This file is indexed.

/usr/include/trilinos/Rythmos_AdjointModelEvaluator.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
//@HEADER
// ***********************************************************************
//
//                           Rythmos Package
//                 Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Todd S. Coffey (tscoffe@sandia.gov)
//
// ***********************************************************************
//@HEADER

#ifndef RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP
#define RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP


#include "Rythmos_IntegratorBase.hpp"
#include "Thyra_ModelEvaluator.hpp" // Interface
#include "Thyra_StateFuncModelEvaluatorBase.hpp" // Implementation
#include "Thyra_ModelEvaluatorDelegatorBase.hpp"
#include "Thyra_DefaultScaledAdjointLinearOp.hpp"
#include "Thyra_DefaultAdjointLinearOpWithSolve.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Thyra_MultiVectorStdOps.hpp"
#include "Teuchos_implicit_cast.hpp"
#include "Teuchos_Assert.hpp"


namespace Rythmos {


/** \brief Standard concrete adjoint ModelEvaluator for time-constant mass
 * matrix models.
 *
 * \section Rythmos_AdjointModelEvaluator_Overview_sec Overview
 *
 * This concrete ModelEvalautor subclass takes any suitable ModelEvalautor
 * object and creates the adjoint model for use by any appropriate time
 * integration method..
 *
 * When the mass matrix <tt>d(f)/d(x_dot)</tt> is not a function of <tt>t</tt>
 * (which this class assumes), then the adjoint model can be represented as:
 
 \verbatim

     d(f)/d(x_dot)^T * lambda_dot - d(f)/d(x)^T * lambda + d(g)/d(x)^T

 \endverbatim

 * This model is stated in reverse time <tt>t_bar <:
 * [0,t_final-t_initial]</tt> (with <tt>d/d(t) = -d/d(t_bar)</tt>) which
 * results in the new adjoint formuation
 
 \verbatim

   f_bar(x_bar_dot, x_bar, t_bar)
     = d(f)/d(x_dot)^T * lambda_rev_dot + d(f)/d(x)^T * lambda - d(g)/d(x)^T

 \endverbatim

 * Where:<ul>
 *
 * <li> <tt>t_bar <: [0,t_final-t_initial]</tt> is reverse time defined so
 * that <tt>t = t_final - t_bar<tt> and <tt>d/d(t) = -d/d(t_bar)</tt>
 *
 * <li> <tt>x_bar = lambda</tt> is the original adjoint
 *
 * <li> <tt>x_bar_dot = lambda_rev_dot</tt> is the reverse-time adjoint time
 * derivative where <tt>lambda_dot = -lambda_rev_dot</tt>.
 *
 * <li> <tt>d(f)/d(x_dot)</tt> and <tt>d(f)/d(x)</tt> are evaluated at
 * <tt>x_dot(t_final-t_bar)</tt> and <tt>x(t_final-t_bar)</tt>.
 *
 * The forward state values <tt>x</tt> and <tt>x_dot</tt> are given through an
 * <tt>InterpolationBufferBase</tt> object that is provided by the client.
 *
 * </ul>
 *
 * <b>WARNING!</b> When interacting with this interface you must take note
 * that reverse time is being used as defined above!  This is especially
 * important if you are going to use lambda_dot for anything.  You have been
 * warned!
 *
 * \section Rythmos_AdjointModelEvaluator_ImplementationNotes_sec Implementation Notes
 *
 * Here, we describe how the residual of the adjoint system
 * <tt>f_bar(...)</tt> is actually computed from the capabilities of the
 * underlying forward model.
 *
 * First, note that

 \verbatim

   W_bar = alpha_bar * d(f_bar)/d(x_bar_dot) + beta_bar * d(f_bar)/d(x_bar)

         = alpha_bar * d(f)/d(x_dot)^T + beta_bar * d(f)/d(x)^T

 \endverbatim

 * This means that <tt>W_bar</tt> can be computed directly as
 * <tt>W_bar_adj</tt> on the underlying forward state ModelEvaluator object as:

 \verbatim

   W_bar_adj = alpha_bar * d(f)/d(x_dot) + beta_bar * d(f)/d(x)

 \endverbatim

 * by passing in <tt>alpha = alpha_bar</tt> and <tt>beta = beta_bar</tt>.  We
 * then use the subclass <tt>Thyra::DefaultAdjointLinearOpWithSolve</tt> to
 * create <tt>W_bar = adjoint(W_bar_adj)</tt> and that is it.
 *
 * Now, given that the client will request the form of <tt>W_bar =
 * adjoint(W_bar_adj)</tt> described above, we want to use this
 * <tt>W_bar_adj</tt> object in computing the adjoint equation residual
 * <tt>f_bar</tt>.  To see how to do this, note that from the above definition
 * of <tt>W_bar</tt> that we have:

 \verbatim

   d(f)/d(x)^T = 1/beta_bar * W_bar_adj^T
     - alpha_bar/beta_bar * d(f)/d(x_dot)^T

 \endverbatim

 * By using the above equation for <tt>d(f)/d(x)^T</tt>, we can eliminate
 * <tt>d(f)/d(x)</tt> from <tt>f_bar</tt> to yield:
 
 \verbatim

   f_bar = d(f)/d(x_dot)^T * lambda_hat + 1/beta_bar * W_bar_adj^T * lambda
           - d(g)/d(x)^T

      where:

         lambda_hat = lambda_rev_dot - alpha_bar/beta_bar * lambda

 \endverbatim

 * Above, we see we need to compute <tt>d(f)/d(x_dot)</tt> sperately from
 * <tt>W_bar_adj</tt> from the underlying forward ModelEvaluator.  Note that
 * for many forward models, that <tt>d(f)/d(x_dot)</tt> will actually be
 * constant and can be computed up front and reused throughout.
 *
 * \todo Add support to response function derivative source d(g)/d(x)^T.
 *
 * \todo Add support for more than one adjoint through the
 * DefaultMultiVectorProductVector[Space] sublasses.
 *
 * \todo Add functionality to the Thyra::ModelEvaluator::OutArgs class to
 * communicate the dependence of a function on its input arguments.  We need
 * to know the exact dependance of <tt>f(...)<tt> on <tt>x_dot</tt>,
 * <tt>x</tt>, and <tt>t</tt> to know if this class can be used and what
 * shortcuts can be used with it.
 */
template<class Scalar>
class AdjointModelEvaluator
  : virtual public Thyra::StateFuncModelEvaluatorBase<Scalar>
{
public:

  /** \name Constructors/Intializers/Accessors */
  //@{

  /** \brief . */
  AdjointModelEvaluator();

  /** \brief Set the underlying forward model and base point. */
  void setFwdStateModel(
    const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint );

  /** \brief Set the forward time range that this adjoint model will be
   * defined over.
   */
  void setFwdTimeRange( const TimeRange<Scalar> &fwdTimeRange );

  /** \brief Set the interpolation buffer that will return values of the state
   * solution <tt>x</tt> and <tt>x_dot</tt> at various points <tt>t</tt> as
   * the adjoint is integrated backwards in time.
   *
   * NOTE: If the model is linear in <tt>x</tt> and <tt>x_dot</tt>, then the
   * client can avoid setting this interpolation buffer since it will never be
   * called.
   *
   * NOTE: This object need be fully initialized at this point.  It only needs
   * to be fully initialized before this->evalModel(...) is called.  This just
   * sets up the basic link to this object.
   */
  void setFwdStateSolutionBuffer(
    const RCP<const InterpolationBufferBase<Scalar> > &fwdStateSolutionBuffer );
  
  //@}

  /** \name Public functions overridden from ModelEvaulator. */
  //@{

  /** \brief . */
  RCP<const Thyra::VectorSpaceBase<Scalar> > get_x_space() const;
  /** \brief . */
  RCP<const Thyra::VectorSpaceBase<Scalar> > get_f_space() const;
  /** \brief . */
  Thyra::ModelEvaluatorBase::InArgs<Scalar> getNominalValues() const;
  /** \brief . */
  RCP<Thyra::LinearOpWithSolveBase<Scalar> > create_W() const;
  /** \brief . */
  RCP<Thyra::LinearOpBase<Scalar> > create_W_op() const;
  /** \brief . */
  Thyra::ModelEvaluatorBase::InArgs<Scalar> createInArgs() const;

  //@}

private:

  /** \name Private functions overridden from ModelEvaulatorDefaultBase. */
  //@{

  /** \brief . */
  Thyra::ModelEvaluatorBase::OutArgs<Scalar> createOutArgsImpl() const;
  /** \brief . */
  void evalModelImpl(
    const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs_bar,
    const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs_bar
    ) const;

  //@}

private:

  // /////////////////////////
  // Private data members

  RCP<const Thyra::ModelEvaluator<Scalar> > fwdStateModel_;
  Thyra::ModelEvaluatorBase::InArgs<Scalar> basePoint_;
  TimeRange<Scalar> fwdTimeRange_;
  RCP<const InterpolationBufferBase<Scalar> > fwdStateSolutionBuffer_;

  mutable bool isInitialized_;
  mutable Thyra::ModelEvaluatorBase::InArgs<Scalar> prototypeInArgs_bar_;
  mutable Thyra::ModelEvaluatorBase::OutArgs<Scalar> prototypeOutArgs_bar_;
  mutable Thyra::ModelEvaluatorBase::InArgs<Scalar> adjointNominalValues_;
  mutable RCP<Thyra::LinearOpBase<Scalar> > my_W_bar_adj_op_;
  mutable RCP<Thyra::LinearOpBase<Scalar> > my_d_f_d_x_dot_op_;

  // /////////////////////////
  // Private member functions

  // Just-in-time initialization function
  void initialize() const;

};


/** \brief Nonmember constructor.
 *
 * \relates AdjointModelEvaluator
 */
template<class Scalar>
RCP<AdjointModelEvaluator<Scalar> >
adjointModelEvaluator(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
  const TimeRange<Scalar> &fwdTimeRange
  )
{
  RCP<AdjointModelEvaluator<Scalar> >
    adjointModel = Teuchos::rcp(new AdjointModelEvaluator<Scalar>);
  adjointModel->setFwdStateModel(fwdStateModel, fwdStateModel->getNominalValues());
  adjointModel->setFwdTimeRange(fwdTimeRange);
  return adjointModel;
}


// /////////////////////////////////
// Implementations


// Constructors/Intializers/Accessors


template<class Scalar>
AdjointModelEvaluator<Scalar>::AdjointModelEvaluator()
  :isInitialized_(false)
{}


template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdStateModel(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &fwdStateModel,
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &basePoint
  )
{
  TEST_FOR_EXCEPT(is_null(fwdStateModel));
  fwdStateModel_ = fwdStateModel;
  basePoint_ = basePoint;
  isInitialized_ = false;
}


template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdTimeRange(
  const TimeRange<Scalar> &fwdTimeRange )
{
  fwdTimeRange_ = fwdTimeRange;
}


template<class Scalar>
void AdjointModelEvaluator<Scalar>::setFwdStateSolutionBuffer(
  const RCP<const InterpolationBufferBase<Scalar> > &fwdStateSolutionBuffer )
{
  TEST_FOR_EXCEPT(is_null(fwdStateSolutionBuffer));
  fwdStateSolutionBuffer_ = fwdStateSolutionBuffer;
}


// Public functions overridden from ModelEvaulator


template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> >
AdjointModelEvaluator<Scalar>::get_x_space() const
{
  initialize();
  return fwdStateModel_->get_f_space();
}


template<class Scalar>
RCP<const Thyra::VectorSpaceBase<Scalar> >
AdjointModelEvaluator<Scalar>::get_f_space() const
{
  initialize();
  return fwdStateModel_->get_x_space();
}


template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
AdjointModelEvaluator<Scalar>::getNominalValues() const
{
  initialize();
  return adjointNominalValues_;
}


template<class Scalar>
RCP<Thyra::LinearOpWithSolveBase<Scalar> >
AdjointModelEvaluator<Scalar>::create_W() const
{
  initialize();
  return Thyra::nonconstAdjointLows<Scalar>(fwdStateModel_->create_W());
}


template<class Scalar>
RCP<Thyra::LinearOpBase<Scalar> >
AdjointModelEvaluator<Scalar>::create_W_op() const
{
  initialize();
  return Thyra::nonconstAdjoint<Scalar>(fwdStateModel_->create_W_op());
}


template<class Scalar>
Thyra::ModelEvaluatorBase::InArgs<Scalar>
AdjointModelEvaluator<Scalar>::createInArgs() const
{
  initialize();
  return prototypeInArgs_bar_;
}


// Private functions overridden from ModelEvaulatorDefaultBase


template<class Scalar>
Thyra::ModelEvaluatorBase::OutArgs<Scalar>
AdjointModelEvaluator<Scalar>::createOutArgsImpl() const
{
  initialize();
  return prototypeOutArgs_bar_;
}


template<class Scalar>
void AdjointModelEvaluator<Scalar>::evalModelImpl(
  const Thyra::ModelEvaluatorBase::InArgs<Scalar> &inArgs_bar,
  const Thyra::ModelEvaluatorBase::OutArgs<Scalar> &outArgs_bar
  ) const
{

  using Teuchos::rcp_dynamic_cast;
  using Teuchos::describe;
  typedef Teuchos::ScalarTraits<Scalar> ST;
  typedef Thyra::ModelEvaluatorBase MEB;
  typedef Thyra::DefaultScaledAdjointLinearOp<Scalar> DSALO;
  typedef Thyra::DefaultAdjointLinearOpWithSolve<Scalar> DALOWS;
  typedef Teuchos::VerboseObjectTempState<Thyra::ModelEvaluatorBase> VOTSME;

  //
  // A) Header stuff
  //

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_GEN_BEGIN(
    "AdjointModelEvaluator", inArgs_bar, outArgs_bar, Teuchos::null );

  initialize();

  VOTSME fwdStateModel_outputTempState(fwdStateModel_,out,verbLevel);

  //const bool trace = includesVerbLevel(verbLevel, Teuchos::VERB_LOW);
  const bool dumpAll = includesVerbLevel(localVerbLevel, Teuchos::VERB_EXTREME);

  //
  // B) Unpack the input and output arguments to see what we have to compute
  //

  // B.1) InArgs

  const Scalar t_bar = inArgs_bar.get_t();
  const RCP<const Thyra::VectorBase<Scalar> >
    lambda_rev_dot = inArgs_bar.get_x_dot().assert_not_null(), // x_bar_dot
    lambda = inArgs_bar.get_x().assert_not_null(); // x_bar
  const Scalar alpha_bar = inArgs_bar.get_alpha();
  const Scalar beta_bar = inArgs_bar.get_beta();

  if (dumpAll) {
    *out << "\nlambda_rev_dot = " << describe(*lambda_rev_dot, Teuchos::VERB_EXTREME);
    *out << "\nlambda = " << describe(*lambda, Teuchos::VERB_EXTREME);
    *out << "\nalpha_bar = " << alpha_bar << "\n";
    *out << "\nbeta_bar = " << beta_bar << "\n";
  }

  // B.2) OutArgs

  const RCP<Thyra::VectorBase<Scalar> > f_bar = outArgs_bar.get_f();

  RCP<DALOWS> W_bar;
  if (outArgs_bar.supports(MEB::OUT_ARG_W))
    W_bar = rcp_dynamic_cast<DALOWS>(outArgs_bar.get_W(), true);

  RCP<DSALO> W_bar_op;
  if (outArgs_bar.supports(MEB::OUT_ARG_W_op))
    W_bar_op = rcp_dynamic_cast<DSALO>(outArgs_bar.get_W_op(), true);

  if (dumpAll) {
    if (!is_null(W_bar)) {
      *out << "\nW_bar = " << describe(*W_bar, Teuchos::VERB_EXTREME);
    }
    if (!is_null(W_bar_op)) {
      *out << "\nW_bar_op = " << describe(*W_bar_op, Teuchos::VERB_EXTREME);
    }
  }
  
  //
  // C) Evaluate the needed quantities from the underlying forward Model
  //

  MEB::InArgs<Scalar> fwdInArgs = fwdStateModel_->createInArgs();

  // C.1) Set the required input arguments

  fwdInArgs = basePoint_;

  if (!is_null(fwdStateSolutionBuffer_)) {
    const Scalar t = fwdTimeRange_.length() - t_bar;
    RCP<const Thyra::VectorBase<Scalar> > x, x_dot;
    get_x_and_x_dot<Scalar>( *fwdStateSolutionBuffer_, t,
      outArg(x), outArg(x_dot) );
    fwdInArgs.set_x(x);
    fwdInArgs.set_x_dot(x);
  }
  else {
    // If we don't have an IB object to get the state from, we will assume
    // that the problem is linear and, therefore, we can pass in any old value
    // of x, x_dot, and t and get the W_bar_adj object that we need.  For this
    // purpose, we will assume the model's base point will do.

    // 2008/05/14: rabartl: ToDo: Implement real variable dependancy
    // communication support to make sure that this is okay!  If the model is
    // really nonlinear we need to check for this and throw if the user did
    // not set up a fwdStateSolutionBuffer object!
  }


  // C.2) Evaluate W_bar_adj if needed

  RCP<Thyra::LinearOpWithSolveBase<Scalar> > W_bar_adj;
  RCP<Thyra::LinearOpBase<Scalar> > W_bar_adj_op;
  {

    MEB::OutArgs<Scalar> fwdOutArgs = fwdStateModel_->createOutArgs();
    
    // Get or create W_bar_adj or W_bar_adj_op if needed
    if (!is_null(W_bar)) {
      // If we have W_bar, the W_bar_adj was already created in
      // this->create_W()
      W_bar_adj = W_bar->getNonconstOp();
      W_bar_adj_op = W_bar_adj;
    }
    else if (!is_null(W_bar_op)) {
      // If we have W_bar_op, the W_bar_adj_op was already created in
      // this->create_W_op()
      W_bar_adj_op = W_bar_op->getNonconstOp();
    }
    else if (!is_null(f_bar)) {
      TEST_FOR_EXCEPT_MSG(true, "ToDo: Unit test this code!");
      // If the user did not pass in W_bar or W_bar_op, then we need to create
      // our own local LOB form W_bar_adj_op of W_bar_adj in order to evaluate
      // the residual f_bar
      if (is_null(my_W_bar_adj_op_)) {
        my_W_bar_adj_op_ = fwdStateModel_->create_W_op();
      }
      W_bar_adj_op = my_W_bar_adj_op_;
    }
    
    // Set W_bar_adj or W_bar_adj_op on the OutArgs object
    if (!is_null(W_bar_adj)) {
      fwdOutArgs.set_W(W_bar_adj);
    }
    else if (!is_null(W_bar_adj_op)) {
      fwdOutArgs.set_W_op(W_bar_adj_op);
    }
    
    // Set alpha and beta on OutArgs object
    if (!is_null(W_bar_adj) || !is_null(W_bar_adj_op)) {
      fwdInArgs.set_alpha(alpha_bar);
      fwdInArgs.set_beta(beta_bar);
    }
    
    // Evaluate the model
    if (!is_null(W_bar_adj) || !is_null(W_bar_adj_op)) {
      fwdStateModel_->evalModel( fwdInArgs, fwdOutArgs );
    }
    
    // Print the objects if requested
    if (!is_null(W_bar_adj) && dumpAll)
      *out << "\nW_bar_adj = " << describe(*W_bar_adj, Teuchos::VERB_EXTREME);
    if (!is_null(W_bar_adj_op) && dumpAll)
      *out << "\nW_bar_adj_op = " << describe(*W_bar_adj_op, Teuchos::VERB_EXTREME);

  }
  
  // C.3) Evaluate d(f)/d(x_dot) if needed

  RCP<Thyra::LinearOpBase<Scalar> > d_f_d_x_dot_op;
  if (!is_null(f_bar)) {
    if (is_null(my_d_f_d_x_dot_op_)) {
      my_d_f_d_x_dot_op_ = fwdStateModel_->create_W_op();
    }
    d_f_d_x_dot_op = my_d_f_d_x_dot_op_;
    MEB::OutArgs<Scalar> fwdOutArgs = fwdStateModel_->createOutArgs();
    fwdOutArgs.set_W_op(d_f_d_x_dot_op);
    fwdInArgs.set_alpha(ST::one());
    fwdInArgs.set_beta(ST::zero());
    fwdStateModel_->evalModel( fwdInArgs, fwdOutArgs );
    if (dumpAll) {
      *out << "\nd_f_d_x_dot_op = " << describe(*d_f_d_x_dot_op, Teuchos::VERB_EXTREME);
    }
  }

  //
  // D) Evaluate the adjoint equation residual:
  //
  //   f_bar = d(f)/d(x_dot)^T * lambda_hat + 1/beta_bar * W_bar_adj^T * lambda
  //           - d(g)/d(x)^T
  //

  if (!is_null(f_bar)) {

    // D.1) lambda_hat = lambda_rev_dot - alpha_bar/beta_bar * lambda
    const RCP<Thyra::VectorBase<Scalar> >
      lambda_hat = createMember(lambda_rev_dot->space());
    Thyra::V_VpStV<Scalar>( outArg(*lambda_hat),
      *lambda_rev_dot, -alpha_bar/beta_bar, *lambda );
    if (dumpAll)
      *out << "\nlambda_hat = " << describe(*lambda_hat, Teuchos::VERB_EXTREME);

    // D.2) f_bar = d(f)/d(x_dot)^T * lambda_hat
    Thyra::apply<Scalar>( *d_f_d_x_dot_op, Thyra::CONJTRANS, *lambda_hat,
      outArg(*f_bar) );

    // D.3) f_bar += 1/beta_bar * W_bar_adj^T * lambda
    Thyra::apply<Scalar>( *W_bar_adj_op, Thyra::CONJTRANS, *lambda,
      outArg(*f_bar), 1.0/beta_bar, ST::one() );

    // D.4) f_bar += - d(g)/d(x)^T
    // 2008/05/15: rabart: ToDo: Implement once we add support for
    // distributed response functions

    if (dumpAll)
      *out << "\nf_bar = " << describe(*f_bar, Teuchos::VERB_EXTREME);

  }

  if (dumpAll) {
    if (!is_null(W_bar)) {
      *out << "\nW_bar = " << describe(*W_bar, Teuchos::VERB_EXTREME);
    }
    if (!is_null(W_bar_op)) {
      *out << "\nW_bar_op = " << describe(*W_bar_op, Teuchos::VERB_EXTREME);
    }
  }


  //
  // E) Do any remaining post processing
  //

  THYRA_MODEL_EVALUATOR_DECORATOR_EVAL_MODEL_END();

}


// private


template<class Scalar>
void AdjointModelEvaluator<Scalar>::initialize() const
{

  typedef Thyra::ModelEvaluatorBase MEB;

  if (isInitialized_)
    return;

  //
  // A) Validate the that forward Model is of the correct form!
  //

  MEB::InArgs<Scalar> fwdStateModelInArgs = fwdStateModel_->createInArgs();
  MEB::OutArgs<Scalar> fwdStateModelOutArgs = fwdStateModel_->createOutArgs();

#ifdef RYTHMOS_DEBUG
  TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_x_dot) );
  TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_x) );
  TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_t) );
  TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_alpha) );
  TEUCHOS_ASSERT( fwdStateModelInArgs.supports(MEB::IN_ARG_beta) );
  TEUCHOS_ASSERT( fwdStateModelOutArgs.supports(MEB::OUT_ARG_f) );
  TEUCHOS_ASSERT( fwdStateModelOutArgs.supports(MEB::OUT_ARG_W) );
#endif

  //
  // B) Set up the prototypical InArgs and OutArgs
  //

  {
    MEB::InArgsSetup<Scalar> inArgs_bar;
    inArgs_bar.setModelEvalDescription(this->description());
    inArgs_bar.setSupports( MEB::IN_ARG_x_dot );
    inArgs_bar.setSupports( MEB::IN_ARG_x );
    inArgs_bar.setSupports( MEB::IN_ARG_t );
    inArgs_bar.setSupports( MEB::IN_ARG_alpha );
    inArgs_bar.setSupports( MEB::IN_ARG_beta );
    prototypeInArgs_bar_ = inArgs_bar;
  }

  {
    MEB::OutArgsSetup<Scalar> outArgs_bar;
    outArgs_bar.setModelEvalDescription(this->description());
    outArgs_bar.setSupports(MEB::OUT_ARG_f);
    if (fwdStateModelOutArgs.supports(MEB::OUT_ARG_W) ) {
      outArgs_bar.setSupports(MEB::OUT_ARG_W);
      outArgs_bar.set_W_properties(fwdStateModelOutArgs.get_W_properties());
    }
    if (fwdStateModelOutArgs.supports(MEB::OUT_ARG_W_op) ) {
      outArgs_bar.setSupports(MEB::OUT_ARG_W_op);
      outArgs_bar.set_W_properties(fwdStateModelOutArgs.get_W_properties());
    }
    prototypeOutArgs_bar_ = outArgs_bar;
  }

  //
  // D) Set up the nominal values for the adjoint
  //

  // Copy structure
  adjointNominalValues_ = prototypeInArgs_bar_;
  // Just set a zero initial condition for the adjoint
  const RCP<Thyra::VectorBase<Scalar> > zero_lambda_vec =
    createMember(fwdStateModel_->get_f_space());
  V_S( zero_lambda_vec.ptr(), ScalarTraits<Scalar>::zero() );
  adjointNominalValues_.set_x_dot(zero_lambda_vec);
  adjointNominalValues_.set_x(zero_lambda_vec);

  //
  // E) Wipe out other cached objects
  //

  my_W_bar_adj_op_ = Teuchos::null;
  my_d_f_d_x_dot_op_ = Teuchos::null;

  //
  // F) We are initialized!
  //

  isInitialized_ = true;

}


} // namespace Rythmos


#endif // RYTHMOS_ADJOINT_MODEL_EVALUATOR_HPP