This file is indexed.

/usr/include/trilinos/Rythmos_BasicDiscreteAdjointStepperTester_decl.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H
#define Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H


#include "Rythmos_AdjointModelEvaluator.hpp"
#include "Rythmos_IntegratorBase.hpp"
#include "Teuchos_VerboseObject.hpp"
#include "Teuchos_ParameterListAcceptorDefaultBase.hpp"


namespace Rythmos {


template<class Scalar> class BasicDiscreteAdjointStepperTester;


namespace BasicDiscreteAdjointStepperTesterUtils {

const std::string ErrorTol_name = "Error Tol";
const double ErrorTol_default = 1e-6;

} // namespace BasicDiscreteAdjointStepperTesterUtils


/** \brief Nonmember constructor.
 *
 * \relates BasicDiscreteAdjointStepperTester
 */
template<class Scalar>
RCP<BasicDiscreteAdjointStepperTester<Scalar> >
basicDiscreteAdjointStepperTester();


/** \brief Nonmember constructor.
 *
 * \relates BasicDiscreteAdjointStepperTester
 */
template<class Scalar>
RCP<BasicDiscreteAdjointStepperTester<Scalar> >
basicDiscreteAdjointStepperTester(const RCP<ParameterList> &paramList);


/** \brief Concrete testing class for basic adjoint calculation.
 *
 * This testing class performs the most basic test of an adjoint computation
 * for a nonlinear model that you can possibly check.  The basic response
 * problem is:

 \verbatim

    f(x_dot_, x_, t) = 0, for t <: [t_0, t_f]
              x(t_0) = x_init + B*p
          x_dot(t_0) = x_dot_int


    d_hat(p) = h(x(t_f,p)) = 0.5 * x^T * x

 \endverbatim

 * This formulation assumes that the mass matrix d(f)/d(x_dot) is full rank
 * which will be needed to compute the adjoint initial condition..
 *
 * The intial condition vectors x_init and x_dot_init are taken from the
 * orginal forward problem's intial condition as is t_0.  The time t_f is
 * taken from an initalized integrator.
 *
 * The multi-vector B can be chosen by the user or can be computed
 * automatically internally.  If B is not choses by the user, it will be
 * computed automatically as a single column with random numbers.
 *
 * The forward sensitivity equations (with S = d(x)/d(p)) that are solved with
 * the reduced response sensitivity are then:

 \verbatim

   d(f)/d(x_dot) * S_dot + d(f)/d(x) * S = 0, for t <: [t_0, t_f]
                                  S(t_0) = B
                              S_dot(t_0) = 0

   d(d_hat)/d(p)^T = S^T * x, at t = t_f

 \endverbatim

 * The adjoint equations that are solved for the reduced sensitivity are then:

 \verbatim

   d(f)/d(x_dot)^T * lambda_dot - d(f)/d(x)^T * lambda = 0, for t <: [t_0, t_f]
                              d(f)/d(x_dot)^T * lambda = x, at t = t_f

   d(d_hat)/d(p)^T = B^T * d(f)/d(x_dot)^T * lambda, at t = t_0

 \endverbatim

 * Note that if d(f)/d(x_dot) is full rank, then the adjoint initial condition
 * at t_f reduces to:

 \verbatim

   lambda(t_f) = d(f)/d(x_dot)^{-T} * x(t_f)

 \endverbatim

 * which is the form of the initial condition used in this test (nice and
 * simple).
 *
 * NOTE: However, if this is a general DAE where d(f)/d(x_dot) is rank
 * deficient, then the adjoint initial value calcuation at t_f gets more
 * complicated and this testing class can not handle those cases.
 */
template<class Scalar> 
class BasicDiscreteAdjointStepperTester
  : virtual public Teuchos::VerboseObject<BasicDiscreteAdjointStepperTester<Scalar> >,
    virtual public Teuchos::ParameterListAcceptorDefaultBase
{
public:

  typedef typename ScalarTraits<Scalar>::magnitudeType ScalarMag;

  /** @name Overridden from ParameterListAcceptor (simple forwarding functions) */
  //@{

  /** \brief . */
  void setParameterList(RCP<ParameterList> const& paramList);
  /** \brief . */
  RCP<const ParameterList> getValidParameters() const;

  //@}

  /** \name Testing functions */
  //@{

  /** \brief Test the the AdjointStepper object for a given forward
   * simulation.
   *
   * \param adjointModel [in] The basic adjoint model ready to be used to
   * integrate the adjoint.  On output, this stepper will have been used to
   * integate the adjoint.
   *
   * \param forwardIntegrator [in/out] The basic forward integrator ready to
   * integrate the forward problem.  This integrator algorithm will be cloned
   * to integrate the forward sensitivities and the adjoint.  This integator
   * should be set up to take fixed time steps.  There is no need for adaptive
   * time steps for a test like this.  On output, this integrator will have
   * been run to the output time.
   *
   * NOTE: This function is declared non-const since it can technically change
   * the parameter list as the fuctions are performed.
   */
  bool testAdjointStepper(
    Thyra::ModelEvaluator<Scalar>& adjointModel,
    const Ptr<IntegratorBase<Scalar> >& forwardIntegrator
    );

  //@}

#ifndef TEMPLATE_FRIENDS_NOT_SUPPORTED

  /** \name Public friend functions */
  //@{

  ///
  friend RCP< BasicDiscreteAdjointStepperTester<Scalar> >
  basicDiscreteAdjointStepperTester<>();

  //@}

#endif // TEMPLATE_FRIENDS_NOT_SUPPORTED
  

#ifndef TEMPLATE_FRIENDS_NOT_SUPPORTED
private:
#endif // TEMPLATE_FRIENDS_NOT_SUPPORTED

  BasicDiscreteAdjointStepperTester(); // Note defined and not to be called

private:

  ScalarMag errorTol_;

};


} // namespace Rythmos


#endif //Rythmos_BASIC_DISCRETE_ADJOINT_STEPPER_TESTER_DECL_H