInArgs();
  
  // Copy time, parameters etc.
  state_ic.setArgs(state_and_sens_ic);
  state_ic.set_x(
    productVectorBase(state_and_sens_ic.get_x())->getVectorBlock(0));
  state_ic.set_x_dot(
    productVectorBase(state_and_sens_ic.get_x_dot())->getVectorBlock(0));
  
  return state_ic;
  
}


//
// Implementation
//


// Static members


template<class Scalar> 
const std::string ForwardSensitivityStepper<Scalar>::forceUpToDateW_name_
= "Force Up-To-Date Jacobian";

template<class Scalar> 
const bool ForwardSensitivityStepper<Scalar>::forceUpToDateW_default_
= true;


// Constructors, Intializers, Misc.


template<class Scalar> 
ForwardSensitivityStepper<Scalar>::ForwardSensitivityStepper()
  :forceUpToDateW_(false),
   isSingleResidualStepper_(false)
{}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::initializeSyncedSteppers(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
  const int p_index,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
  const RCP<StepperBase<Scalar> > &stateStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
  const RCP<StepperBase<Scalar> > &sensStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
  )
  
{
  initializeCommon( stateModel, p_index, Teuchos::null, stateBasePoint, stateStepper,
    stateTimeStepSolver, sensStepper, sensTimeStepSolver );
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::initializeSyncedSteppersInitCondOnly(
  const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
  const RCP<const Thyra::VectorSpaceBase<Scalar> >& p_space,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar>& stateBasePoint,
  const RCP<StepperBase<Scalar> >& stateStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> >& stateTimeStepSolver,
  const RCP<StepperBase<Scalar> >& sensStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> >& sensTimeStepSolver
  )
{
  initializeCommon(stateModel, -1, p_space, stateBasePoint, stateStepper,
    stateTimeStepSolver, sensStepper, sensTimeStepSolver );
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::initializeDecoupledSteppers(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
  const int p_index,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
  const RCP<StepperBase<Scalar> > &stateStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
  const RCP<IntegratorBase<Scalar> > &stateIntegrator,
  const Scalar &finalTime,
  const RCP<StepperBase<Scalar> > &sensStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
  )
{
  TEUCHOS_ASSERT(nonnull(stateIntegrator));
  initializeCommon( stateModel, p_index, Teuchos::null, stateBasePoint, stateStepper,
    stateTimeStepSolver, sensStepper, sensTimeStepSolver );
  stateIntegrator_ = stateIntegrator;
  finalTime_ = finalTime;
}


template<class Scalar> 
bool ForwardSensitivityStepper<Scalar>::stateModelIsConst() const
{
  return stateModel_.isConst();
}


template<class Scalar> 
RCP<const Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getStateModel() const
{
  return stateModel_.getConstObj();
}

  
template<class Scalar> 
RCP<StepperBase<Scalar> >
ForwardSensitivityStepper<Scalar>::getNonconstStateStepper()
{
  return stateStepper_;
}

  
template<class Scalar> 
RCP<const ForwardSensitivityModelEvaluatorBase<Scalar> >
ForwardSensitivityStepper<Scalar>::getFwdSensModel() const
{
  return sensModel_;
}

  
template<class Scalar> 
RCP<const StateAndForwardSensitivityModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getStateAndFwdSensModel() const
{
  return stateAndSensModel_;
}


// Overridden from Teuchos::ParameterListAcceptor


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::setParameterList(
  RCP<Teuchos::ParameterList> const& paramList
  )
{
  TEST_FOR_EXCEPT(is_null(paramList));
  paramList->validateParameters(*getValidParameters());
  this->setMyParamList(paramList);
  forceUpToDateW_ = paramList->get(forceUpToDateW_name_,forceUpToDateW_default_);
  Teuchos::readVerboseObjectSublist(&*paramList,this);
}


template<class Scalar> 
RCP<const Teuchos::ParameterList>
ForwardSensitivityStepper<Scalar>::getValidParameters() const
{
  static RCP<const ParameterList> validPL;
  if (is_null(validPL) ) {
    RCP<ParameterList> pl = Teuchos::parameterList();
    pl->set( forceUpToDateW_name_, forceUpToDateW_default_,
      "If set to true, then the Jacobian matrix W used in the\n"
      "state timestep equation will be forced to be up to date\n"
      "with the final value for x for the nonlinear solve.  If\n"
      "you are willing to live with slightly less accurate sensitivities\n"
      "then set this to false."
      );
    Teuchos::setupVerboseObjectSublist(&*pl);
    validPL = pl;
  }
  return validPL;
}


// Overridden from StepperBase

template<class Scalar> 
bool ForwardSensitivityStepper<Scalar>::acceptsModel() const
{
  return false;
}

template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::setModel(
  const RCP<const Thyra::ModelEvaluator<Scalar> >& model
  )
{
  TEST_FOR_EXCEPT_MSG( true,
    "Error, this stepper subclass does not accept a model"
    " as defined by the StepperBase interface!");
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::setNonconstModel(
  const RCP<Thyra::ModelEvaluator<Scalar> >& model
  )
{
  TEST_FOR_EXCEPT_MSG( true,
    "Error, this stepper subclass does not accept a model"
    " as defined by the StepperBase interface!");
}


template<class Scalar> 
RCP<const Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getModel() const
{
  return stateAndSensModel_;
}


template<class Scalar> 
RCP<Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getNonconstModel() 
{
  return stateAndSensModel_;
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::setInitialCondition(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
  )
{
  
  typedef Thyra::ModelEvaluatorBase MEB;

  stateAndSensBasePoint_ = state_and_sens_ic;

  // Get the product vectors for x_bar = [ x; s_bar ] and x_bar_dot

  TEST_FOR_EXCEPTION(
    is_null(state_and_sens_ic.get_x()), std::logic_error,
    "Error, the initial condition for x_bar = [ x; s_bar ] can not be null!" );

  const RCP<const Thyra::ProductVectorBase<Scalar> >
    x_bar_init = Thyra::productVectorBase<Scalar>(
      state_and_sens_ic.get_x()
      );

  RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_dot_init;
  if (state_and_sens_ic.supports(MEB::IN_ARG_x_dot)) {
      x_bar_dot_init = Thyra::productVectorBase<Scalar>(
        state_and_sens_ic.get_x_dot()
        );
  }

  // Remove x and x_dot from state_and_sens_ic_in to avoid cloning x and x dot!
  
  Thyra::ModelEvaluatorBase::InArgs<Scalar>
    state_and_sens_ic_no_x = state_and_sens_ic;
  state_and_sens_ic_no_x.set_x(Teuchos::null);
  if (state_and_sens_ic_no_x.supports(MEB::IN_ARG_x_dot)) {
    state_and_sens_ic_no_x.set_x_dot(Teuchos::null);
  }

  // Set initial condition for the state

  MEB::InArgs<Scalar> state_ic = stateModel_->createInArgs();
  state_ic.setArgs(state_and_sens_ic_no_x,true,true); // Set time, parameters etc.
  state_ic.set_x(x_bar_init->getVectorBlock(0)->clone_v());
  if (state_ic.supports(MEB::IN_ARG_x_dot)) {
    state_ic.set_x_dot(
        !is_null(x_bar_dot_init)
        ? x_bar_dot_init->getVectorBlock(0)->clone_v()
        : Teuchos::null
        );
  }
  stateStepper_->setInitialCondition(state_ic);

  // Set up the integrator if needed
  //if (!is_null(stateIntegrator_)) {
  //  stateIntegrator_->setStepper( stateStepper_, finalTime_ );
  //  sensModel_->setStateIntegrator( stateIntegrator_, state_ic );
  //}

  // Set initial condition for the sensitivities
  
  MEB::InArgs<Scalar> sens_ic = sensModel_->createInArgs();
  sens_ic.setArgs(state_and_sens_ic_no_x,true,true); // Set time etc.
  sens_ic.set_x(x_bar_init->getVectorBlock(1)->clone_v());
  if (sens_ic.supports(MEB::IN_ARG_x_dot)) {
    sens_ic.set_x_dot(
        !is_null(x_bar_dot_init)
        ? x_bar_dot_init->getVectorBlock(1)->clone_v()
        : Teuchos::null
        );
  }
  sensStepper_->setInitialCondition(sens_ic);

}


template<class Scalar> 
Thyra::ModelEvaluatorBase::InArgs<Scalar>
ForwardSensitivityStepper<Scalar>::getInitialCondition() const
{
  return stateAndSensBasePoint_;
}
 

template<class Scalar> 
Scalar
ForwardSensitivityStepper<Scalar>::takeStep(
  Scalar dt, StepSizeType stepType
  )
{

#ifdef ENABLE_RYTHMOS_TIMERS
  TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep");
#endif

  if (!is_null(stateIntegrator_)) {
    return takeDecoupledStep(dt,stepType);
  }

  return takeSyncedStep(dt,stepType);

}


template<class Scalar> 
const StepStatus<Scalar>
ForwardSensitivityStepper<Scalar>::getStepStatus() const
{

  const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
  StepStatus<Scalar> stepStatus;
  
  stepStatus.message = sensStepStatus.message;
  stepStatus.stepStatus = sensStepStatus.stepStatus;
  stepStatus.stepLETStatus = sensStepStatus.stepLETStatus;
  stepStatus.stepSize = sensStepStatus.stepSize;
  stepStatus.order = sensStepStatus.order;
  stepStatus.time = sensStepStatus.time;
  stepStatus.stepLETValue = sensStepStatus.stepLETValue;
  stepStatus.extraParameters = sensStepStatus.extraParameters;

  if (is_null(stateIntegrator_)) {
    const StepStatus<Scalar> 
      stateStepStatus = stateStepper_->getStepStatus();
    if (!is_null(stateStepStatus.solution) && !is_null(sensStepStatus.solution))
      stepStatus.solution = stateAndSensModel_->create_x_bar_vec(
        stateStepStatus.solution, sensStepStatus.solution
        );
    if (!is_null(stateStepStatus.solutionDot) && !is_null(sensStepStatus.solutionDot))
      stepStatus.solutionDot = stateAndSensModel_->create_x_bar_vec(
        stateStepStatus.solutionDot, sensStepStatus.solutionDot
        );
  }

  return stepStatus;

}


// Overridden from InterpolationBufferBase


template<class Scalar> 
RCP<const Thyra::VectorSpaceBase<Scalar> >
ForwardSensitivityStepper<Scalar>::get_x_space() const
{
  return stateAndSensModel_->get_x_space();
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::addPoints(
  const Array<Scalar>& time_vec,
  const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& x_vec,
  const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
  )
{
  TEST_FOR_EXCEPT("Not implemented addPoints(...) yet but we could if we wanted!");
}


template<class Scalar> 
TimeRange<Scalar>
ForwardSensitivityStepper<Scalar>::getTimeRange() const
{
  return sensStepper_->getTimeRange();
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::getPoints(
  const Array<Scalar>& time_vec,
  Array<RCP<const Thyra::VectorBase<Scalar> > >* x_bar_vec,
  Array<RCP<const Thyra::VectorBase<Scalar> > >* x_bar_dot_vec,
  Array<ScalarMag>* accuracy_vec
  ) const
{

  using Teuchos::as;

#ifdef RYTHMOS_DEBUG
  TEST_FOR_EXCEPT( as<int>(time_vec.size()) == 0 );
#endif

  const int numTimePoints = time_vec.size();

  if (x_bar_vec)
    x_bar_vec->clear();

  if (x_bar_dot_vec)
    x_bar_dot_vec->clear();
  
  Array<RCP<const Thyra::VectorBase<Scalar> > >
    x_vec, x_dot_vec;

  if (!is_null(stateIntegrator_)) {
    stateIntegrator_->getPoints(
      time_vec,
      x_bar_vec ? &x_vec: 0,
      x_bar_dot_vec ? &x_dot_vec: 0,
      0 // Ignoring accuracy from state for now!
      );
  }
  else {
    stateStepper_->getPoints(
      time_vec,
      x_bar_vec ? &x_vec: 0,
      x_bar_dot_vec ? &x_dot_vec: 0,
      0 // Ignoring accuracy from state for now!
      );
  }
  
  Array<RCP<const Thyra::VectorBase<Scalar> > >
    s_bar_vec, s_bar_dot_vec;

  sensStepper_->getPoints(
    time_vec,
    x_bar_vec ? &s_bar_vec: 0,
    x_bar_dot_vec ? &s_bar_dot_vec: 0,
    accuracy_vec
    );
  
  if ( x_bar_vec ) {
    for ( int i = 0; i < numTimePoints; ++i ) {
      x_bar_vec->push_back(
        stateAndSensModel_->create_x_bar_vec(x_vec[i],s_bar_vec[i])
        );
    }
  }
  
  if ( x_bar_dot_vec ) {
    for ( int i = 0; i < numTimePoints; ++i ) {
      x_bar_dot_vec->push_back(
        stateAndSensModel_->create_x_bar_vec(x_dot_vec[i],s_bar_dot_vec[i])
        );
    }
  }

}


template<class Scalar>
void ForwardSensitivityStepper<Scalar>::getNodes(
  Array<Scalar>* time_vec
  ) const
{
  TEUCHOS_ASSERT( time_vec != NULL );
  time_vec->clear();
  if (is_null(stateIntegrator_) && is_null(stateStepper_)) {
    return;
  }
  if (!is_null(stateIntegrator_)) {
    stateIntegrator_->getNodes(time_vec);
  }
  else {
    stateStepper_->getNodes(time_vec);
  }
}


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::removeNodes(
  Array<Scalar>& time_vec
  )
{
  TEST_FOR_EXCEPT("Not implemented yet but we can!");
}


template<class Scalar> 
int ForwardSensitivityStepper<Scalar>::getOrder() const
{
  return sensStepper_->getOrder();
  // Note: This assumes that stateStepper will have the same order!
}


// private


template<class Scalar> 
void ForwardSensitivityStepper<Scalar>::initializeCommon(
  const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
  const int p_index,
  const RCP<const Thyra::VectorSpaceBase<Scalar> > &p_space,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
  const RCP<StepperBase<Scalar> > &stateStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
  const RCP<StepperBase<Scalar> > &sensStepper,
  const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
  )
{

  using Teuchos::rcp_implicit_cast;
  using Teuchos::rcp_dynamic_cast;

  typedef Thyra::ModelEvaluatorBase MEB;

  //
  // Validate input
  //

  TEUCHOS_ASSERT( p_index >= 0 || nonnull(p_space) );
  if (nonnull(p_space)) {
    TEUCHOS_ASSERT_EQUALITY(p_index, -1);
  }
  if (p_index >= 0) {
    TEUCHOS_ASSERT(is_null(p_space));
  }
  TEST_FOR_EXCEPT( is_null(stateModel) );
  TEST_FOR_EXCEPT( is_null(stateStepper) );
  if (stateStepper->isImplicit()) {
    TEST_FOR_EXCEPT( is_null(stateTimeStepSolver) ); // allow to be null for explicit methods
  }

  //
  // Create the sensModel which will do some more validation
  //
  
  RCP<ForwardSensitivityModelEvaluatorBase<Scalar> > sensModel;
  MEB::InArgs<Scalar> stateModelInArgs = stateModel->createInArgs();
  if (stateModelInArgs.supports(MEB::IN_ARG_x_dot)) {
    // Implicit DE formulation
    sensModel = Teuchos::rcp(new ForwardSensitivityImplicitModelEvaluator<Scalar>);
  }
  else {
    // Explicit DE formulation
    sensModel = Teuchos::rcp(new ForwardSensitivityExplicitModelEvaluator<Scalar>);
  }

  if (p_index >= 0) {
    sensModel->initializeStructure(stateModel, p_index);
  }
  else {
    sensModel->initializeStructureInitCondOnly(stateModel, p_space);
  }
  
  //
  // Get the input objects
  //

  stateModel_.initialize(stateModel);

  stateBasePoint_ = stateBasePoint;

  stateStepper_ = stateStepper;
  
  stateTimeStepSolver_ = stateTimeStepSolver;

  sensModel_ = sensModel;

  stateAndSensModel_ = Teuchos::rcp(new StateAndForwardSensitivityModelEvaluator<Scalar>);
  stateAndSensModel_->initializeStructure(sensModel_);

  if (!is_null(sensStepper)) {
    sensStepper_ = sensStepper;
  }
  else {
    sensStepper_ = stateStepper_->cloneStepperAlgorithm();
    TEST_FOR_EXCEPTION(
      is_null(sensStepper_), std::logic_error,
      "Error, if the client does not pass in a stepper for the senitivity\n"
      "equations then the stateStepper object must support cloning to create\n"
      "the sensitivity stepper!"
      );
  }

  if (!is_null(sensTimeStepSolver)) {
    sensTimeStepSolver_ = sensTimeStepSolver;
  }
  else {
    RCP<Thyra::LinearNonlinearSolver<Scalar> >
      linearNonlinearSolver(new Thyra::LinearNonlinearSolver<Scalar>);
    // ToDo: Set tolerance on the nonlinear solver???
    sensTimeStepSolver_ = linearNonlinearSolver;
  }

  //
  // Setup the steppers
  //

  isSingleResidualStepper_ = true; // ToDo: Add dynamic cast on
                                   // stateTimeStepSolver to check this!

  setStepperModel(Teuchos::inOutArg(*stateStepper_),stateModel_);
  if (stateStepper_->isImplicit()) {
    rcp_dynamic_cast<SolverAcceptingStepperBase<Scalar> >(
        stateStepper_,true)->setSolver(stateTimeStepSolver_);
  }
  sensStepper_->setModel(sensModel_); 
  if (sensStepper_->isImplicit()) {
    rcp_dynamic_cast<SolverAcceptingStepperBase<Scalar> >(
        sensStepper_,true)->setSolver(sensTimeStepSolver_);
  }

  stateBasePoint_t_ = stateModel_->createInArgs();

  // 2007/05/18: rabartl: ToDo: Move the above initialization code to give
  // setInitializeCondition(...) a chance to set the initial condition.

}


template<class Scalar> 
Scalar ForwardSensitivityStepper<Scalar>::takeSyncedStep(
  Scalar dt, StepSizeType stepType
  )
{

#ifdef ENABLE_RYTHMOS_TIMERS
  TEUCHOS_FUNC_TIME_MONITOR_DIFF("Rythmos:ForwardSensitivityStepper::takeStep: synced",
    TopLevel);
#endif

  using Teuchos::as;
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Teuchos::VerboseObjectTempState<InterpolationBufferBase<Scalar> > VOTSIBB;
  typedef Thyra::ModelEvaluatorBase MEB;

  RCP<Teuchos::FancyOStream> out = this->getOStream();
  Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
  const bool lowTrace =
    ( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_LOW) );
  const bool mediumTrace =
    ( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM) );
  Teuchos::OSTab tab(out);

  if (lowTrace) {
    *out
      << "\nEntering " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
      << "::takeSyncedStep("<<dt<<","<<toString(stepType)<<") ...\n"; 
  }

  //
  // A) Compute the state timestep
  //

  if (lowTrace) {
    *out
      << "\nTaking state step using stepper : "
      << stateStepper_->description() << "\n";
  }

  Scalar state_dt = -1.0;
  {
#ifdef ENABLE_RYTHMOS_TIMERS
    TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: stateStep");
#endif
    VOTSIBB stateStepper_outputTempState(stateStepper_,out,verbLevel);
    state_dt = stateStepper_->takeStep(dt,stepType);
  }

  if (state_dt < Scalar(-ST::one())) {
    if (lowTrace)
      *out << "\nThe state stepper has failed so return a failed timestep!\n";
    return state_dt;
  }

  {
#ifdef ENABLE_RYTHMOS_TIMERS
    TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: updateSensModel");
#endif
    // Set up the sensitivity model for this timestep
    sensModel_->initializePointState(Teuchos::inOutArg(*stateStepper_),forceUpToDateW_);
  } 

  //
  // C) Compute the sensitivity timestep for the exact same timestep as was
  // used for the state solve.
  //

  if (lowTrace) {
    *out
      << "\nTaking sensitivity step using stepper : "
      << sensStepper_->description() << "\n";
  }

  Scalar sens_dt = -1.0;
  {
#ifdef ENABLE_RYTHMOS_TIMERS
    TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: sensStep");
#endif
    // Copy the step control data to make sure that the sensStepper takes the
    // same type of step that the statStepper took.  This is needed to ensure
    // that the W matrix is the same for one.
    sensStepper_->setStepControlData(*stateStepper_);
    VOTSIBB sensStepper_outputTempState(sensStepper_,out,verbLevel);
    sens_dt = sensStepper_->takeStep(state_dt,STEP_TYPE_FIXED);
  }

  if (mediumTrace) {
    const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
    *out << "\nSensitivity step status:\n" << sensStepStatus;
  }
  
  TEST_FOR_EXCEPTION(
    sens_dt != state_dt, std::logic_error,
    "Error, the sensitivity step failed for some reason.  We should\n"
    "just return a negative step size and reject the step but currently\n"
    "there is no way to roll back the state timestep it for back to\n"
    "the status before this function was called!"
    );

  // 2007/05/18: rabartl: ToDo: If stepType == STEP_TYPE_VARIABLE and the state
  // timestep sucessed but the sensitivity timestep failed, then we need to
  // really throw an excpetion because there is nothing that we can really do
  // here!

  // 2007/05/18: rabartl: ToDo: Replace the above std::logic_error type with
  // a Rythmos::CatastrophicFailure or just use Thyra::CatastrophicFailure!

  if (lowTrace) {
    *out
      << "\nLeaving " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
      << "::takeSyncedStep("<<dt<<","<<toString(stepType)<<") ...\n"; 
  }

  return state_dt;

}


template<class Scalar> 
Scalar ForwardSensitivityStepper<Scalar>::takeDecoupledStep(
  Scalar dt, StepSizeType stepType
  )
{

#ifdef ENABLE_RYTHMOS_TIMERS
  TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: decoupled");
#endif

  using Teuchos::as;
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Teuchos::VerboseObjectTempState<InterpolationBufferBase<Scalar> > VOTSIBB;
  typedef Thyra::ModelEvaluatorBase MEB;

  RCP<Teuchos::FancyOStream> out = this->getOStream();
  Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
  const bool lowTrace =
    ( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_LOW) );
  const bool mediumTrace =
    ( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM) );
  Teuchos::OSTab tab(out);

  if (lowTrace) {
    *out
      << "\nEntering " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
      << "::takeDecoupledStep("<<dt<<","<<toString(stepType)<<") ...\n"; 
  }
  
  //
  // A) Take the sens timestep
  //

  if (lowTrace) {
    *out
      << "\nTaking sensitivity step using stepper : "
      << sensStepper_->description() << "\n";
  }

  Scalar sens_dt = -1.0;
  VOTSIBB sensStepper_outputTempState(sensStepper_,out,verbLevel);
  sens_dt = sensStepper_->takeStep(dt,stepType);

  if (mediumTrace) {
    const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
    *out << "\nSensitivity step status:\n" << sensStepStatus;
  }

  //
  // B) Wipe out all state interp buffer info before this sens timestep
  //
  
  //TEST_FOR_EXCEPT(true);

  if (lowTrace) {
    *out
      << "\nLeaving " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
      << "::takeDecoupledStep("<<dt<<","<<toString(stepType)<<") ...\n"; 
  }

  return sens_dt;
  
}


} // namespace Rythmos


#endif //RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP