/usr/include/trilinos/Rythmos_ForwardSensitivityStepper.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 | //@HEADER
// ***********************************************************************
//
// Rythmos Package
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER
#ifndef RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP
#define RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP
#include "Rythmos_StepperBase.hpp"
#include "Rythmos_StepperHelpers.hpp"
#include "Rythmos_ForwardSensitivityModelEvaluatorBase.hpp"
#include "Rythmos_ForwardSensitivityImplicitModelEvaluator.hpp"
#include "Rythmos_ForwardSensitivityExplicitModelEvaluator.hpp"
#include "Rythmos_StateAndForwardSensitivityModelEvaluator.hpp"
#include "Rythmos_SolverAcceptingStepperBase.hpp"
#include "Rythmos_IntegratorBase.hpp"
#include "Rythmos_SingleResidualModelEvaluatorBase.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_LinearNonlinearSolver.hpp"
#include "Thyra_ProductVectorBase.hpp"
#include "Thyra_AssertOp.hpp"
#include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_ConstNonconstObjectContainer.hpp"
#include "Teuchos_Assert.hpp"
#include "Teuchos_as.hpp"
namespace Rythmos {
/** \brief Foward sensitivity stepper concrete subclass.
*
* This class provides a very general implemenation of a forward sensitivity
* stepper.
*
* \section Rythmos_ForwardSensitivityStepper_intro_sec Introduction
*
* The most general form of the parameterized state equation is:
\verbatim
f(x_dot(t),x(t),p) = 0, over t = [t0,tf]
x(t0) = x_init(p)
\endverbatim
* As shown above, the parameters <tt>p</tt> are assumed to be steady state
* parameters and can enter through the intial condition and/or through the
* DAE equation itself. This class also supports a form of the problem where
* parameters <tt>p</tt> are only assumed to bin the initial condition
* <tt>x_init(p)</tt> and not in the state equation. In this case, you can
* just drop out all of the terms <tt>d(f)/d(p)</tt> shown in the equations
* below because they are zero.
*
* The forward sensitivity equations that are solved along with the state
* equation, written in multi-vector form, are:
\verbatim
d(f)/d(x_dot)*S_dot + d(f)/d(x)*S + d(f)/d(p) = 0, over t = [t0,tf]
S(t0) = d(x_init)/d(p)
\endverbatim
* where <tt>S</tt> is a multi-vector with <tt>np</tt> columns where each
* column <tt>S(:,j) = d(x)/d(p_j)</tt> is the sensitivity of <tt>x(t)</tt>
* with respect to the <tt>p_j</tt> parameter.
*
* The forward sensitivity equations are a DAE and must be solved using a time
* integrator. Conceptually, the state plus forward sensitivity system can be
* throught of as a big composite DAE model of the form:
\verbatim
f_bar(x_bar_dot(t),x_bar(t)) = 0, over t = [t0,tf]
x_bar(t0) = x_bar_init
\endverbatim
* where
\verbatim
x_bar = [ x; s_bar ]
s_bar = [ S(:,0); S(:,0); ...; S(:,np-1) ]
\endverbatim
* and <tt>f_bar(...)</tt> is the obvious concatenated state and sensitivity
* system. See the class <tt>StateAndForwardSensitivityModelEvaluatorBase</tt>
* for a description of how to get at the components of <tt>x</tt>,
* <tt>s_bar</tt>, and <tt>S</tt> given <tt>x_bar</tt>.
*
* The <tt>InterpolationBufferBase</tt> interface implemented by this class is
* defined with respect to the full composite solution vector <tt>x_bar</tt>
* which is returned as a product vector with two components. The first
* component is <tt>x</tt>. The second component is another product vector
* for the implicit concatenation of the columns of the sensitivities shown as
* <tt>s_bar</tt> above. The <tt>s_bar</tt> product vector is really
* implemented directly as a multi-vector and represents an efficient way to
* represent the forward sensitivities. Therefore, through the interpolation
* buffer interface function <tt>getPoints()</tt> a client can access the
* state and the sensitivities at any point in the range of the current
* timestep.
*
* Note that this class does not implement the function <tt>setModel()</tt>
* since any arbitrary combined state + sensitivity model can not be
* supported.
*
* \section Rythmos_ForwardSensitivityStepper_details_sec Implementation Details
*
* There are a variety of ways that one can go about implementing a state
* plus forward sensitivity stepper. Three ways for doing this are described
* in the report "Design of New DASPK for Sensitivity Analysis" by Shengtai Li
* and Linda Petzold. The three ways are the <em>simultaneous corrector</em>,
* the <em>staggered direct</em> and the <em>staggered corrector</em> methods.
*
* The <em>simultaneous corrector</em> method would be equivalent to forming
* one big ModelEvaluator for the state and sensitivities where the "state"
* variables would be the <tt>x_bar</tt> variables described above and then
* this big system would be solved with a single stepper object and as single
* nonlinear solver. The advantage of this approach is that it makes great
* reuse of all of the timestepping software. Also, by being able to
* specialize the nonlinear solver (which you can't do in most software) you
* could set up the nonlinear solver to first solve the nonlinear state
* timestep equation, and then solve the linear sensitivity equations. The
* problem with this approach would be that it would be very wasteful if the
* timestep had to be cut back in order to reduce the local truncation error
* of the state solution. This would result in the sensitivity solution being
* thrown away for each cut-back iteration. Because of this fundamental
* problem, we have not implemented the simultaneous corrector method.
* Actually, we are not really sure why anyone implements ths method.
*
* The <em>staggered direct</em> and <em>staggered corrector</em> methods are
* similar in several ways. In each method, the state timestep is first fully
* solved (including any stepsize reduction iterations that are needed) and
* then the sensitivities are solved, taking advantage of the pre-computed
* state timestep Jacobian. One difference between the two methods is that in
* the staggered direct method, the sensitivities are solved for directly.
* This can result in numerical accuracy problems and does not allow the reuse
* of an inexact solve when a direct factorization is used. In the staggered
* corrector method, an implicit corrector solve is used to compute the change
* in the sensitivity variables using a Newton method. This results in better
* numerical stability and allows the reuse of an old Jacobian and
* factorization in the Newton method. However, if an exact Jacobian is used
* for the solve, then the Newton method will converge in one iteration
* (assuming the linear solver tolerance is made tight enough) with no harm
* done.
*
* Because of the advantages of the staggered corrector method over the other
* methods, the staggered corrector method is what is implemented in this
* stepper class. However, the term "corrector" is not really appropriate to
* be used in the context of this class since this class does not have to
* assume anything about how timesteps are computed and does not care if a
* predictor/corrector method is used or not.
*
* While this class does provide a full ModelEvaluator for the full state plus
* forward sensitivity DAE <tt>f_bar(x_bar_hat,x_bar)</tt> it is not solved
* all at one time as described above. Instead, the step is solved first for
* the state equation and then a ModelEvaluator for just the linear forward
* sensitivity equations is formed and is solved over the same time step as
* the forward solve.
*
* Currently, timestep control is not performed for the forward sensitivity
* variables. In the future, however, it would not be too difficult to allow
* for the timestep to be reduced for the sensitivity variables but this would
* require a "undoStep()" operation be implimented for the state stepper
* object and this is not currently supported by the <tt>StepperBase</tt>
* interface.
*
*
* 2007/15/21: rabart: ToDo: This class only works for implicit models and
* steppers right now but it would be easy to get this to work for explicit
* steppers and models later with a little work. With an explicit method and
* model, we don't need to reuse W_tilde so this is easier in a way!
*
* ToDo: Finish documentation!
*/
template<class Scalar>
class ForwardSensitivityStepper
: virtual public StepperBase<Scalar>,
virtual public Teuchos::ParameterListAcceptorDefaultBase
{
public:
/** \brief . */
typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMag;
/** \name Constructors, Intializers, Misc. */
//@{
/** \brief Constructs to uninitialized. */
ForwardSensitivityStepper();
/** \brief Intialize for synced state and sens steppers.
*
* \param stateModel [in,persisting] The ModelEvaluator that defines the
* parameterized state model <tt>f(x_dot,x,p)</tt>.
*
* \param p_index [in] The index of the parameter subvector in
* <tt>stateModel</tt> for which sensitivities will be computed for.
*
* \param baseStatePoint [in] Whatever input arguments are needed to define
* the state of the model including the parameters except x, x_dot, and t!
*
* \param stateStepper [in,persisting] The stepper object that will be used
* to advance the state solution <tt>x(t)</tt>. This stepper need not be
* setup with a model or a nonlinear timestep solver. All this stepper
* object needs is to be given its parameters to determine exactly what
* timestepping algorithm will be employed. The model and the timestep
* solver objects will be set internally.
*
* \param stateTimeStepSolver [in,persisting] The nonlinear solver object
* that is used to solve for the state timestep equation. This is needed to
* extract the Jacobian matrix that is used in the sensitivity model. If
* the stepper is not an implicit stepper and does not use an implicit time
* step solver, then this argument should be left null.
*
* \param sensStepper [in,persisting] The stepper object that will be used
* to advance the sensitivity solution <tt>S(t)</tt>. This stepper need not
* be setup with a model or a nonlinear timestep solver. All this stepper
* object needs is to be given its parameters to determine exactly what
* timestepping algorithm will be employed. The model and the timestep
* solver objects will be set internally. If this argument is null, then
* the <tt>stateStepper</tt> object will be cloned to generate this stepper
* object. The most common use cases should just pass in
* <tt>Teuchos::null</tt> and just use the identical stepper as the state
* stepper. However, this argument allows a client to specialize exactly
* what the sensitivity stepper does and therefore this hook is allowed.
*
* \param sensTimeStepSolver [in,persisting] The nonlinear solver object
* that is used to solve for the (linear) sensitivity timestep equation. If
* the stepper is not an implicit stepper and does not use an implicit
* timestep solver, then this argument can be left null. If the stepper is
* implicit, and this argument is left null, then a
* <tt>Thyra::LinearNonlinearSolver</tt> object will be created and used.
* The most common use cases should just pass in <tt>Teuchos::null</tt> and
* just use the simple linear nonlinear solver to will perform just a single
* linear solve. However, this argument allows a client to specialize
* exactly what the nonlinear solver in the sensitivity stepper does and
* therefore this hook is exposed to clients.
*
* Here <tt>*this</tt> is set up to synchronize the state and sensitivity
* solvers. Currently, error control is only done by the state stepper and
* not the sensitivity stepper but the overall implementation has a high
* degree of resuse and will therefore compute sensitivities quite fast.
*/
void initializeSyncedSteppers(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
);
/** \brief Intialize for synced state and sens steppers for an
* initial-condition only parametrized sensitivity problem.
*
* \param stateModel [in,persisting] See initializeSyncedSteppers().
*
* \param p_space [in] The vector space for the parameterized initial
* condition parameters.
*
* \param baseStatePoint [in] See initializeSyncedSteppers().
*
* \param stateStepper [in,persisting] See initializeSyncedSteppers().
*
* \param stateTimeStepSolver [in,persisting] See initializeSyncedSteppers().
*
* \param sensStepper [in,persisting] See initializeSyncedSteppers().
*
* \param sensTimeStepSolver [in,persisting] See initializeSyncedSteppers().
*
* Here <tt>*this</tt> is set up to synchronize the state and sensitivity
* solvers for an initial-condition only forward sensitivity problem.
* Currently, error control is only done by the state stepper and not the
* sensitivity stepper but the overall implementation has a high degree of
* resuse and will therefore compute sensitivities quite fast.
*/
void initializeSyncedSteppersInitCondOnly(
const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
const RCP<const Thyra::VectorSpaceBase<Scalar> >& p_space,
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& stateBasePoint,
const RCP<StepperBase<Scalar> >& stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> >& stateTimeStepSolver,
const RCP<StepperBase<Scalar> >& sensStepper = Teuchos::null,
const RCP<Thyra::NonlinearSolverBase<Scalar> >& sensTimeStepSolver = Teuchos::null
);
/** \brief Intialize for decoupled state and sens steppers.
*
* \param stateModel [in,persisting] See <tt>initializeSyncedSteppers()</tt>.
*
* \param p_index [in] See <tt>initializeSyncedSteppers()</tt>.
*
* \param baseStatePoint [in] See <tt>initializeSyncedSteppers()</tt>.
*
* \param stateStepper [in,persisting] See
* <tt>initializeSyncedSteppers()</tt>.
*
* \param stateTimeStepSolver [in,persisting] See
* <tt>initializeSyncedSteppers()</tt>.
*
* \param stateIntegrator [in,persisting] The intergrator that will be used
* to integrate the state given <tt>stateStepper</tt>. This integrator must
* be set up with a trailing interpolation buffer in order to be able to
* allow for complete flexibility in how the time steps for the sens
* equations are solved.
*
* \param finalTime [in] The final time for the state integrator. This is
* needed to initialize <tt>stateIntegrator</tt> with <tt>stateStepper</tt>.
*
* \param sensStepper [in,persisting] See
* <tt>initializeSyncedSteppers()</tt>.
*
* \param sensTimeStepSolver [in,persisting] See
* <tt>initializeSyncedSteppers()</tt>.
*
* Here <tt>*this</tt> is set up to run the state and sens steppers
* completely independently; each with the their own error control
* strategies. The state stepper in driven through the state integrator
* which in turn is driven by the ForwardSensitivityModelEvaluatorBase that is
* driven by the sens stepper.
*/
void initializeDecoupledSteppers(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<IntegratorBase<Scalar> > &stateIntegrator,
const Scalar &finalTime,
const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
);
/** \brief Return if the state model is const-only or not. */
bool stateModelIsConst() const;
/** \brief Return the state model that was passed into an initialize
* function.
*/
RCP<const Thyra::ModelEvaluator<Scalar> >
getStateModel() const;
/** \brief Return the state stepper that was passed into an initialize
* function.
*/
RCP<StepperBase<Scalar> >
getNonconstStateStepper();
/** \brief Return the forward sensitivity model evaluator object that got
* created internally when the initialize function was called.
*/
RCP<const ForwardSensitivityModelEvaluatorBase<Scalar> >
getFwdSensModel() const;
/** \brief Return the state and forward sensitivity model evaluator object
* that got created internally when the nitialize function was called.
*
* This is also the same model returned by the function <tt>getModel()</tt>,
* except through it's concrete subclass type.
*/
RCP<const StateAndForwardSensitivityModelEvaluator<Scalar> >
getStateAndFwdSensModel() const;
//@}
/** \name Overridden from Teuchos::ParameterListAcceptor */
//@{
/** \brief . */
void setParameterList(RCP<Teuchos::ParameterList> const& paramList);
/** \brief . */
RCP<const Teuchos::ParameterList> getValidParameters() const;
//@}
/** \name Overridden from StepperBase */
//@{
/** \brief Returns false. */
bool acceptsModel() const;
/** \brief Throws exception. */
void setModel(
const RCP<const Thyra::ModelEvaluator<Scalar> >& model
);
/** \brief Throws exception. */
void setNonconstModel(
const RCP<Thyra::ModelEvaluator<Scalar> >& model
);
/** \brief Returns <tt>getStateAndFwdSensModel()</tt>.
*
* Warning, currently the returned model does not implement evalModel(...)
* or define a W object. It is just used for getting the spaces and for
* creating an InArgs object for setting the initial condition.
*/
RCP<const Thyra::ModelEvaluator<Scalar> > getModel() const;
/** \brief . */
RCP<Thyra::ModelEvaluator<Scalar> > getNonconstModel();
// RAB: ToDo: 2007/05/15: I need to talk with Todd about potentially
// removing the setModel() and getModel() functions from the StepperBase
// interface. In the case of this forward sensitivity solver, I am not sure
// that it makes a lot of sense to define a model. This surely will not be
// the model that a generic client would expect. The assumption I am sure
// would be that this model has the same space for x as the interpolation
// buffer but that is not true in this case.
/** \brief Sets the full initial condition for <tt>x_bar = [ x; s_bar] </tt>
* and <tt>x_bar_dot = [ x_dot; s_bar_dot ]</tt> as well as the initial time
* and the parameter values.
*
* The InArgs object must be created using
* <tt>this->getModel()->createInArgs()</tt> and then populated with the
* initial values. The product vectors for <tt>x_bar</tt> and
* <tt>x_bar_dot</tt> can be created using
* <tt>this->getStateAndFwdSensModel()->create_x_bar_vec(...)</tt>. All of
* the input objects in <tt>state_and_sens_ic</tt> will be cloned and
* therefore no memory of the objects in <tt>state_and_sens_ic</tt> will be
* retained after calling this function.
*/
void setInitialCondition(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
);
/** \brief . */
Thyra::ModelEvaluatorBase::InArgs<Scalar> getInitialCondition() const;
/** \brief . */
Scalar takeStep( Scalar dt, StepSizeType stepType );
/** \brief . */
const StepStatus<Scalar> getStepStatus() const;
//@}
/** \name Overridden from InterpolationBufferBase */
//@{
/** \brief Returns the space for <tt>x_bar</tt> and <tt>x_bar_dot</tt>.
*
* This space is a nested product vector space as described above. Dynamic
* casting is required to get at the <tt>ProductVectorSapceBase</tt> and
* <tt>ProductVectorBase</tt> intefaces.
*/
RCP<const Thyra::VectorSpaceBase<Scalar> >
get_x_space() const;
/** \brief . */
void addPoints(
const Array<Scalar>& time_vec,
const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& x_vec,
const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
);
/** \brief . */
TimeRange<Scalar> getTimeRange() const;
/** \brief . */
void getPoints(
const Array<Scalar>& time_vec,
Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec,
Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec,
Array<ScalarMag>* accuracy_vec
) const;
/** \brief . */
void getNodes(Array<Scalar>* time_vec) const;
/** \brief . */
void removeNodes(Array<Scalar>& time_vec);
/** \brief . */
int getOrder() const;
//@}
/** \name Deprecated. */
//@{
/** \brief Deprecated. */
void initialize(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
)
{
initializeSyncedSteppers(
stateModel, p_index, stateBasePoint, stateStepper, stateTimeStepSolver,
sensStepper, sensTimeStepSolver
);
}
//@}
private:
// ///////////////////
// Private types
typedef Teuchos::ConstNonconstObjectContainer<Thyra::ModelEvaluator<Scalar> > CNCME;
// /////////////////////////
// Private data members
bool forceUpToDateW_;
CNCME stateModel_;
Thyra::ModelEvaluatorBase::InArgs<Scalar> stateBasePoint_;
RCP<StepperBase<Scalar> > stateStepper_;
RCP<Thyra::NonlinearSolverBase<Scalar> > stateTimeStepSolver_;
RCP<IntegratorBase<Scalar> > stateIntegrator_;
Scalar finalTime_;
Thyra::ModelEvaluatorBase::InArgs<Scalar> stateAndSensBasePoint_;
RCP<StepperBase<Scalar> > sensStepper_;
RCP<Thyra::NonlinearSolverBase<Scalar> > sensTimeStepSolver_;
bool isSingleResidualStepper_;
RCP<ForwardSensitivityModelEvaluatorBase<Scalar> > sensModel_;
RCP<StateAndForwardSensitivityModelEvaluator<Scalar> > stateAndSensModel_;
Thyra::ModelEvaluatorBase::InArgs<Scalar> stateBasePoint_t_;
static const std::string forceUpToDateW_name_;
static const bool forceUpToDateW_default_;
// /////////////////////////
// Private member functions
// Common initialization helper
//
// Preconditions:
// (*) p_index >=0 or nonnull(p_space) == true
//
void initializeCommon(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const RCP<const Thyra::VectorSpaceBase<Scalar> > &p_space,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
);
Scalar takeSyncedStep( Scalar dt, StepSizeType stepType );
Scalar takeDecoupledStep( Scalar dt, StepSizeType stepType );
};
// 2009/09/05: rabartl: ToDo: To fix the const and non-const handling of the
// stateModel in this class is going to be a lot of work but here is what
// needs to be done:
//
// (*) Duplicate each function that sets the stateModel, one for const and one
// for non-const.
//
// (*) Create a single a private version for each of these functions that
// accepts a Teuchos::ConstNonconstObjectContainer<> object and will implement
// the guts of the set up same as the existing functions.
//
// (*) Get all of the concrete StepperBase subclasses to implement the
// setModel(const RCP<const ME>&) and modelIsConst() functions and get them to
// use the Teuchos::ConstNonconstObjectContainer<> class as described above.
// This should be pretty easy as the only function that needs to be addressed
// in most cases is just the setModel(...) function.
//
/** \brief Nonmember constructor.
*
* \relates ForwardSensitivityStepper
*/
template<class Scalar>
inline
RCP<ForwardSensitivityStepper<Scalar> >
forwardSensitivityStepper()
{
return Teuchos::rcp(new ForwardSensitivityStepper<Scalar>());
}
/** \brief Nonmember constructor.
*
* \relates ForwardSensitivityStepper
*/
template<class Scalar>
inline
RCP<ForwardSensitivityStepper<Scalar> >
forwardSensitivityStepper(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper = Teuchos::null,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver = Teuchos::null
)
{
RCP<ForwardSensitivityStepper<Scalar> >
fwdSensStepper = Teuchos::rcp(new ForwardSensitivityStepper<Scalar>());
fwdSensStepper->initializeSyncedSteppers(
stateModel, p_index, stateBasePoint, stateStepper, stateTimeStepSolver );
return fwdSensStepper;
}
/** \brief Return the index of the parameter subvector in the underlying state
* model.
*
* \relates ForwardSensitivityStepper
*/
template<class Scalar>
int getParameterIndex(
const ForwardSensitivityStepper<Scalar> &fwdSensStepper
)
{
return fwdSensStepper.getFwdSensModel()->get_p_index();
}
/** \brief Set up default initial conditions for the state and sensitivity
* stepper with default zero initial conditions for the sensitivity
* quantities.
*
* \relates ForwardSensitivityStepper
*/
template<class Scalar>
inline
Thyra::ModelEvaluatorBase::InArgs<Scalar>
createStateAndSensInitialCondition(
const ForwardSensitivityStepper<Scalar> &fwdSensStepper,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_ic,
const RCP<const Thyra::MultiVectorBase<Scalar> > S_init = Teuchos::null,
const RCP<const Thyra::MultiVectorBase<Scalar> > S_dot_init = Teuchos::null
)
{
using Teuchos::outArg;
using Thyra::assign;
typedef Thyra::ModelEvaluatorBase MEB;
RCP<const Thyra::VectorBase<Scalar> > s_bar_init;
if (nonnull(S_init)) {
s_bar_init = create_s_bar_given_S(*fwdSensStepper.getFwdSensModel(), S_init);
}
else {
RCP<Thyra::VectorBase<Scalar> > s_bar_init_loc =
createMember(fwdSensStepper.getFwdSensModel()->get_x_space());
assign( outArg(*s_bar_init_loc), 0.0 );
s_bar_init = s_bar_init_loc;
}
RCP<const Thyra::VectorBase<Scalar> > s_bar_dot_init;
if (nonnull(S_dot_init)) {
s_bar_dot_init = create_s_bar_given_S(*fwdSensStepper.getFwdSensModel(), S_dot_init);
}
else {
RCP<Thyra::VectorBase<Scalar> > s_bar_dot_init_loc =
createMember(fwdSensStepper.getFwdSensModel()->get_x_space());
assign( outArg(*s_bar_dot_init_loc), 0.0 );
s_bar_dot_init = s_bar_dot_init_loc;
}
RCP<const Rythmos::StateAndForwardSensitivityModelEvaluator<Scalar> >
stateAndSensModel = fwdSensStepper.getStateAndFwdSensModel();
MEB::InArgs<Scalar>
state_and_sens_ic = fwdSensStepper.getModel()->createInArgs();
// Copy time, parameters etc.
state_and_sens_ic.setArgs(state_ic);
// Set initial condition for x_bar = [ x; s_bar ]
state_and_sens_ic.set_x(
stateAndSensModel->create_x_bar_vec(state_ic.get_x(), s_bar_init)
);
// Set initial condition for x_bar_dot = [ x_dot; s_bar_dot ]
state_and_sens_ic.set_x_dot(
stateAndSensModel->create_x_bar_vec(state_ic.get_x_dot(), s_bar_dot_init)
);
return state_and_sens_ic;
}
/** \brief Extract out the initial condition for just the state model given
* the initial condition for the state and sensitivity model.
*
* \relates ForwardSensitivityStepper
*/
template<class Scalar>
inline
Thyra::ModelEvaluatorBase::InArgs<Scalar>
extractStateInitialCondition(
const ForwardSensitivityStepper<Scalar> &fwdSensStepper,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
)
{
using Thyra::productVectorBase;
typedef Thyra::ModelEvaluatorBase MEB;
MEB::InArgs<Scalar>
state_ic = fwdSensStepper.getStateModel()->createInArgs();
// Copy time, parameters etc.
state_ic.setArgs(state_and_sens_ic);
state_ic.set_x(
productVectorBase(state_and_sens_ic.get_x())->getVectorBlock(0));
state_ic.set_x_dot(
productVectorBase(state_and_sens_ic.get_x_dot())->getVectorBlock(0));
return state_ic;
}
//
// Implementation
//
// Static members
template<class Scalar>
const std::string ForwardSensitivityStepper<Scalar>::forceUpToDateW_name_
= "Force Up-To-Date Jacobian";
template<class Scalar>
const bool ForwardSensitivityStepper<Scalar>::forceUpToDateW_default_
= true;
// Constructors, Intializers, Misc.
template<class Scalar>
ForwardSensitivityStepper<Scalar>::ForwardSensitivityStepper()
:forceUpToDateW_(false),
isSingleResidualStepper_(false)
{}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::initializeSyncedSteppers(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
)
{
initializeCommon( stateModel, p_index, Teuchos::null, stateBasePoint, stateStepper,
stateTimeStepSolver, sensStepper, sensTimeStepSolver );
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::initializeSyncedSteppersInitCondOnly(
const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
const RCP<const Thyra::VectorSpaceBase<Scalar> >& p_space,
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& stateBasePoint,
const RCP<StepperBase<Scalar> >& stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> >& stateTimeStepSolver,
const RCP<StepperBase<Scalar> >& sensStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> >& sensTimeStepSolver
)
{
initializeCommon(stateModel, -1, p_space, stateBasePoint, stateStepper,
stateTimeStepSolver, sensStepper, sensTimeStepSolver );
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::initializeDecoupledSteppers(
const RCP<const Thyra::ModelEvaluator<Scalar> > &stateModel,
const int p_index,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<IntegratorBase<Scalar> > &stateIntegrator,
const Scalar &finalTime,
const RCP<StepperBase<Scalar> > &sensStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
)
{
TEUCHOS_ASSERT(nonnull(stateIntegrator));
initializeCommon( stateModel, p_index, Teuchos::null, stateBasePoint, stateStepper,
stateTimeStepSolver, sensStepper, sensTimeStepSolver );
stateIntegrator_ = stateIntegrator;
finalTime_ = finalTime;
}
template<class Scalar>
bool ForwardSensitivityStepper<Scalar>::stateModelIsConst() const
{
return stateModel_.isConst();
}
template<class Scalar>
RCP<const Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getStateModel() const
{
return stateModel_.getConstObj();
}
template<class Scalar>
RCP<StepperBase<Scalar> >
ForwardSensitivityStepper<Scalar>::getNonconstStateStepper()
{
return stateStepper_;
}
template<class Scalar>
RCP<const ForwardSensitivityModelEvaluatorBase<Scalar> >
ForwardSensitivityStepper<Scalar>::getFwdSensModel() const
{
return sensModel_;
}
template<class Scalar>
RCP<const StateAndForwardSensitivityModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getStateAndFwdSensModel() const
{
return stateAndSensModel_;
}
// Overridden from Teuchos::ParameterListAcceptor
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::setParameterList(
RCP<Teuchos::ParameterList> const& paramList
)
{
TEST_FOR_EXCEPT(is_null(paramList));
paramList->validateParameters(*getValidParameters());
this->setMyParamList(paramList);
forceUpToDateW_ = paramList->get(forceUpToDateW_name_,forceUpToDateW_default_);
Teuchos::readVerboseObjectSublist(&*paramList,this);
}
template<class Scalar>
RCP<const Teuchos::ParameterList>
ForwardSensitivityStepper<Scalar>::getValidParameters() const
{
static RCP<const ParameterList> validPL;
if (is_null(validPL) ) {
RCP<ParameterList> pl = Teuchos::parameterList();
pl->set( forceUpToDateW_name_, forceUpToDateW_default_,
"If set to true, then the Jacobian matrix W used in the\n"
"state timestep equation will be forced to be up to date\n"
"with the final value for x for the nonlinear solve. If\n"
"you are willing to live with slightly less accurate sensitivities\n"
"then set this to false."
);
Teuchos::setupVerboseObjectSublist(&*pl);
validPL = pl;
}
return validPL;
}
// Overridden from StepperBase
template<class Scalar>
bool ForwardSensitivityStepper<Scalar>::acceptsModel() const
{
return false;
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::setModel(
const RCP<const Thyra::ModelEvaluator<Scalar> >& model
)
{
TEST_FOR_EXCEPT_MSG( true,
"Error, this stepper subclass does not accept a model"
" as defined by the StepperBase interface!");
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::setNonconstModel(
const RCP<Thyra::ModelEvaluator<Scalar> >& model
)
{
TEST_FOR_EXCEPT_MSG( true,
"Error, this stepper subclass does not accept a model"
" as defined by the StepperBase interface!");
}
template<class Scalar>
RCP<const Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getModel() const
{
return stateAndSensModel_;
}
template<class Scalar>
RCP<Thyra::ModelEvaluator<Scalar> >
ForwardSensitivityStepper<Scalar>::getNonconstModel()
{
return stateAndSensModel_;
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::setInitialCondition(
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &state_and_sens_ic
)
{
typedef Thyra::ModelEvaluatorBase MEB;
stateAndSensBasePoint_ = state_and_sens_ic;
// Get the product vectors for x_bar = [ x; s_bar ] and x_bar_dot
TEST_FOR_EXCEPTION(
is_null(state_and_sens_ic.get_x()), std::logic_error,
"Error, the initial condition for x_bar = [ x; s_bar ] can not be null!" );
const RCP<const Thyra::ProductVectorBase<Scalar> >
x_bar_init = Thyra::productVectorBase<Scalar>(
state_and_sens_ic.get_x()
);
RCP<const Thyra::ProductVectorBase<Scalar> > x_bar_dot_init;
if (state_and_sens_ic.supports(MEB::IN_ARG_x_dot)) {
x_bar_dot_init = Thyra::productVectorBase<Scalar>(
state_and_sens_ic.get_x_dot()
);
}
// Remove x and x_dot from state_and_sens_ic_in to avoid cloning x and x dot!
Thyra::ModelEvaluatorBase::InArgs<Scalar>
state_and_sens_ic_no_x = state_and_sens_ic;
state_and_sens_ic_no_x.set_x(Teuchos::null);
if (state_and_sens_ic_no_x.supports(MEB::IN_ARG_x_dot)) {
state_and_sens_ic_no_x.set_x_dot(Teuchos::null);
}
// Set initial condition for the state
MEB::InArgs<Scalar> state_ic = stateModel_->createInArgs();
state_ic.setArgs(state_and_sens_ic_no_x,true,true); // Set time, parameters etc.
state_ic.set_x(x_bar_init->getVectorBlock(0)->clone_v());
if (state_ic.supports(MEB::IN_ARG_x_dot)) {
state_ic.set_x_dot(
!is_null(x_bar_dot_init)
? x_bar_dot_init->getVectorBlock(0)->clone_v()
: Teuchos::null
);
}
stateStepper_->setInitialCondition(state_ic);
// Set up the integrator if needed
//if (!is_null(stateIntegrator_)) {
// stateIntegrator_->setStepper( stateStepper_, finalTime_ );
// sensModel_->setStateIntegrator( stateIntegrator_, state_ic );
//}
// Set initial condition for the sensitivities
MEB::InArgs<Scalar> sens_ic = sensModel_->createInArgs();
sens_ic.setArgs(state_and_sens_ic_no_x,true,true); // Set time etc.
sens_ic.set_x(x_bar_init->getVectorBlock(1)->clone_v());
if (sens_ic.supports(MEB::IN_ARG_x_dot)) {
sens_ic.set_x_dot(
!is_null(x_bar_dot_init)
? x_bar_dot_init->getVectorBlock(1)->clone_v()
: Teuchos::null
);
}
sensStepper_->setInitialCondition(sens_ic);
}
template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
ForwardSensitivityStepper<Scalar>::getInitialCondition() const
{
return stateAndSensBasePoint_;
}
template<class Scalar>
Scalar
ForwardSensitivityStepper<Scalar>::takeStep(
Scalar dt, StepSizeType stepType
)
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep");
#endif
if (!is_null(stateIntegrator_)) {
return takeDecoupledStep(dt,stepType);
}
return takeSyncedStep(dt,stepType);
}
template<class Scalar>
const StepStatus<Scalar>
ForwardSensitivityStepper<Scalar>::getStepStatus() const
{
const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
StepStatus<Scalar> stepStatus;
stepStatus.message = sensStepStatus.message;
stepStatus.stepStatus = sensStepStatus.stepStatus;
stepStatus.stepLETStatus = sensStepStatus.stepLETStatus;
stepStatus.stepSize = sensStepStatus.stepSize;
stepStatus.order = sensStepStatus.order;
stepStatus.time = sensStepStatus.time;
stepStatus.stepLETValue = sensStepStatus.stepLETValue;
stepStatus.extraParameters = sensStepStatus.extraParameters;
if (is_null(stateIntegrator_)) {
const StepStatus<Scalar>
stateStepStatus = stateStepper_->getStepStatus();
if (!is_null(stateStepStatus.solution) && !is_null(sensStepStatus.solution))
stepStatus.solution = stateAndSensModel_->create_x_bar_vec(
stateStepStatus.solution, sensStepStatus.solution
);
if (!is_null(stateStepStatus.solutionDot) && !is_null(sensStepStatus.solutionDot))
stepStatus.solutionDot = stateAndSensModel_->create_x_bar_vec(
stateStepStatus.solutionDot, sensStepStatus.solutionDot
);
}
return stepStatus;
}
// Overridden from InterpolationBufferBase
template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> >
ForwardSensitivityStepper<Scalar>::get_x_space() const
{
return stateAndSensModel_->get_x_space();
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::addPoints(
const Array<Scalar>& time_vec,
const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& x_vec,
const Array<Teuchos::RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
)
{
TEST_FOR_EXCEPT("Not implemented addPoints(...) yet but we could if we wanted!");
}
template<class Scalar>
TimeRange<Scalar>
ForwardSensitivityStepper<Scalar>::getTimeRange() const
{
return sensStepper_->getTimeRange();
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::getPoints(
const Array<Scalar>& time_vec,
Array<RCP<const Thyra::VectorBase<Scalar> > >* x_bar_vec,
Array<RCP<const Thyra::VectorBase<Scalar> > >* x_bar_dot_vec,
Array<ScalarMag>* accuracy_vec
) const
{
using Teuchos::as;
#ifdef RYTHMOS_DEBUG
TEST_FOR_EXCEPT( as<int>(time_vec.size()) == 0 );
#endif
const int numTimePoints = time_vec.size();
if (x_bar_vec)
x_bar_vec->clear();
if (x_bar_dot_vec)
x_bar_dot_vec->clear();
Array<RCP<const Thyra::VectorBase<Scalar> > >
x_vec, x_dot_vec;
if (!is_null(stateIntegrator_)) {
stateIntegrator_->getPoints(
time_vec,
x_bar_vec ? &x_vec: 0,
x_bar_dot_vec ? &x_dot_vec: 0,
0 // Ignoring accuracy from state for now!
);
}
else {
stateStepper_->getPoints(
time_vec,
x_bar_vec ? &x_vec: 0,
x_bar_dot_vec ? &x_dot_vec: 0,
0 // Ignoring accuracy from state for now!
);
}
Array<RCP<const Thyra::VectorBase<Scalar> > >
s_bar_vec, s_bar_dot_vec;
sensStepper_->getPoints(
time_vec,
x_bar_vec ? &s_bar_vec: 0,
x_bar_dot_vec ? &s_bar_dot_vec: 0,
accuracy_vec
);
if ( x_bar_vec ) {
for ( int i = 0; i < numTimePoints; ++i ) {
x_bar_vec->push_back(
stateAndSensModel_->create_x_bar_vec(x_vec[i],s_bar_vec[i])
);
}
}
if ( x_bar_dot_vec ) {
for ( int i = 0; i < numTimePoints; ++i ) {
x_bar_dot_vec->push_back(
stateAndSensModel_->create_x_bar_vec(x_dot_vec[i],s_bar_dot_vec[i])
);
}
}
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::getNodes(
Array<Scalar>* time_vec
) const
{
TEUCHOS_ASSERT( time_vec != NULL );
time_vec->clear();
if (is_null(stateIntegrator_) && is_null(stateStepper_)) {
return;
}
if (!is_null(stateIntegrator_)) {
stateIntegrator_->getNodes(time_vec);
}
else {
stateStepper_->getNodes(time_vec);
}
}
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::removeNodes(
Array<Scalar>& time_vec
)
{
TEST_FOR_EXCEPT("Not implemented yet but we can!");
}
template<class Scalar>
int ForwardSensitivityStepper<Scalar>::getOrder() const
{
return sensStepper_->getOrder();
// Note: This assumes that stateStepper will have the same order!
}
// private
template<class Scalar>
void ForwardSensitivityStepper<Scalar>::initializeCommon(
const RCP<const Thyra::ModelEvaluator<Scalar> >& stateModel,
const int p_index,
const RCP<const Thyra::VectorSpaceBase<Scalar> > &p_space,
const Thyra::ModelEvaluatorBase::InArgs<Scalar> &stateBasePoint,
const RCP<StepperBase<Scalar> > &stateStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &stateTimeStepSolver,
const RCP<StepperBase<Scalar> > &sensStepper,
const RCP<Thyra::NonlinearSolverBase<Scalar> > &sensTimeStepSolver
)
{
using Teuchos::rcp_implicit_cast;
using Teuchos::rcp_dynamic_cast;
typedef Thyra::ModelEvaluatorBase MEB;
//
// Validate input
//
TEUCHOS_ASSERT( p_index >= 0 || nonnull(p_space) );
if (nonnull(p_space)) {
TEUCHOS_ASSERT_EQUALITY(p_index, -1);
}
if (p_index >= 0) {
TEUCHOS_ASSERT(is_null(p_space));
}
TEST_FOR_EXCEPT( is_null(stateModel) );
TEST_FOR_EXCEPT( is_null(stateStepper) );
if (stateStepper->isImplicit()) {
TEST_FOR_EXCEPT( is_null(stateTimeStepSolver) ); // allow to be null for explicit methods
}
//
// Create the sensModel which will do some more validation
//
RCP<ForwardSensitivityModelEvaluatorBase<Scalar> > sensModel;
MEB::InArgs<Scalar> stateModelInArgs = stateModel->createInArgs();
if (stateModelInArgs.supports(MEB::IN_ARG_x_dot)) {
// Implicit DE formulation
sensModel = Teuchos::rcp(new ForwardSensitivityImplicitModelEvaluator<Scalar>);
}
else {
// Explicit DE formulation
sensModel = Teuchos::rcp(new ForwardSensitivityExplicitModelEvaluator<Scalar>);
}
if (p_index >= 0) {
sensModel->initializeStructure(stateModel, p_index);
}
else {
sensModel->initializeStructureInitCondOnly(stateModel, p_space);
}
//
// Get the input objects
//
stateModel_.initialize(stateModel);
stateBasePoint_ = stateBasePoint;
stateStepper_ = stateStepper;
stateTimeStepSolver_ = stateTimeStepSolver;
sensModel_ = sensModel;
stateAndSensModel_ = Teuchos::rcp(new StateAndForwardSensitivityModelEvaluator<Scalar>);
stateAndSensModel_->initializeStructure(sensModel_);
if (!is_null(sensStepper)) {
sensStepper_ = sensStepper;
}
else {
sensStepper_ = stateStepper_->cloneStepperAlgorithm();
TEST_FOR_EXCEPTION(
is_null(sensStepper_), std::logic_error,
"Error, if the client does not pass in a stepper for the senitivity\n"
"equations then the stateStepper object must support cloning to create\n"
"the sensitivity stepper!"
);
}
if (!is_null(sensTimeStepSolver)) {
sensTimeStepSolver_ = sensTimeStepSolver;
}
else {
RCP<Thyra::LinearNonlinearSolver<Scalar> >
linearNonlinearSolver(new Thyra::LinearNonlinearSolver<Scalar>);
// ToDo: Set tolerance on the nonlinear solver???
sensTimeStepSolver_ = linearNonlinearSolver;
}
//
// Setup the steppers
//
isSingleResidualStepper_ = true; // ToDo: Add dynamic cast on
// stateTimeStepSolver to check this!
setStepperModel(Teuchos::inOutArg(*stateStepper_),stateModel_);
if (stateStepper_->isImplicit()) {
rcp_dynamic_cast<SolverAcceptingStepperBase<Scalar> >(
stateStepper_,true)->setSolver(stateTimeStepSolver_);
}
sensStepper_->setModel(sensModel_);
if (sensStepper_->isImplicit()) {
rcp_dynamic_cast<SolverAcceptingStepperBase<Scalar> >(
sensStepper_,true)->setSolver(sensTimeStepSolver_);
}
stateBasePoint_t_ = stateModel_->createInArgs();
// 2007/05/18: rabartl: ToDo: Move the above initialization code to give
// setInitializeCondition(...) a chance to set the initial condition.
}
template<class Scalar>
Scalar ForwardSensitivityStepper<Scalar>::takeSyncedStep(
Scalar dt, StepSizeType stepType
)
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR_DIFF("Rythmos:ForwardSensitivityStepper::takeStep: synced",
TopLevel);
#endif
using Teuchos::as;
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef Teuchos::VerboseObjectTempState<InterpolationBufferBase<Scalar> > VOTSIBB;
typedef Thyra::ModelEvaluatorBase MEB;
RCP<Teuchos::FancyOStream> out = this->getOStream();
Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
const bool lowTrace =
( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_LOW) );
const bool mediumTrace =
( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM) );
Teuchos::OSTab tab(out);
if (lowTrace) {
*out
<< "\nEntering " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
<< "::takeSyncedStep("<<dt<<","<<toString(stepType)<<") ...\n";
}
//
// A) Compute the state timestep
//
if (lowTrace) {
*out
<< "\nTaking state step using stepper : "
<< stateStepper_->description() << "\n";
}
Scalar state_dt = -1.0;
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: stateStep");
#endif
VOTSIBB stateStepper_outputTempState(stateStepper_,out,verbLevel);
state_dt = stateStepper_->takeStep(dt,stepType);
}
if (state_dt < Scalar(-ST::one())) {
if (lowTrace)
*out << "\nThe state stepper has failed so return a failed timestep!\n";
return state_dt;
}
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: updateSensModel");
#endif
// Set up the sensitivity model for this timestep
sensModel_->initializePointState(Teuchos::inOutArg(*stateStepper_),forceUpToDateW_);
}
//
// C) Compute the sensitivity timestep for the exact same timestep as was
// used for the state solve.
//
if (lowTrace) {
*out
<< "\nTaking sensitivity step using stepper : "
<< sensStepper_->description() << "\n";
}
Scalar sens_dt = -1.0;
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: sensStep");
#endif
// Copy the step control data to make sure that the sensStepper takes the
// same type of step that the statStepper took. This is needed to ensure
// that the W matrix is the same for one.
sensStepper_->setStepControlData(*stateStepper_);
VOTSIBB sensStepper_outputTempState(sensStepper_,out,verbLevel);
sens_dt = sensStepper_->takeStep(state_dt,STEP_TYPE_FIXED);
}
if (mediumTrace) {
const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
*out << "\nSensitivity step status:\n" << sensStepStatus;
}
TEST_FOR_EXCEPTION(
sens_dt != state_dt, std::logic_error,
"Error, the sensitivity step failed for some reason. We should\n"
"just return a negative step size and reject the step but currently\n"
"there is no way to roll back the state timestep it for back to\n"
"the status before this function was called!"
);
// 2007/05/18: rabartl: ToDo: If stepType == STEP_TYPE_VARIABLE and the state
// timestep sucessed but the sensitivity timestep failed, then we need to
// really throw an excpetion because there is nothing that we can really do
// here!
// 2007/05/18: rabartl: ToDo: Replace the above std::logic_error type with
// a Rythmos::CatastrophicFailure or just use Thyra::CatastrophicFailure!
if (lowTrace) {
*out
<< "\nLeaving " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
<< "::takeSyncedStep("<<dt<<","<<toString(stepType)<<") ...\n";
}
return state_dt;
}
template<class Scalar>
Scalar ForwardSensitivityStepper<Scalar>::takeDecoupledStep(
Scalar dt, StepSizeType stepType
)
{
#ifdef ENABLE_RYTHMOS_TIMERS
TEUCHOS_FUNC_TIME_MONITOR("Rythmos:ForwardSensitivityStepper::takeStep: decoupled");
#endif
using Teuchos::as;
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef Teuchos::VerboseObjectTempState<InterpolationBufferBase<Scalar> > VOTSIBB;
typedef Thyra::ModelEvaluatorBase MEB;
RCP<Teuchos::FancyOStream> out = this->getOStream();
Teuchos::EVerbosityLevel verbLevel = this->getVerbLevel();
const bool lowTrace =
( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_LOW) );
const bool mediumTrace =
( !is_null(out) && as<int>(verbLevel) >= as<int>(Teuchos::VERB_MEDIUM) );
Teuchos::OSTab tab(out);
if (lowTrace) {
*out
<< "\nEntering " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
<< "::takeDecoupledStep("<<dt<<","<<toString(stepType)<<") ...\n";
}
//
// A) Take the sens timestep
//
if (lowTrace) {
*out
<< "\nTaking sensitivity step using stepper : "
<< sensStepper_->description() << "\n";
}
Scalar sens_dt = -1.0;
VOTSIBB sensStepper_outputTempState(sensStepper_,out,verbLevel);
sens_dt = sensStepper_->takeStep(dt,stepType);
if (mediumTrace) {
const StepStatus<Scalar> sensStepStatus = sensStepper_->getStepStatus();
*out << "\nSensitivity step status:\n" << sensStepStatus;
}
//
// B) Wipe out all state interp buffer info before this sens timestep
//
//TEST_FOR_EXCEPT(true);
if (lowTrace) {
*out
<< "\nLeaving " << TypeNameTraits<ForwardSensitivityStepper<Scalar> >::name()
<< "::takeDecoupledStep("<<dt<<","<<toString(stepType)<<") ...\n";
}
return sens_dt;
}
} // namespace Rythmos
#endif //RYTHMOS_FORWARD_SENSITIVITY_STEPPER_HPP
|