/usr/include/trilinos/Rythmos_BasicDiscreteAdjointStepperTester_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | //@HEADER
// ***********************************************************************
//
// Rythmos Package
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER
#ifndef Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H
#define Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H
#include "Rythmos_AdjointModelEvaluator.hpp"
#include "Rythmos_IntegratorBase.hpp"
#include "Teuchos_VerboseObject.hpp"
#include "Teuchos_ParameterListAcceptorDefaultBase.hpp"
namespace Rythmos {
template<class Scalar> class BasicDiscreteAdjointStepperTester;
namespace BasicDiscreteAdjointStepperTesterUtils {
const std::string ErrorTol_name = "Error Tol";
const double ErrorTol_default = 1e-6;
} // namespace BasicDiscreteAdjointStepperTesterUtils
/** \brief Nonmember constructor.
*
* \relates BasicDiscreteAdjointStepperTester
*/
template<class Scalar>
RCP<BasicDiscreteAdjointStepperTester<Scalar> >
basicDiscreteAdjointStepperTester();
/** \brief Nonmember constructor.
*
* \relates BasicDiscreteAdjointStepperTester
*/
template<class Scalar>
RCP<BasicDiscreteAdjointStepperTester<Scalar> >
basicDiscreteAdjointStepperTester(const RCP<ParameterList> ¶mList);
/** \brief Concrete testing class for basic adjoint calculation.
*
* This testing class performs the most basic test of an adjoint computation
* for a nonlinear model that you can possibly check. The basic response
* problem is:
\verbatim
f(x_dot_, x_, t) = 0, for t <: [t_0, t_f]
x(t_0) = x_init + B*p
x_dot(t_0) = x_dot_int
d_hat(p) = h(x(t_f,p)) = 0.5 * x^T * x
\endverbatim
* This formulation assumes that the mass matrix d(f)/d(x_dot) is full rank
* which will be needed to compute the adjoint initial condition..
*
* The intial condition vectors x_init and x_dot_init are taken from the
* orginal forward problem's intial condition as is t_0. The time t_f is
* taken from an initalized integrator.
*
* The multi-vector B can be chosen by the user or can be computed
* automatically internally. If B is not choses by the user, it will be
* computed automatically as a single column with random numbers.
*
* The forward sensitivity equations (with S = d(x)/d(p)) that are solved with
* the reduced response sensitivity are then:
\verbatim
d(f)/d(x_dot) * S_dot + d(f)/d(x) * S = 0, for t <: [t_0, t_f]
S(t_0) = B
S_dot(t_0) = 0
d(d_hat)/d(p)^T = S^T * x, at t = t_f
\endverbatim
* The adjoint equations that are solved for the reduced sensitivity are then:
\verbatim
d(f)/d(x_dot)^T * lambda_dot - d(f)/d(x)^T * lambda = 0, for t <: [t_0, t_f]
d(f)/d(x_dot)^T * lambda = x, at t = t_f
d(d_hat)/d(p)^T = B^T * d(f)/d(x_dot)^T * lambda, at t = t_0
\endverbatim
* Note that if d(f)/d(x_dot) is full rank, then the adjoint initial condition
* at t_f reduces to:
\verbatim
lambda(t_f) = d(f)/d(x_dot)^{-T} * x(t_f)
\endverbatim
* which is the form of the initial condition used in this test (nice and
* simple).
*
* NOTE: However, if this is a general DAE where d(f)/d(x_dot) is rank
* deficient, then the adjoint initial value calcuation at t_f gets more
* complicated and this testing class can not handle those cases.
*/
template<class Scalar>
class BasicDiscreteAdjointStepperTester
: virtual public Teuchos::VerboseObject<BasicDiscreteAdjointStepperTester<Scalar> >,
virtual public Teuchos::ParameterListAcceptorDefaultBase
{
public:
typedef typename ScalarTraits<Scalar>::magnitudeType ScalarMag;
/** @name Overridden from ParameterListAcceptor (simple forwarding functions) */
//@{
/** \brief . */
void setParameterList(RCP<ParameterList> const& paramList);
/** \brief . */
RCP<const ParameterList> getValidParameters() const;
//@}
/** \name Testing functions */
//@{
/** \brief Test the the AdjointStepper object for a given forward
* simulation.
*
* \param adjointModel [in] The basic adjoint model ready to be used to
* integrate the adjoint. On output, this stepper will have been used to
* integate the adjoint.
*
* \param forwardIntegrator [in/out] The basic forward integrator ready to
* integrate the forward problem. This integrator algorithm will be cloned
* to integrate the forward sensitivities and the adjoint. This integator
* should be set up to take fixed time steps. There is no need for adaptive
* time steps for a test like this. On output, this integrator will have
* been run to the output time.
*
* NOTE: This function is declared non-const since it can technically change
* the parameter list as the fuctions are performed.
*/
bool testAdjointStepper(
Thyra::ModelEvaluator<Scalar>& adjointModel,
const Ptr<IntegratorBase<Scalar> >& forwardIntegrator
);
//@}
#ifndef TEMPLATE_FRIENDS_NOT_SUPPORTED
/** \name Public friend functions */
//@{
///
friend RCP< BasicDiscreteAdjointStepperTester<Scalar> >
basicDiscreteAdjointStepperTester<>();
//@}
#endif // TEMPLATE_FRIENDS_NOT_SUPPORTED
#ifndef TEMPLATE_FRIENDS_NOT_SUPPORTED
private:
#endif // TEMPLATE_FRIENDS_NOT_SUPPORTED
BasicDiscreteAdjointStepperTester(); // Note defined and not to be called
private:
ScalarMag errorTol_;
};
} // namespace Rythmos
#endif //Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H
|