This file is indexed.

/usr/include/trilinos/OptiPack_NonlinearCG_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*
// @HEADER
// ***********************************************************************
// 
//    OptiPack: Collection of simple Thyra-based Optimization ANAs
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
// 
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER
*/

#ifndef OPTIPACK_NONLINEAR_CG_DEF_HPP
#define OPTIPACK_NONLINEAR_CG_DEF_HPP


#include "OptiPack_NonlinearCG_decl.hpp"
#include "OptiPack_DefaultPolyLineSearchPointEvaluator.hpp"
#include "OptiPack_UnconstrainedOptMeritFunc1D.hpp"
#include "Thyra_ModelEvaluatorHelpers.hpp"
#include "Thyra_VectorStdOps.hpp"
#include "Teuchos_VerboseObjectParameterListHelpers.hpp"
#include "Teuchos_StandardParameterEntryValidators.hpp"
#include "Teuchos_Tuple.hpp"


namespace OptiPack {


template<typename Scalar>
RCP<Teuchos::ParameterEntryValidator>
NonlinearCG<Scalar>::solverType_validator_ = Teuchos::null;


// Constructor/Initializers/Accessors


template<typename Scalar>
NonlinearCG<Scalar>::NonlinearCG()
  : paramIndex_(-1),
    responseIndex_(-1),
    solverType_(NonlinearCGUtils::solverType_default_integral_val),
    alpha_init_(NonlinearCGUtils::alpha_init_default),
    alpha_reinit_(NonlinearCGUtils::alpha_reinit_default),
    and_conv_tests_(NonlinearCGUtils::and_conv_tests_default),
    minIters_(NonlinearCGUtils::minIters_default),
    maxIters_(NonlinearCGUtils::maxIters_default),
    g_reduct_tol_(NonlinearCGUtils::g_reduct_tol_default),
    g_grad_tol_(NonlinearCGUtils::g_grad_tol_default),
    g_mag_(NonlinearCGUtils::g_mag_default),
    numIters_(0)
{}


template<typename Scalar>
void NonlinearCG<Scalar>::initialize(
  const RCP<const Thyra::ModelEvaluator<Scalar> > &model,
  const int paramIndex,
  const int responseIndex,
  const RCP<GlobiPack::LineSearchBase<Scalar> > &linesearch
  )
{
  // ToDo: Validate input objects!
  model_ = model.assert_not_null();
  paramIndex_ = paramIndex;
  responseIndex_ = responseIndex;
  linesearch_ = linesearch.assert_not_null();
}


template<typename Scalar>
NonlinearCGUtils::ESolverTypes NonlinearCG<Scalar>::get_solverType() const
{
  return solverType_;
}


template<typename Scalar>
typename NonlinearCG<Scalar>::ScalarMag
NonlinearCG<Scalar>::get_alpha_init() const
{
  return alpha_init_;
}


template<typename Scalar>
bool NonlinearCG<Scalar>::get_alpha_reinit() const
{
  return alpha_reinit_;
}


template<typename Scalar>
bool NonlinearCG<Scalar>::get_and_conv_tests() const
{
  return and_conv_tests_;
}


template<typename Scalar>
int NonlinearCG<Scalar>::get_minIters() const
{
  return minIters_;
}


template<typename Scalar>
int NonlinearCG<Scalar>::get_maxIters() const
{
  return maxIters_;
}


template<typename Scalar>
typename NonlinearCG<Scalar>::ScalarMag
NonlinearCG<Scalar>::get_g_reduct_tol() const
{
  return g_reduct_tol_;
}


template<typename Scalar>
typename NonlinearCG<Scalar>::ScalarMag
NonlinearCG<Scalar>::get_g_grad_tol() const
{
  return g_grad_tol_;
}


template<typename Scalar>
typename NonlinearCG<Scalar>::ScalarMag
NonlinearCG<Scalar>::get_g_mag() const
{
  return g_mag_;
}


// Overridden from ParameterListAcceptor (simple forwarding functions)


template<typename Scalar>
void NonlinearCG<Scalar>::setParameterList(RCP<ParameterList> const& paramList)
{
  typedef ScalarTraits<Scalar> ST;
  typedef ScalarTraits<ScalarMag> SMT;
  namespace NCGU = NonlinearCGUtils;
  using Teuchos::getParameter;
  using Teuchos::getIntegralValue;
  paramList->validateParametersAndSetDefaults(*this->getValidParameters());
  solverType_ = getIntegralValue<NCGU::ESolverTypes>(*paramList, NCGU::solverType_name);
  alpha_init_ = getParameter<double>(*paramList, NCGU::alpha_init_name);
  alpha_reinit_ = getParameter<bool>(*paramList, NCGU::alpha_reinit_name);
  and_conv_tests_ = getParameter<bool>(*paramList, NCGU::and_conv_tests_name);
  minIters_ = getParameter<int>(*paramList, NCGU::minIters_name);
  maxIters_ = getParameter<int>(*paramList, NCGU::maxIters_name);
  g_reduct_tol_ = getParameter<double>(*paramList, NCGU::g_reduct_tol_name);
  g_grad_tol_ = getParameter<double>(*paramList, NCGU::g_grad_tol_name);
  g_mag_ = getParameter<double>(*paramList, NCGU::g_mag_name);
  TEUCHOS_ASSERT_INEQUALITY( alpha_init_, >, SMT::zero() );
  TEUCHOS_ASSERT_INEQUALITY( minIters_, >=, 0 );
  TEUCHOS_ASSERT_INEQUALITY( minIters_, <, maxIters_ );
  TEUCHOS_ASSERT_INEQUALITY( g_reduct_tol_, >=, SMT::zero() );
  TEUCHOS_ASSERT_INEQUALITY( g_grad_tol_, >=, SMT::zero() );
  TEUCHOS_ASSERT_INEQUALITY( g_mag_, >, SMT::zero() );
  Teuchos::readVerboseObjectSublist(&*paramList, this);
  setMyParamList(paramList);
}


template<typename Scalar>
RCP<const ParameterList>
NonlinearCG<Scalar>::getValidParameters() const
{
  using Teuchos::tuple;
  namespace NCGU = NonlinearCGUtils;
  static RCP<const ParameterList> validPL;
  if (is_null(validPL)) {
    RCP<Teuchos::ParameterList>
      pl = Teuchos::rcp(new Teuchos::ParameterList());
    solverType_validator_ = 
      Teuchos::stringToIntegralParameterEntryValidator<NCGU::ESolverTypes>(
        tuple<std::string>(
          "FR",
          "PR+",
          "FR-PR",
          "HS"
          ),
        tuple<std::string>(
          "Fletcher-Reeves Method",
          "Polak-Ribiere Method",
          "Fletcher-Reeves Polak-Ribiere Hybrid Method",
          "Hestenes-Stiefel Method"
          ),
        tuple<NCGU::ESolverTypes>(
          NCGU::NONLINEAR_CG_FR,
          NCGU::NONLINEAR_CG_PR_PLUS,
          NCGU::NONLINEAR_CG_FR_PR,
          NCGU::NONLINEAR_CG_HS
          ),
        NCGU::solverType_name
        );
    pl->set( NCGU::solverType_name, NCGU::solverType_default,
      "Set the type of nonlinear CG solver algorithm to use.",
      solverType_validator_ );
    pl->set( NCGU::alpha_init_name, NCGU::alpha_init_default );
    pl->set( NCGU::alpha_reinit_name, NCGU::alpha_reinit_default );
    pl->set( NCGU::and_conv_tests_name, NCGU::and_conv_tests_default );
    pl->set( NCGU::minIters_name, NCGU::minIters_default );
    pl->set( NCGU::maxIters_name, NCGU::maxIters_default );
    pl->set( NCGU::g_reduct_tol_name, NCGU::g_reduct_tol_default );
    pl->set( NCGU::g_grad_tol_name, NCGU::g_grad_tol_default );
    pl->set( NCGU::g_mag_name, NCGU::g_mag_default );
    Teuchos::setupVerboseObjectSublist(&*pl);
    validPL = pl;
    // ToDo: Add documentation for these parameters
  }
  return validPL;
}


// Solve


template<typename Scalar>
NonlinearCGUtils::ESolveReturn
NonlinearCG<Scalar>::doSolve(
  const Ptr<Thyra::VectorBase<Scalar> > &p_inout,
  const Ptr<ScalarMag> &g_opt_out,
  const Ptr<const ScalarMag> &g_reduct_tol_in,
  const Ptr<const ScalarMag> &g_grad_tol_in,
  const Ptr<const ScalarMag> &alpha_init_in,
  const Ptr<int> &numIters_out
  )
{

  typedef ScalarTraits<Scalar> ST;
  typedef ScalarTraits<ScalarMag> SMT;
  
  using Teuchos::null;
  using Teuchos::as;
  using Teuchos::tuple;
  using Teuchos::rcpFromPtr;
  using Teuchos::optInArg;
  using Teuchos::inOutArg;
  using GlobiPack::computeValue;
  using GlobiPack::PointEval1D;
  using Thyra::VectorSpaceBase;
  using Thyra::VectorBase;
  using Thyra::MultiVectorBase;
  using Thyra::scalarProd;
  using Thyra::createMember;
  using Thyra::createMembers;
  using Thyra::get_ele;
  using Thyra::norm;
  using Thyra::V_StV;
  using Thyra::Vt_S;
  using Thyra::eval_g_DgDp;
  typedef Thyra::Ordinal Ordinal;
  typedef Thyra::ModelEvaluatorBase MEB;
  namespace NCGU = NonlinearCGUtils;
  using std::max;

  // Validate input

  g_opt_out.assert_not_null();

  // Set streams

  const RCP<Teuchos::FancyOStream> out = this->getOStream();
  linesearch_->setOStream(out);

  // Determine what step constants will be computed

  const bool compute_beta_PR =
    (
      solverType_ == NCGU::NONLINEAR_CG_PR_PLUS
      ||
      solverType_ == NCGU::NONLINEAR_CG_FR_PR
      );

  const bool compute_beta_HS = (solverType_ == NCGU::NONLINEAR_CG_HS);

  //
  // A) Set up the storage for the algorithm
  //
  
  const RCP<DefaultPolyLineSearchPointEvaluator<Scalar> >
    pointEvaluator = defaultPolyLineSearchPointEvaluator<Scalar>();

  const RCP<UnconstrainedOptMeritFunc1D<Scalar> >
    meritFunc = unconstrainedOptMeritFunc1D<Scalar>(
      model_, paramIndex_, responseIndex_ );

  const RCP<const VectorSpaceBase<Scalar> >
    p_space = model_->get_p_space(paramIndex_),
    g_space = model_->get_g_space(responseIndex_);

  // Stoarge for current iteration
  RCP<VectorBase<Scalar> >
    p_k = rcpFromPtr(p_inout),        // Current solution for p
    p_kp1 = createMember(p_space),    // Trial point for p (in line search)
    g_vec = createMember(g_space),    // Vector (size 1) form of objective g(p) 
    g_grad_k = createMember(p_space), // Gradient of g DgDp^T
    d_k = createMember(p_space),      // Search direction
    g_grad_k_diff_km1 = null;         // g_grad_k - g_grad_km1 (if needed)

  // Storage for previous iteration
  RCP<VectorBase<Scalar> >
    g_grad_km1 = null, // Will allocate if we need it!
    d_km1 = null; // Will allocate if we need it!
  ScalarMag
    alpha_km1 = SMT::zero(),
    g_km1 = SMT::zero(),
    g_grad_km1_inner_g_grad_km1 = SMT::zero(),
    g_grad_km1_inner_d_km1 = SMT::zero();
  
  if (compute_beta_PR || compute_beta_HS) {
    g_grad_km1 = createMember(p_space);
    g_grad_k_diff_km1 = createMember(p_space);
  }
  
  if (compute_beta_HS) {
    d_km1 = createMember(p_space);
  }

  //
  // B) Do the nonlinear CG iterations
  //

  *out << "\nStarting nonlinear CG iterations ...\n";

  if (and_conv_tests_) {
    *out << "\nNOTE: Using AND of convergence tests!\n";
  }
  else {
    *out << "\nNOTE: Using OR of convergence tests!\n";
  }

  const Scalar alpha_init =
    ( !is_null(alpha_init_in) ? *alpha_init_in : alpha_init_ );
  const Scalar g_reduct_tol =
    ( !is_null(g_reduct_tol_in) ? *g_reduct_tol_in : g_reduct_tol_ );
  const Scalar g_grad_tol =
    ( !is_null(g_grad_tol_in) ? *g_grad_tol_in : g_grad_tol_ );

  const Ordinal globalDim = p_space->dim();

  bool foundSolution = false;
  bool fatalLinesearchFailure = false;
  bool restart = true;
  int numConsecutiveLineSearchFailures = 0;

  int numConsecutiveIters = 0;

  for (numIters_ = 0; numIters_ < maxIters_; ++numIters_, ++numConsecutiveIters) {

    Teuchos::OSTab tab(out);

    *out << "\nNonlinear CG Iteration k = " << numIters_ << "\n";

    Teuchos::OSTab tab2(out);

    //
    // B.1) Evaluate the point (on first iteration)
    //
    
    eval_g_DgDp(
      *model_, paramIndex_, *p_k, responseIndex_,
      numIters_ == 0 ? g_vec.ptr() : null, // Only on first iteration
      MEB::Derivative<Scalar>(g_grad_k, MEB::DERIV_MV_GRADIENT_FORM) );

    const ScalarMag g_k = get_ele(*g_vec, 0);
    // Above: If numIters_ > 0, then g_vec was updated in meritFunc->eval(...).

    //
    // B.2) Check for convergence
    //

    // B.2.a) ||g_k - g_km1|| |g_k + g_mag| <= g_reduct_tol

    bool g_reduct_converged = false;

    if (numIters_ > 0) {

      const ScalarMag g_reduct = g_k - g_km1;
      
      *out << "\ng_k - g_km1 = "<<g_reduct<<"\n";
      
      const ScalarMag g_reduct_err =
        SMT::magnitude(g_reduct / SMT::magnitude(g_k + g_mag_));
      
      g_reduct_converged = (g_reduct_err <= g_reduct_tol);
      
      *out << "\nCheck convergence: |g_k - g_km1| / |g_k + g_mag| = "<<g_reduct_err
           << (g_reduct_converged ? " <= " : " > ")
           << "g_reduct_tol = "<<g_reduct_tol<<"\n";
      
    }

    // B.2.b) ||g_grad_k|| g_mag <= g_grad_tol

    const Scalar g_grad_k_inner_g_grad_k = scalarProd<Scalar>(*g_grad_k, *g_grad_k);
    const ScalarMag norm_g_grad_k = ST::magnitude(ST::squareroot(g_grad_k_inner_g_grad_k));

    *out << "\n||g_grad_k|| = "<<norm_g_grad_k << "\n";

    const ScalarMag g_grad_err = norm_g_grad_k / g_mag_;

    const bool g_grad_converged = (g_grad_err <= g_grad_tol);

    *out << "\nCheck convergence: ||g_grad_k|| / g_mag = "<<g_grad_err
         << (g_grad_converged ? " <= " : " > ")
         << "g_grad_tol = "<<g_grad_tol<<"\n";

    // B.2.c) Convergence status
    
    bool isConverged = false;
    if (and_conv_tests_) {
      isConverged = g_reduct_converged && g_grad_converged;
    }
    else {
      isConverged = g_reduct_converged || g_grad_converged;
    }

    if (isConverged) {
      if (numIters_ < minIters_) {
        *out << "\nnumIters="<<numIters_<<" < minIters="<<minIters_
             << ", continuing on!\n";
      }
      else {
        *out << "\nFound solution, existing algorithm!\n";
        foundSolution = true;
      }
    }
    else {
      *out << "\nNot converged!\n";
    }
    
    if (foundSolution) {
      break;
    }

    //
    // B.3) Compute the search direction d_k
    //

    if (numConsecutiveIters == globalDim) {

      *out << "\nThe number of consecutive iterations exceeds the"
           << " global dimension so restarting!\n";

      restart = true;

    }

    if (restart) {

      *out << "\nResetting search direction back to steppest descent!\n";

      // d_k = -g_grad_k
      V_StV( d_k.ptr(), as<Scalar>(-1.0), *g_grad_k );

      restart = false;

    }
    else {
      
      // g_grad_k - g_grad_km1
      if (!is_null(g_grad_k_diff_km1)) {
        V_VmV( g_grad_k_diff_km1.ptr(), *g_grad_k, *g_grad_km1 );
      }

      // beta_FR = inner(g_grad_k, g_grad_k) / inner(g_grad_km1, g_grad_km1)
      const Scalar beta_FR =
        g_grad_k_inner_g_grad_k / g_grad_km1_inner_g_grad_km1;
      *out << "\nbeta_FR = " << beta_FR << "\n";
      // NOTE: Computing beta_FR is free so we might as well just do it!

      // beta_PR = inner(g_grad_k, g_grad_k - g_grad_km1) /
      //    inner(g_grad_km1, g_grad_km1)
      Scalar beta_PR = ST::zero();
      if (compute_beta_PR) {
        beta_PR =
          inner(*g_grad_k, *g_grad_k_diff_km1) / g_grad_km1_inner_g_grad_km1;
        *out << "\nbeta_PR = " << beta_PR << "\n";
      }

      // beta_HS = inner(g_grad_k, g_grad_k - g_grad_km1) /
      //    inner(g_grad_k - g_grad_km1, d_km1)
      Scalar beta_HS = ST::zero();
      if (compute_beta_HS) {
        beta_HS =
          inner(*g_grad_k, *g_grad_k_diff_km1) / inner(*g_grad_k_diff_km1, *d_km1);
        *out << "\nbeta_HS = " << beta_HS << "\n";
      }
      
      Scalar beta_k = ST::zero();
      switch(solverType_) {
        case NCGU::NONLINEAR_CG_FR: {
          beta_k = beta_FR;
          break;
        }
        case NCGU::NONLINEAR_CG_PR_PLUS: {
          beta_k = max(beta_PR, ST::zero());
          break;
        }
        case NCGU::NONLINEAR_CG_FR_PR: {
          // NOTE: This does not seem to be working :-(
          if (numConsecutiveIters < 2) {
            beta_k = beta_PR;
          }
          else if (beta_PR < -beta_FR)
            beta_k = -beta_FR;
          else if (ST::magnitude(beta_PR) <= beta_FR)
            beta_k = beta_PR;
          else // beta_PR > beta_FR
            beta_k = beta_FR;
        }
        case NCGU::NONLINEAR_CG_HS: {
          beta_k = beta_HS;
          break;
        }
        default:
          TEST_FOR_EXCEPT(true);
      }
      *out << "\nbeta_k = " << beta_k << "\n";

      // d_k = beta_k * d_last + -g_grad_k
      if (!is_null(d_km1))
        V_StV( d_k.ptr(), beta_k, *d_km1 );
      else
        Vt_S( d_k.ptr(), beta_k );
      Vp_StV( d_k.ptr(), as<Scalar>(-1.0), *g_grad_k );

    }
    
    //
    // B.4) Perform the line search
    //

    // B.4.a) Compute the initial step length

    Scalar alpha_k = as<Scalar>(-1.0);

    if (numIters_ == 0) {
      alpha_k = alpha_init;
    }
    else {
      if (alpha_reinit_) {
        alpha_k = alpha_init;
      }
      else {
        alpha_k = alpha_km1;
        // ToDo: Implement better logic from Nocedal and Wright for selecting
        // this step length after first iteration!
      }
    }

    // B.4.b) Perform the linesearch (computing updated quantities in process)

    pointEvaluator->initialize(tuple<RCP<const VectorBase<Scalar> > >(p_k, d_k)());

    ScalarMag g_grad_k_inner_d_k = ST::zero();

    // Set up the merit function to only compute the value
    meritFunc->setEvaluationQuantities(pointEvaluator, p_kp1, g_vec, null);

    PointEval1D<ScalarMag> point_k(ST::zero(), g_k);
    if (linesearch_->requiresBaseDeriv()) {
      g_grad_k_inner_d_k = scalarProd(*g_grad_k, *d_k);
      point_k.Dphi = g_grad_k_inner_d_k;
    }

    ScalarMag g_kp1 = computeValue(*meritFunc, alpha_k);
    // NOTE: The above call updates p_kp1 and g_vec as well!

    PointEval1D<ScalarMag> point_kp1(alpha_k, g_kp1);

    const bool linesearchResult = linesearch_->doLineSearch(
      *meritFunc, point_k, inOutArg(point_kp1), null );

    alpha_k = point_kp1.alpha;
    g_kp1 = point_kp1.phi;

    if (linesearchResult) {
      numConsecutiveLineSearchFailures = 0;
    }
    else {
      if (numConsecutiveLineSearchFailures==0) {
        *out << "\nLine search failure, resetting the search direction!\n";
        restart = true;
      }
      if (numConsecutiveLineSearchFailures==1) {
        *out << "\nLine search failure on last iteration also, terminating algorithm!\n";
        fatalLinesearchFailure = true;
      }
      ++numConsecutiveLineSearchFailures;
    }

    if (fatalLinesearchFailure) {
      break;
    }

    //
    // B.5) Transition to the next iteration
    //
    
    alpha_km1 = alpha_k;
    g_km1 = g_k;
    g_grad_km1_inner_g_grad_km1 = g_grad_k_inner_g_grad_k;
    g_grad_km1_inner_d_km1 = g_grad_k_inner_d_k;
    std::swap(p_k, p_kp1);
    if (!is_null(g_grad_km1))
      std::swap(g_grad_km1, g_grad_k);
    if (!is_null(d_km1))
      std::swap(d_k, d_km1);
    
#ifdef TEUCHOS_DEBUG
    // Make sure we compute these correctly before they are used!
    V_S(g_grad_k.ptr(), ST::nan());
    V_S(p_kp1.ptr(), ST::nan());
#endif

  }

  //
  // C) Final clean up
  //
  
  // Get the most current value of g(p)
  *g_opt_out = get_ele(*g_vec, 0);

  // Make sure that the final value for p has been copied in!
  V_V( p_inout, *p_k );

  if (!is_null(numIters_out)) {
    *numIters_out = numIters_;
  }

  if (numIters_ == maxIters_) {
    *out << "\nMax nonlinear CG iterations exceeded!\n";
  }
  
  if (foundSolution) {
    return NonlinearCGUtils::SOLVE_SOLUTION_FOUND;
  }
  else if(fatalLinesearchFailure) {
    return NonlinearCGUtils::SOLVE_LINSEARCH_FAILURE;
  }

  // Else, the max number of iterations was exceeded
  return NonlinearCGUtils::SOLVE_MAX_ITERS_EXCEEDED;

}


} // namespace OptiPack


#endif // OPTIPACK_NONLINEAR_CG_DEF_HPP