/usr/include/trilinos/RTOpPack_TOpLinearCombination_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 | // @HEADER
// ***********************************************************************
//
// RTOp: Interfaces and Support Software for Vector Reduction Transformation
// Operations
// Copyright (2006) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef RTOPPACK_TOP_LINEAR_COMBINATION_DEF_HPP
#define RTOPPACK_TOP_LINEAR_COMBINATION_DEF_HPP
#include "Teuchos_Workspace.hpp"
namespace RTOpPack {
template<class Scalar>
TOpLinearCombination<Scalar>::TOpLinearCombination(
const ArrayView<const Scalar> &alpha_in,
const Scalar &beta_in
)
:beta_(beta_in)
{
if (alpha_in.size())
this->alpha(alpha_in);
this->setOpNameBase("TOpLinearCombination");
}
template<class Scalar>
void TOpLinearCombination<Scalar>::alpha(
const ArrayView<const Scalar> &alpha_in )
{
TEST_FOR_EXCEPT( alpha_in.size() == 0 );
alpha_ = alpha_in;
}
template<class Scalar>
const ArrayView<const Scalar>
TOpLinearCombination<Scalar>::alpha() const
{ return alpha_; }
template<class Scalar>
void TOpLinearCombination<Scalar>::beta( const Scalar& beta_in ) { beta_ = beta_in; }
template<class Scalar>
Scalar TOpLinearCombination<Scalar>::beta() const { return beta_; }
template<class Scalar>
int TOpLinearCombination<Scalar>::num_vecs() const { return alpha_.size(); }
// Overridden from RTOpT
template<class Scalar>
void TOpLinearCombination<Scalar>::apply_op_impl(
const ArrayView<const ConstSubVectorView<Scalar> > &sub_vecs,
const ArrayView<const SubVectorView<Scalar> > &targ_sub_vecs,
const Ptr<ReductTarget> &reduct_obj_inout
) const
{
using Teuchos::as;
using Teuchos::Workspace;
typedef Teuchos::ScalarTraits<Scalar> ST;
typedef typename Teuchos::ArrayRCP<Scalar>::iterator iter_t;
typedef typename Teuchos::ArrayRCP<const Scalar>::iterator const_iter_t;
Teuchos::WorkspaceStore* wss = Teuchos::get_default_workspace_store().get();
#ifdef TEUCHOS_DEBUG
validate_apply_op<Scalar>(*this, as<int>(alpha_.size()), 1, false,
sub_vecs, targ_sub_vecs, reduct_obj_inout.getConst());
#endif
const int l_num_vecs = alpha_.size();
// Get iterators to local data
const RTOpPack::index_type subDim = targ_sub_vecs[0].subDim();
iter_t z0_val = targ_sub_vecs[0].values().begin();
const ptrdiff_t z0_s = targ_sub_vecs[0].stride();
Workspace<const_iter_t> v_val(wss,l_num_vecs);
Workspace<ptrdiff_t> v_s(wss,l_num_vecs,false);
for( int k = 0; k < l_num_vecs; ++k ) {
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPT( sub_vecs[k].subDim() != subDim );
TEST_FOR_EXCEPT( sub_vecs[k].globalOffset() != targ_sub_vecs[0].globalOffset() );
#endif
v_val[k] = sub_vecs[k].values().begin();
v_s[k] = sub_vecs[k].stride();
}
//
// Perform the operation and specialize the cases for l_num_vecs = 1 and 2
// in order to get good performance.
//
if( l_num_vecs == 1 ) {
//
// z0 = alpha*v0 + beta*z0
//
const Scalar l_alpha = alpha_[0], l_beta = beta_;
const_iter_t v0_val = v_val[0];
const ptrdiff_t v0_s = v_s[0];
if( l_beta==ST::zero() ) {
// z0 = alpha*v0
if( z0_s==1 && v0_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) = l_alpha * (*v0_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s )
(*z0_val) = l_alpha * (*v0_val);
}
}
else if( l_beta==ST::one() ) {
//
// z0 = alpha*v0 + z0
//
if( z0_s==1 && v0_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) += l_alpha * (*v0_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s )
(*z0_val) += l_alpha * (*v0_val);
}
}
else {
// z0 = alpha*v0 + beta*z0
if( z0_s==1 && v0_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) = l_alpha * (*v0_val++) + l_beta*(*z0_val);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s )
(*z0_val) = l_alpha * (*v0_val) + l_beta*(*z0_val);
}
}
}
else if( l_num_vecs == 2 ) {
//
// z0 = alpha0*v0 + alpha1*v1 + beta*z0
//
const Scalar alpha0 = alpha_[0], alpha1=alpha_[1], l_beta = beta_;
const_iter_t v0_val = v_val[0];
const ptrdiff_t v0_s = v_s[0];
const_iter_t v1_val = v_val[1];
const ptrdiff_t v1_s = v_s[1];
if( l_beta==ST::zero() ) {
if( alpha0 == ST::one() ) {
if( alpha1 == ST::one() ) {
// z0 = v0 + v1
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) = (*v0_val++) + (*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = (*v0_val) + (*v1_val);
}
}
else {
// z0 = v0 + alpha1*v1
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) = (*v0_val++) + alpha1*(*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = (*v0_val) + alpha1*(*v1_val);
}
}
}
else {
if( alpha1 == ST::one() ) {
// z0 = alpha0*v0 + v1
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) = alpha0*(*v0_val++) + (*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = alpha0*(*v0_val) + (*v1_val);
}
}
else {
// z0 = alpha0*v0 + alpha1*v1
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j )
(*z0_val++) = alpha0*(*v0_val++) + alpha1*(*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = alpha0*(*v0_val) + alpha1*(*v1_val);
}
}
}
}
else if( l_beta==ST::one() ) {
if( alpha0 == ST::one() ) {
if( alpha1 == ST::one() ) {
// z0 = v0 + v1 + z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) += (*v0_val++) + (*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) += (*v0_val) + (*v1_val);
}
}
else {
// z0 = v0 + alpha1*v1 + z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) += (*v0_val++) + alpha1*(*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) += (*v0_val) + alpha1*(*v1_val);
}
}
}
else {
if( alpha1 == ST::one() ) {
// z0 = alpha0*v0 + v1 + z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) += alpha0*(*v0_val++) + (*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) += alpha0*(*v0_val) + (*v1_val);
}
}
else {
// z0 = alpha0*v0 + alpha1*v1 + z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) += alpha0*(*v0_val++) + alpha1*(*v1_val++);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) += alpha0*(*v0_val) + alpha1*(*v1_val);
}
}
}
}
else {
if( alpha0 == ST::one() ) {
if( alpha1 == ST::one() ) {
// z0 = v0 + v1 + beta*z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) = (*v0_val++) + (*v1_val++) + l_beta*(*z0_val);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = (*v0_val) + (*v1_val) + l_beta*(*z0_val);
}
}
else {
// z0 = v0 + alpha1*v1 + beta*z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) = (*v0_val++) + alpha1*(*v1_val++) + l_beta*(*z0_val);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = (*v0_val) + alpha1*(*v1_val) + l_beta*(*z0_val);
}
}
}
else {
if( alpha1 == ST::one() ) {
// z0 = alpha0*v0 + v1 + beta*z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) = alpha0*(*v0_val++) + (*v1_val++) + l_beta*(*z0_val);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = alpha0*(*v0_val) + (*v1_val) + l_beta*(*z0_val);
}
}
else {
// z0 = alpha0*v0 + alpha1*v1 + beta*z0
if( z0_s==1 && v0_s==1 && v1_s==1 ) {
for( int j = 0; j < subDim; ++j, ++z0_val )
(*z0_val) = alpha0*(*v0_val++) + alpha1*(*v1_val++) + l_beta*(*z0_val);
}
else {
for( int j = 0; j < subDim; ++j, z0_val+=z0_s, v0_val+=v0_s, v1_val+=v1_s )
(*z0_val) = alpha0*(*v0_val) + alpha1*(*v1_val) + l_beta*(*z0_val);
}
}
}
}
}
else {
//
// Totally general implementation (but least efficient)
//
// z0 *= beta
if( beta_ == ST::zero() ) {
for( int j = 0; j < subDim; ++j, z0_val += z0_s )
(*z0_val) = ST::zero();
}
else if( beta_ != ST::one() ) {
for( int j = 0; j < subDim; ++j, z0_val += z0_s )
(*z0_val) *= beta_;
}
// z0 += sum( alpha[k]*v[k], k=0...l_num_vecs-1)
z0_val = targ_sub_vecs[0].values().begin();
for( int j = 0; j < subDim; ++j, z0_val += z0_s ) {
for( int k = 0; k < l_num_vecs; ++k ) {
const Scalar
&alpha_k = alpha_[k],
&v_k_val = *v_val[k];
(*z0_val) += alpha_k * v_k_val;
v_val[k] += v_s[k];
}
}
}
}
} // namespace RTOpPack
#endif // RTOPPACK_TOP_LINEAR_COMBINATION_DEF_HPP
|