This file is indexed.

/usr/include/trilinos/Rythmos_ExplicitTaylorPolynomialStepper.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H
#define RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H

#include "Rythmos_StepperBase.hpp"
#include "Rythmos_StepperHelpers.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Thyra_VectorBase.hpp"
#include "Thyra_ModelEvaluator.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_PolynomialVectorTraits.hpp"
#include "RTOpPack_RTOpTHelpers.hpp"

namespace Rythmos {

//! Reduction operator for a logarithmic infinity norm
/*!
 * This class implements a reduction operator for computing the 
 * logarithmic infinity norm of a vector:
 * \f[
 *      \|1 + log(x)\|_\infty.
 * \f]
 */
RTOP_ROP_1_REDUCT_SCALAR( ROpLogNormInf,
  typename ScalarTraits<Scalar>::magnitudeType, // Reduction object type
  RTOpPack::REDUCT_TYPE_MAX // Reduction object reduction
  )
{
  using Teuchos::as;
  typedef ScalarTraits<Scalar> ST;
  typedef typename ST::magnitudeType ScalarMag;
  const ScalarMag mag = std::log(as<ScalarMag>(1e-100) + ST::magnitude(v0));
  reduct = TEUCHOS_MAX( mag, reduct );
}

/*!
 * \brief Implementation of Rythmos::Stepper for explicit Taylor polynomial
 * time integration of ODEs.
 */
/*!
 * Let 
 * \f[
 *     \frac{dx}{dt} = f(x,t), \quad x(t_0) = a
 * \f]
 * be an ODE initial-value problem.  This class implements a single time
 * step of an explicit Taylor polynomial time integration method for
 * computing numerical solutions to the IVP.  The method consists of 
 * computing a local truncated Taylor series solution to the ODE (section
 * \ref Rythmos_ETI_local_TS), estimating a step size within the radius
 * of convergence of the Taylor series (section \ref Rythmos_ETI_stepsize)
 * and then summing the polynomial at that step to compute the next
 * point in the numerical integration (section \ref Rythmos_ETI_sum).
 * The algorithmic parameters to the method are controlled through the
 * <tt> params </tt> argument to the constructor which are described in
 * section \ref Rythmos_ETI_params.
 *
 * \section Rythmos_ETI_local_TS Computing the Taylor Polynomial
 * 
 * Let
 * \f[
 *      x(t) = \sum_{k=0}^\infty x_k (t-t_0)^k 
 * \f]
 * be a power series solution to the IVP above.  Then \f$f(x(t))\f$ can
 * be expaned in a power series along the solution curve \f$x(t)\f$:
 * \f[
 *      f(x(t),t) = \sum_{k=0}^\infty f_k (t-t_0)^k
 * \f]
 * where 
 * \f[
 *      f_k = \left.\frac{1}{k!}\frac{d^k}{dt^k} f(x(t),t)\right|_{t=t_0}.
 * \f]
 * By differentiating the power series for \f$x(t)\f$ to compute a power
 * series for \f$dx/dt\f$ and then comparing coefficients in the 
 * equation \f$dx/dt=f(x(t),t)\f$ we find the following recurrence
 * relationship for the Taylor coefficients \f$\{x_k\}\f$:
 * \f[
 *     x_{k+1} = \frac{1}{k+1} f_k, \quad k=0,1,\dots
 * \f]
 * where each coefficient \f$f_k\f$ is a function only of 
 * \f$x_0,\dots,x_k\f$ and can be efficiently computed using the Taylor
 * polynomial mode of automatic differentation.  This allows the Taylor
 * coefficients to be iteratively computed starting with the initial point
 * \f$x_0\f$ up to some fixed degree \f$d\f$ to yield a local truncated 
 * Taylor polynomial approximating the solution to the IVP.
 *
 * \section Rythmos_ETI_stepsize Computing a Step Size
 *
 * With the truncated Taylor polynomial solution 
 * \f$\tilde{x}(t) = \sum_{k=0}^d x_k (t-t_0)^k\f$ in hand, a step size
 * is chosen by estimating the truncation error in the polynomial solution
 * and forcing this error to be less than some prescribed tolerance.  Let
 * \f[
 *     \rho = \max_{d/2\leq k\leq d} (1+\|x_k\|_\infty)^{1/k}
 * \f]
 * so \f$\|x_k\|_\infty\leq\rho^k\f$ for \f$d/2\leq k \leq d\f$.  Assume 
 * \f$\|x_k\|\leq\rho^k\f$ for \f$k>d\f$ as well, then for any \f$h<1/\rho\f$
 * it can be shown that the truncation error is bounded by
 * \f[
 *      \frac{(\rho h)^{d+1}}{1-\rho h}.
 * \f]
 * A step size \f$h\f$ is then given by
 * \f[
 *      h = \exp\left(\frac{1}{d+1}\log\varepsilon-\log\rho\right)
 * \f]
 * for some error tolerance \f$\varepsilon\f$ given an error of approximatly
 * \f$\varepsilon\f$.
 *
 * \section Rythmos_ETI_sum Summing the Polynomial
 *
 * With a step size \f$h\f$ computed, 
 * \f[
 *     x^\ast = \sum_{k=0}^d x_k h^k
 * \f]
 * is used as the next integration point where a new Taylor series is
 * calculated.  Local error per step can also be controlled by computing
 * \f$\|dx^\ast/dt - f(x^\ast)\|_\infty\f$.  If this error is too large,
 * the step size can be reduced to an appropriate size.
 *
 * \section Rythmos_ETI_params Parameters
 *
 * This method recognizes the following algorithmic parameters that can
 * be set in the <tt> params </tt> argument to the constructor:
 * <ul>
 * <li> "Initial Time" (Scalar) [Default = 0] Initial integration time
 * <li> "Final Time"   (Scalar) [Default = 1] Final integration time
 * <li> "Local Error Tolerance" (Magnitude) [Default = 1.0e-10] Error tolerance on \f$\|dx^\ast/dt - f(x^\ast)\|_\infty\f$ as described above.
 * <li> "Minimum Step Size" (Scalar) [Default = 1.0e-10] Minimum step size
 * <li> "Maximum Step Size" (Scalar) [Default = 1.0] Maximum step size
 * <li> "Taylor Polynomial Degree" (int) [Default = 40] Degree of local Taylor polynomial approximation.
 * </ul>
 */

template<class Scalar>
class ExplicitTaylorPolynomialStepper : virtual public StepperBase<Scalar>
{
public:

  //! Typename of magnitude of scalars
  typedef typename Teuchos::ScalarTraits<Scalar>::magnitudeType ScalarMag;
    
  //! Constructor
  ExplicitTaylorPolynomialStepper();
    
  //! Destructor
  ~ExplicitTaylorPolynomialStepper();

  //! Return the space for <tt>x</tt> and <tt>x_dot</tt>
  RCP<const Thyra::VectorSpaceBase<Scalar> > get_x_space() const;

  //! Set model
  void setModel(const RCP<const Thyra::ModelEvaluator<Scalar> >& model);

  //! Set model
  void setNonconstModel(const RCP<Thyra::ModelEvaluator<Scalar> >& model);

  /** \brief . */
  RCP<const Thyra::ModelEvaluator<Scalar> > getModel() const;

  /** \brief . */
  RCP<Thyra::ModelEvaluator<Scalar> > getNonconstModel();

  /** \brief . */
  void setInitialCondition(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initialCondition
    );
    
  /** \brief . */
  Thyra::ModelEvaluatorBase::InArgs<Scalar> getInitialCondition() const;
    
  //! Take a time step of magnitude \c dt
  Scalar takeStep(Scalar dt, StepSizeType flag);

  /** \brief . */
  const StepStatus<Scalar> getStepStatus() const;

  /// Redefined from Teuchos::ParameterListAcceptor
  /** \brief . */
  void setParameterList(RCP<Teuchos::ParameterList> const& paramList);

  /** \brief . */
  RCP<Teuchos::ParameterList> getNonconstParameterList();

  /** \brief . */
  RCP<Teuchos::ParameterList> unsetParameterList();

  /** \brief . */
  RCP<const Teuchos::ParameterList> getValidParameters() const;

  /** \brief . */
  std::string description() const;

  /** \brief . */
  void describe(
    Teuchos::FancyOStream &out,
    const Teuchos::EVerbosityLevel verbLevel = Teuchos::Describable::verbLevel_default
    ) const;

  /// Redefined from InterpolationBufferBase 
  /// Add points to buffer
  void addPoints(
    const Array<Scalar>& time_vec
    ,const Array<RCP<const Thyra::VectorBase<Scalar> > >& x_vec
    ,const Array<RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
    );
    
  /// Get values from buffer
  void getPoints(
    const Array<Scalar>& time_vec
    ,Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec
    ,Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec
    ,Array<ScalarMag>* accuracy_vec) const;

  /// Fill data in from another interpolation buffer
  void setRange(
    const TimeRange<Scalar>& range,
    const InterpolationBufferBase<Scalar> & IB
    );

  /** \brief . */
  TimeRange<Scalar> getTimeRange() const;

  /// Get interpolation nodes
  void getNodes(Array<Scalar>* time_vec) const;

  /// Remove interpolation nodes
  void removeNodes(Array<Scalar>& time_vec);

  /// Get order of interpolation
  int getOrder() const;

private:

  //! Default initialize all data 
  void defaultInitializAll_();

  //! Computes a local Taylor series solution to the ODE
  void computeTaylorSeriesSolution_();

  /*! 
   * \brief Computes of log of the estimated radius of convergence of the 
   * Taylor series.
   */
  ScalarMag estimateLogRadius_();

  //! Underlying model
  RCP<const Thyra::ModelEvaluator<Scalar> > model_;

  //! Parameter list
  RCP<Teuchos::ParameterList> parameterList_;

  //! Current solution vector
  RCP<Thyra::VectorBase<Scalar> > x_vector_;

  //! Previous solution vector
  RCP<Thyra::VectorBase<Scalar> > x_vector_old_;

  //! Vector store approximation to \f$dx/dt\f$
  RCP<Thyra::VectorBase<Scalar> > x_dot_vector_;

  //! Previous Vector store approximation to \f$dx/dt\f$
  RCP<Thyra::VectorBase<Scalar> > x_dot_vector_old_;

  //! Vector store ODE residual
  RCP<Thyra::VectorBase<Scalar> > f_vector_;

  //! Polynomial for x
  RCP<Teuchos::Polynomial<Thyra::VectorBase<Scalar> > > x_poly_;

  //! Polynomial for f
  RCP<Teuchos::Polynomial<Thyra::VectorBase<Scalar> > > f_poly_;

  //! Base point set by setInitialCondition
  Thyra::ModelEvaluatorBase::InArgs<Scalar> basePoint_;

  //! Initial Condition Flag
  bool haveInitialCondition_;

  //! Number of steps taken
  int numSteps_;

  //! Current time
  Scalar t_;

  //! Current step size
  Scalar dt_;

  //! Initial integration time
  Scalar t_initial_;

  //! Final integration time
  Scalar t_final_;

  //! Local error tolerance for each time step
  ScalarMag local_error_tolerance_;

  //! Smallest acceptable time step size
  Scalar min_step_size_;

  //! Largest acceptable time step size
  Scalar max_step_size_;

  //! Degree of local Taylor series expansion
  unsigned int degree_;

  //! Used in time step size computation
  Scalar linc_;
};


//! Computs logarithmic infinity norm of a vector using ROpLogNormInf.
template <typename Scalar>
typename Teuchos::ScalarTraits<Scalar>::magnitudeType
log_norm_inf(const Thyra::VectorBase<Scalar>& x)
{
  ROpLogNormInf<Scalar> log_norm_inf_op;
  RCP<RTOpPack::ReductTarget> log_norm_inf_targ = 
    log_norm_inf_op.reduct_obj_create();
  const Thyra::VectorBase<Scalar>* vecs[] = { &x };
  Thyra::applyOp<Scalar>(log_norm_inf_op,1,vecs,0,
    (Thyra::VectorBase<Scalar>**)NULL,
    log_norm_inf_targ.get());
    
  return log_norm_inf_op(*log_norm_inf_targ);
}


// Non-member constructor
template<class Scalar>
RCP<ExplicitTaylorPolynomialStepper<Scalar> > explicitTaylorPolynomialStepper()
{
  RCP<ExplicitTaylorPolynomialStepper<Scalar> > stepper = rcp(new ExplicitTaylorPolynomialStepper<Scalar>());
  return stepper;
}


template<class Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::ExplicitTaylorPolynomialStepper()
{
  this->defaultInitializAll_();
  numSteps_ = 0;
}


template<class Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::~ExplicitTaylorPolynomialStepper()
{
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::defaultInitializAll_()
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  Scalar nan = ST::nan();
  model_ = Teuchos::null;
  parameterList_ = Teuchos::null;
  x_vector_ = Teuchos::null;
  x_vector_old_ = Teuchos::null;
  x_dot_vector_ = Teuchos::null;
  x_dot_vector_old_ = Teuchos::null;
  f_vector_ = Teuchos::null;
  x_poly_ = Teuchos::null;
  f_poly_ = Teuchos::null;
  haveInitialCondition_ = false;
  numSteps_ = -1;
  t_ = nan;
  dt_ = nan;
  t_initial_ = nan;
  t_final_ = nan;
  local_error_tolerance_ = nan;
  min_step_size_ = nan;
  max_step_size_ = nan;
  degree_ = 0;
  linc_ = nan;
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setModel(
  const RCP<const Thyra::ModelEvaluator<Scalar> >& model
  )
{
  TEST_FOR_EXCEPT( is_null(model) );
  assertValidModel( *this, *model );
    
  model_ = model;
  f_vector_ = Thyra::createMember(model_->get_f_space());
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setNonconstModel(
  const RCP<Thyra::ModelEvaluator<Scalar> >& model
  )
{
  this->setModel(model); // TODO 09/09/09 tscoffe:  use ConstNonconstObjectContainer!
}


template<class Scalar>
RCP<const Thyra::ModelEvaluator<Scalar> >
ExplicitTaylorPolynomialStepper<Scalar>::getModel() const
{
  return model_;
}


template<class Scalar>
RCP<Thyra::ModelEvaluator<Scalar> >
ExplicitTaylorPolynomialStepper<Scalar>::getNonconstModel() 
{
  return Teuchos::null;
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setInitialCondition(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &initialCondition
  )
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  basePoint_ = initialCondition;
  if (initialCondition.supports(MEB::IN_ARG_t)) {
    t_ = initialCondition.get_t();
  } else {
    t_ = ST::zero();
  }
  dt_ = ST::zero();
  x_vector_ = initialCondition.get_x()->clone_v();
  x_dot_vector_ = x_vector_->clone_v();
  x_vector_old_ = x_vector_->clone_v();
  x_dot_vector_old_ = x_dot_vector_->clone_v();
  haveInitialCondition_ = true;
}


template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar> 
ExplicitTaylorPolynomialStepper<Scalar>::getInitialCondition() const
{
  return basePoint_;
}


template<class Scalar>
Scalar 
ExplicitTaylorPolynomialStepper<Scalar>::takeStep(Scalar dt, StepSizeType flag)
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  TEUCHOS_ASSERT( haveInitialCondition_ );
  TEUCHOS_ASSERT( !is_null(model_) );
  TEUCHOS_ASSERT( !is_null(parameterList_) ); // parameters are nan otherwise

  V_V(outArg(*x_vector_old_),*x_vector_); // x_vector_old = x_vector
  V_V(outArg(*x_dot_vector_old_),*x_dot_vector_); // x_dot_vector_old = x_dot_vector

  if (x_poly_ == Teuchos::null) {
    x_poly_ = Teuchos::rcp(new Teuchos::Polynomial<Thyra::VectorBase<Scalar> >(0,*x_vector_,degree_));
  }

  if (f_poly_ == Teuchos::null) {
    f_poly_ = Teuchos::rcp(new Teuchos::Polynomial<Thyra::VectorBase<Scalar> >(0, *f_vector_, degree_));
  }
  if (flag == STEP_TYPE_VARIABLE) {
    // If t_ > t_final_, we're done
    if (t_ > t_final_) {
      dt_ = ST::zero();
      return dt_;
    }

    // Compute a local truncated Taylor series solution to system
    computeTaylorSeriesSolution_();

    // Estimate log of radius of convergence of Taylor series
    Scalar rho = estimateLogRadius_();

    // Set step size
    Scalar shadowed_dt = std::exp(linc_ - rho);

    // If step size is too big, reduce
    if (shadowed_dt > max_step_size_) {
      shadowed_dt = max_step_size_;
    }

    // If step goes past t_final_, reduce
    if (t_+shadowed_dt > t_final_) {
      shadowed_dt = t_final_-t_;
    }

    ScalarMag local_error;

    do {

      // compute x(t_+shadowed_dt), xdot(t_+shadowed_dt)
      x_poly_->evaluate(shadowed_dt, x_vector_.get(), x_dot_vector_.get());

      // compute f( x(t_+shadowed_dt), t_+shadowed_dt )
      eval_model_explicit<Scalar>(*model_,basePoint_,*x_vector_,t_+shadowed_dt,Teuchos::outArg(*f_vector_));

      // compute || xdot(t_+shadowed_dt) - f( x(t_+shadowed_dt), t_+shadowed_dt ) ||
      Thyra::Vp_StV(x_dot_vector_.get(), -ST::one(),
        *f_vector_);
      local_error = norm_inf(*x_dot_vector_);

      if (local_error > local_error_tolerance_) {
        shadowed_dt *= 0.7;
      }

    } while (local_error > local_error_tolerance_ && shadowed_dt > min_step_size_);

    // Check if minimum step size was reached
    TEST_FOR_EXCEPTION(shadowed_dt < min_step_size_, 
      std::runtime_error,
      "ExplicitTaylorPolynomialStepper<Scalar>::takeStep(): " 
      << "Step size reached minimum step size " 
      << min_step_size_ << ".  Failing step." );

    // Increment t_
    t_ += shadowed_dt;

    numSteps_++;

    dt_ = shadowed_dt;

    return shadowed_dt;

  } else {

    // If t_ > t_final_, we're done
    if (t_ > t_final_) {
      dt_ = Teuchos::ScalarTraits<Scalar>::zero();
      return dt_;
    }

    // Compute a local truncated Taylor series solution to system
    computeTaylorSeriesSolution_();

    // If step size is too big, reduce
    if (dt > max_step_size_) {
      dt = max_step_size_;
    }

    // If step goes past t_final_, reduce
    if (t_+dt > t_final_) {
      dt = t_final_-t_;
    }

    // compute x(t_+dt)
    x_poly_->evaluate(dt, x_vector_.get());

    // Increment t_
    t_ += dt;

    numSteps_++;

    dt_ = dt;

    return dt;
  }
}


template<class Scalar>
const StepStatus<Scalar>
ExplicitTaylorPolynomialStepper<Scalar>::getStepStatus() const
{
  typedef Teuchos::ScalarTraits<Scalar> ST;
  StepStatus<Scalar> stepStatus;

  if (!haveInitialCondition_) {
    stepStatus.stepStatus = STEP_STATUS_UNINITIALIZED;
  } 
  else if (numSteps_ == 0) {
    stepStatus.stepStatus = STEP_STATUS_UNKNOWN;
    stepStatus.stepSize = dt_;
    stepStatus.order = this->getOrder();
    stepStatus.time = t_;
    stepStatus.solution = x_vector_;
    stepStatus.solutionDot = x_dot_vector_;
    if (!is_null(model_)) {
      stepStatus.residual = f_vector_;
    }
  } 
  else  {
    stepStatus.stepStatus = STEP_STATUS_CONVERGED;
    stepStatus.stepSize = dt_;
    stepStatus.order = this->getOrder();
    stepStatus.time = t_;
    stepStatus.solution = x_vector_;
    stepStatus.solutionDot = x_dot_vector_;
    stepStatus.residual = f_vector_;
  }
  return(stepStatus);
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::setParameterList(RCP<Teuchos::ParameterList> const& paramList)
{
  typedef Teuchos::ScalarTraits<Scalar> ST;

  TEST_FOR_EXCEPT(is_null(paramList));
  paramList->validateParameters(*this->getValidParameters());
  parameterList_ = paramList;
  Teuchos::readVerboseObjectSublist(&*parameterList_,this);

  // Get initial time
  t_initial_ = parameterList_->get("Initial Time", ST::zero());

  // Get final time
  t_final_ = parameterList_->get("Final Time", ST::one());

  // Get local error tolerance
  local_error_tolerance_ = 
    parameterList_->get("Local Error Tolerance", ScalarMag(1.0e-10));

  // Get minimum step size
  min_step_size_ = parameterList_->get("Minimum Step Size", Scalar(1.0e-10));

  // Get maximum step size
  max_step_size_ = parameterList_->get("Maximum Step Size", Scalar(1.0));

  // Get degree_ of Taylor polynomial expansion
  degree_ = parameterList_->get("Taylor Polynomial Degree", Teuchos::as<unsigned int>(40));

  linc_ = Scalar(-16.0*std::log(10.0)/degree_);
  t_ = t_initial_;
}


template<class Scalar>
RCP<Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>::getNonconstParameterList()
{
  return parameterList_;
}


template<class Scalar>
RCP<Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>:: unsetParameterList()
{
  RCP<Teuchos::ParameterList> temp_param_list = parameterList_;
  parameterList_ = Teuchos::null;
  return temp_param_list;
}


template<class Scalar>
RCP<const Teuchos::ParameterList>
ExplicitTaylorPolynomialStepper<Scalar>::getValidParameters() const
{
  typedef ScalarTraits<Scalar> ST;
  static RCP<const ParameterList> validPL;
  if (is_null(validPL)) {
    RCP<ParameterList> pl = Teuchos::parameterList();

    pl->set<Scalar>("Initial Time", ST::zero());
    pl->set<Scalar>("Final Time", ST::one());
    pl->set<ScalarMag>("Local Error Tolerance", ScalarMag(1.0e-10));
    pl->set<Scalar>("Minimum Step Size", Scalar(1.0e-10));
    pl->set<Scalar>("Maximum Step Size", Scalar(1.0));
    pl->set<unsigned int>("Taylor Polynomial Degree", 40);

    Teuchos::setupVerboseObjectSublist(&*pl);
    validPL = pl;
  }
  return validPL;
}


template<class Scalar>
std::string ExplicitTaylorPolynomialStepper<Scalar>::description() const
{
  std::string name = "Rythmos::ExplicitTaylorPolynomialStepper";
  return name;
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::describe(
  Teuchos::FancyOStream &out,
  const Teuchos::EVerbosityLevel verbLevel
  ) const
{
  if (verbLevel == Teuchos::VERB_EXTREME) {
    out << description() << "::describe" << std::endl;
    out << "model_ = " << std::endl;
    out << Teuchos::describe(*model_, verbLevel) << std::endl;
    out << "x_vector_ = " << std::endl;
    out << Teuchos::describe(*x_vector_, verbLevel) << std::endl;
    out << "x_dot_vector_ = " << std::endl;
    out << Teuchos::describe(*x_dot_vector_, verbLevel) << std::endl;
    out << "f_vector_ = " << std::endl;
    out << Teuchos::describe(*f_vector_, verbLevel) << std::endl;
    out << "x_poly_ = " << std::endl;
    out << Teuchos::describe(*x_poly_, verbLevel) << std::endl;
    out << "f_poly_ = " << std::endl;
    out << Teuchos::describe(*f_poly_, verbLevel) << std::endl;
    out << "t_ = " << t_ << std::endl;
    out << "t_initial_ = " << t_initial_ << std::endl;
    out << "t_final_ = " << t_final_ << std::endl;
    out << "local_error_tolerance_ = " << local_error_tolerance_ << std::endl;
    out << "min_step_size_ = " << min_step_size_ << std::endl;
    out << "max_step_size_ = " << max_step_size_ << std::endl;
    out << "degree_ = " << degree_ << std::endl;
    out << "linc_ = " << linc_ << std::endl;
  }
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::addPoints(
  const Array<Scalar>& time_vec
  ,const Array<RCP<const Thyra::VectorBase<Scalar> > >& x_vec
  ,const Array<RCP<const Thyra::VectorBase<Scalar> > >& xdot_vec
  )
{
  TEST_FOR_EXCEPTION(true,std::logic_error,"Error, addPoints is not implemented for the ExplicitTaylorPolynomialStepper.\n");
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::getPoints(
  const Array<Scalar>& time_vec
  ,Array<RCP<const Thyra::VectorBase<Scalar> > >* x_vec
  ,Array<RCP<const Thyra::VectorBase<Scalar> > >* xdot_vec
  ,Array<ScalarMag>* accuracy_vec) const
{
  TEUCHOS_ASSERT( haveInitialCondition_ );
  using Teuchos::constOptInArg;
  using Teuchos::null;
  defaultGetPoints<Scalar>(
    t_-dt_,constOptInArg(*x_vector_old_),constOptInArg(*x_dot_vector_old_),
    t_,constOptInArg(*x_vector_),constOptInArg(*x_dot_vector_),
    time_vec,ptr(x_vec),ptr(xdot_vec),ptr(accuracy_vec),
    Ptr<InterpolatorBase<Scalar> >(null)
    );
}


template<class Scalar>
TimeRange<Scalar> ExplicitTaylorPolynomialStepper<Scalar>::getTimeRange() const
{
  if (!haveInitialCondition_) {
    return invalidTimeRange<Scalar>();
  } else {
    return(TimeRange<Scalar>(t_-dt_,t_));
  }
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::getNodes(Array<Scalar>* time_vec) const
{
  TEUCHOS_ASSERT( time_vec != NULL );
  time_vec->clear();
  if (!haveInitialCondition_) {
    return; 
  } else {
    time_vec->push_back(t_);
  }
  if (numSteps_ > 0) {
    time_vec->push_back(t_-dt_);
  }
}


template<class Scalar>
void ExplicitTaylorPolynomialStepper<Scalar>::removeNodes(Array<Scalar>& time_vec)
{
  TEST_FOR_EXCEPTION(true,std::logic_error,"Error, removeNodes is not implemented for the ExplicitTaylorPolynomialStepper.\n");
}


template<class Scalar>
int ExplicitTaylorPolynomialStepper<Scalar>::getOrder() const
{
  return degree_;
}


//
// Definitions of protected methods
//


template<class Scalar>
void
ExplicitTaylorPolynomialStepper<Scalar>::computeTaylorSeriesSolution_()
{
  RCP<Thyra::VectorBase<Scalar> > tmp;

  // Set degree_ of polynomials to 0
  x_poly_->setDegree(0);
  f_poly_->setDegree(0);

  // Set degree_ 0 coefficient
  x_poly_->setCoefficient(0, *x_vector_);

  for (unsigned int k=1; k<=degree_; k++) {

    // compute [f] = f([x])
    eval_model_explicit_poly(*model_, basePoint_, *x_poly_, t_, Teuchos::outArg(*f_poly_));

    x_poly_->setDegree(k);
    f_poly_->setDegree(k);
      
    // x[k] = f[k-1] / k
    tmp = x_poly_->getCoefficient(k);
    copy(*(f_poly_->getCoefficient(k-1)), tmp.get());
    scale(Scalar(1.0)/Scalar(k), tmp.get());
  }

}


template<class Scalar>
typename ExplicitTaylorPolynomialStepper<Scalar>::ScalarMag
ExplicitTaylorPolynomialStepper<Scalar>::estimateLogRadius_()
{
  ScalarMag rho = 0;
  ScalarMag tmp;
  for (unsigned int k=degree_/2; k<=degree_; k++) {
    tmp = log_norm_inf(*(x_poly_->getCoefficient(k))) / k;
    if (tmp > rho) {
      rho = tmp;
    }
  }
  return rho;
}


template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> > ExplicitTaylorPolynomialStepper<Scalar>::get_x_space() const
{
  if (haveInitialCondition_) {
    return(x_vector_->space());
  } else {
    return Teuchos::null;
  }
}


} // namespace Rythmos

#endif // RYTHMOS_EXPLICIT_TAYLOR_POLYNOMIAL_STEPPER_H