/usr/include/trilinos/NonSmoothDescent.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2004 Sandia Corporation and Argonne National
Laboratory. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
diachin2@llnl.gov, djmelan@sandia.gov, mbrewer@sandia.gov,
pknupp@sandia.gov, tleurent@mcs.anl.gov, tmunson@mcs.anl.gov
***************************************************************** */
/*!
\file NonSmoothDescent.hpp
\brief
The NonSmoothDescent Class implements the steepest descent algorythm in
order to move a free vertex to an optimal position given an
ObjectiveFunction object and a QaulityMetric object.
\author Thomas Leurent
\date 2002-06-13
*/
#ifndef Mesquite_NonSmoothDescent_hpp
#define Mesquite_NonSmoothDescent_hpp
#include "Mesquite.hpp"
#include "VertexMover.hpp"
#include "ObjectiveFunction.hpp"
#include "MsqFreeVertexIndexIterator.hpp"
#include "MsqDebug.hpp"
#include "ElementQM.hpp"
#include "VertexPatches.hpp"
namespace MESQUITE_NS
{
#define MSQ_XDIR 0
#define MSQ_YDIR 1
#define MSQ_ZDIR 2
#define MSQ_BIG_POS_NMBR 1E300
#define MSQ_BIG_NEG_NMBR -1E300
#define MSQ_MAX_OPT_ITER 20
#define MSQ_CCW 1
#define MSQ_CW 0
#define MSQ_NO_EQUIL 101
#define MSQ_CHECK_TOP_DOWN 102
#define MSQ_CHECK_BOTTOM_UP 103
#define MSQ_TWO_PT_PLANE 104
#define MSQ_THREE_PT_PLANE 105
#define MSQ_CHECK_Y_COORD_DIRECTION 106
#define MSQ_CHECK_X_COORD_DIRECTION 107
#define MSQ_CHECK_Z_COORD_DIRECTION 108
#define MSQ_EQUIL 109
#define MSQ_HULL_TEST_ERROR 110
#define MSQ_STEP_ACCEPTED 100
#define MSQ_IMP_TOO_SMALL 101
#define MSQ_FLAT_NO_IMP 102
#define MSQ_STEP_TOO_SMALL 103
#define MSQ_EQUILIBRIUM 104
#define MSQ_ZERO_SEARCH 105
#define MSQ_MAX_ITER_EXCEEDED 106
#define MSQ_STEP_DONE 101
#define MSQ_STEP_NOT_DONE 102
#define MAX_NUM_ELEMENTS 150
#define MAX_FUNC_PER_ELEMENT 6
#define MSQ_MACHINE_EPS 1E-16
#define MSQ_TRUE 1
#define MSQ_FALSE 0
#define MSQ_MAX(a,b) (a > b ? a : b)
#define MSQ_MIN(a,b) (a < b ? a : b)
#define MSQ_LESS_THAN_MACHINE_EPS(x) ( ((fabs(x)+1.0) > 1.0) ? 0 : 1 )
#define MSQ_DOT(c,a,b,n) {\
int i99; \
if (n==2) c = a[0]*b[0] + a[1]*b[1]; \
else if (n==3) c = a[0]*b[0] + a[1]*b[1] + a[2]*b[2];\
else { \
c = 0; \
for (i99=0;i99<n;i99++) c += a[i99]*b[i99]; \
} \
}
#define MSQ_NORMALIZE(v,n) {\
int i99; \
double mag99; \
if (n==2){ \
mag99 = sqrt(v[0]*v[0] + v[1]*v[1]) ; \
if (mag99 != 0) { \
v[0] = v[0]/mag99; \
v[1] = v[1]/mag99; \
} \
} else if (n==3) {\
mag99 = sqrt(v[0]*v[0] + v[1]*v[1] + v[2]*v[2]) ; \
if (mag99 != 0) { \
v[0] = v[0]/mag99; \
v[1] = v[1]/mag99; \
v[2] = v[2]/mag99; \
} \
} else { \
mag99 = 0; \
for (i99=0;i99<n;i99++) mag99+=v[i99]+v[i99]; \
if (mag99 != 0) { \
for (i99=0;i99<n;i99++) v[i99] = v[i99]/mag99;\
} \
}\
}
#define MSQ_COPY_VECTOR(a,b,n) { \
int i99; \
if (n==2) { \
a[0] = b[0]; a[1] = b[1]; \
} else if (n==3) {\
a[0] = b[0]; a[1] = b[1]; a[2] = b[2]; \
} else { \
for (i99=0;i99<n;i99++) a[i99] = b[i99]; \
} \
}
struct ActiveSet
{
int num_active;
int num_equal;
double true_active_value;
int active_ind[150]; // need a better way of setting max number of active values
};
class NonSmoothDescent : public VertexMover
{
public:
MESQUITE_EXPORT
NonSmoothDescent(ElementQM* qm);
MESQUITE_EXPORT virtual
~NonSmoothDescent() { }
MESQUITE_EXPORT virtual
std::string get_name() const;
MESQUITE_EXPORT virtual
PatchSet* get_patch_set();
protected:
MESQUITE_EXPORT virtual
void initialize(PatchData &pd, MsqError &err);
MESQUITE_EXPORT virtual
void optimize_vertex_positions(PatchData &pd, MsqError &err);
MESQUITE_EXPORT virtual
void initialize_mesh_iteration(PatchData &pd, MsqError &err);
MESQUITE_EXPORT virtual
void terminate_mesh_iteration(PatchData &pd, MsqError &err);
MESQUITE_EXPORT virtual
void cleanup();
private:
/* local copy of patch data */
// PatchData patch_data;
int mDimension;
int freeVertexIndex;
/* smoothing parameters */
double activeEpsilon;
double minAcceptableImprovement;
double minStepSize;
/* optimization data */
VertexPatches patchSet;
ElementQM* currentQM;
double originalValue;
int iterCount;
int optIterCount;
int numFunctionValues;
double *mFunction;
double *testFunction;
double *originalFunction;
double **mGradient;
int optStatus;
int equilibriumPt;
int mSteepest;
double mSearch[3];
double mAlpha;
double maxAlpha;
double *mGS;
double *prevActiveValues;
double **mG;
double **mPDG;
int pdgInd[3];
ActiveSet *mActive;
ActiveSet *testActive;
ActiveSet *originalActive;
/* functions */
void init_opt(MsqError &err);
void init_max_step_length(PatchData& pd, MsqError &err);
/* optimize */
void minmax_opt(PatchData &pd, MsqError &err);
void step_acceptance(PatchData &pd, MsqError &err);
void get_min_estimate(double *final_est, MsqError &err);
void get_gradient_projections(MsqError &err);
void compute_alpha(MsqError &err);
void copy_active(ActiveSet *active1, ActiveSet *active2, MsqError &err);
/* function/gradient/active set computations */
bool compute_function(PatchData *pd, double *function, MsqError &err);
double** compute_gradient(PatchData *pd, MsqError &err);
void find_active_set(double *function, ActiveSet *active_set, MsqError &err);
void print_active_set(ActiveSet *active_set, double *func, MsqError &err);
/* checking validity/improvement */
int improvement_check(MsqError &err);
int validity_check(PatchData& pd, MsqError &err);
/* checking equilibrium routines */
void check_equilibrium(int *equil, int *opt_status, MsqError &err);
int convex_hull_test(double **vec, int num_vec, MsqError &err);
int check_vector_dots(double **vec, int num_vec, double *normal, MsqError &err);
void find_plane_normal(double pt1[3], double pt2[3], double pt3[3],
double *cross, MsqError &err);
void find_plane_points(int dir1, int dir2, double **vec, int num_vec, double *pt1,
double *pt2, double*pt3, int *opt_status, MsqError &err);
/* from the matrix file */
void form_grammian(double **vec, MsqError &err);
void form_PD_grammian(MsqError &err);
void singular_test(int n, double **A, int *singular, MsqError &err);
void condition3x3(double **A, double *cond, MsqError &err);
void solve2x2(double a11, double a12, double a21, double a22,
double b1, double b2, double **x,MsqError &err);
void form_reduced_matrix(double ***P, MsqError &err);
/* search direction */
void search_direction(PatchData &pd, MsqError &err);
void search_edges_faces(double **dir, MsqError &err);
void get_active_directions(double **gradient,
double ***dir, MsqError &err);
};
inline bool NonSmoothDescent::compute_function(PatchData *patch_data, double *func, MsqError &err)
{
// ASSUMES ONE VALUE PER ELEMENT; ALSO NEED 1.0/FUNCTION WHICH IS ONLY
// TRUE OF CONDITION NUMBER
// MSQ_DEBUG_PRINT(2,"Computing Function\n");
// FUNCTION_TIMER_START("Compute Function");
//TODO need to switch this to element or vertex metric evaluations
//TODO need to include boolean testing for validity
size_t i;
bool valid_bool=true;
for (i=0;i<patch_data->num_elements();i++) func[i]=0.0;
for (i=0;i<patch_data->num_elements();i++) {
valid_bool = valid_bool &&
currentQM->evaluate(*patch_data, i, func[i], err); MSQ_ERRZERO(err);
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," Function value[%d]=%g\n",i,func[i]);});
}
// FUNCTION_TIMER_END();
return(valid_bool);
}
inline double** NonSmoothDescent::compute_gradient(PatchData *patch_data, MsqError &err)
{
// FUNCTION_TIMER_START("Compute Gradient");
MSQ_DBGOUT(2) << "Computing Gradient\n";
double delta = 10e-6;
for (size_t i=0;i<patch_data->num_elements();i++) {
for (int j=0;j<3;j++) mGradient[i][j] = 0.0;
}
double *func, *fdelta;
func = (double *)malloc(sizeof(double)*150);
fdelta = (double *)malloc(sizeof(double)*150);
this->compute_function(patch_data, func, err);
if (MSQ_CHKERR(err)) {
free(func);
free(fdelta);
return 0;
}
/* gradient in the x, y, z direction */
for (int j=0;j<3;j++) {
// perturb the coordinates of the free vertex in the j direction by delta
Vector3D delta_3( 0, 0, 0 );
Vector3D orig_pos = patch_data->vertex_by_index(freeVertexIndex);
delta_3[j] = delta;
patch_data->move_vertex( delta_3, freeVertexIndex, err );
//compute the function at the perturbed point location
this->compute_function(patch_data, fdelta, err);
if (MSQ_CHKERR(err)) {
free(func);
free(fdelta);
return 0;
}
//compute the numerical gradient
for (int i=0;i<numFunctionValues;i++) {
mGradient[i][j] = (fdelta[i] - func[i])/delta;
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," Gradient value[%d][%d]=%g\n",i,j,mGradient[i][j]);});
}
// put the coordinates back where they belong
patch_data->set_vertex_coordinates( orig_pos, freeVertexIndex, err );
}
free(func);
free(fdelta);
// FUNCTION_TIMER_END();
return(mGradient);
}
inline void NonSmoothDescent::find_active_set(double *function,
ActiveSet *active_set,
MsqError & /*err*/ )
{
int i, ind;
double function_val;
double active_value0;
double temp;
// FUNCTION_TIMER_START("Find Active Set");
MSQ_DBGOUT(2) << "\nFinding the active set\n";
// initialize the active set indices to zero
for (i=0;i<numFunctionValues;i++) active_set->active_ind[i] = 0;
/* the first function value is our initial active value */
active_set->num_active = 1;
active_set->num_equal = 0;
active_set->active_ind[0] = 0;
active_set->true_active_value = function[0];
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," function value[0]: %g\n",function[0]);});
/* first sort out the active set...
all vals within active_epsilon of largest val */
for (i=1;i<numFunctionValues;i++) {
function_val = function[i];
active_set->true_active_value = MSQ_MAX(function_val,active_set->true_active_value);
active_value0 = function[active_set->active_ind[0]];
temp = fabs(function_val - active_value0);
// MSQ_DEBUG_ACTION(3,{fprintf(stdout," function value[%d]: %g\n",i,function[i]);});
if ( function_val > active_value0 ) {
if ( temp > activeEpsilon) {
active_set->num_active = 1;
active_set->num_equal = 0;
active_set->active_ind[0] = i;
} else if ( temp < activeEpsilon) {
active_set->num_active += 1;
ind = active_set->num_active - 1;
active_set->active_ind[ind] = i;
if (fabs(function_val - active_value0) < MSQ_MACHINE_EPS) {
active_set->num_equal += 1;
}
}
} else {
if (temp < activeEpsilon) {
active_set->num_active += 1;
ind = active_set->num_active - 1;
active_set->active_ind[ind] = i;
if (fabs(function_val - active_value0) < MSQ_MACHINE_EPS) {
active_set->num_equal += 1;
}
}
}
}
}
inline int NonSmoothDescent::validity_check(PatchData& pd, MsqError &err)
{
// FUNCTION_TIMER_START("Validity Check");
// ONLY FOR SIMPLICIAL MESHES - THERE SHOULD BE A VALIDITY CHECKER ASSOCIATED
// WITH MSQ ELEMENTS
/* check that the simplicial mesh is still valid, based on right handedness.
Returns a 1 or a 0 */
// TODO as a first step we can switch this over to the function
// evaluation and use the rest of the code as is
int valid = 1;
double dEps = 1.e-13;
double x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4;
const MsqVertex* coords = pd.get_vertex_array(err);
if (mDimension == 2)
{
for (size_t i=0;i<pd.num_elements();i++)
{
const size_t* conn = pd.element_by_index(i).get_vertex_index_array();
double dummy = 0;
coords[conn[0]].get_coordinates(x1, y1, dummy);
coords[conn[1]].get_coordinates(x2, y2, dummy);
coords[conn[2]].get_coordinates(x3, y3, dummy);
double a = x2*y3 - x3*y2;
double b = y2 - y3;
double c = x3 - x2;
if (.5*(a+b*x1+c*y1) < .01*MSQ_MACHINE_EPS)
valid=0;
}
}
if (mDimension == 3)
{
for (size_t i=0;i<pd.num_elements();i++)
{
const size_t* conn = pd.element_by_index(i).get_vertex_index_array();
coords[conn[0]].get_coordinates(x1, y1, z1);
coords[conn[1]].get_coordinates(x2, y2, z2);
coords[conn[2]].get_coordinates(x3, y3, z3);
coords[conn[3]].get_coordinates(x4, y4, z4);
double dDX2 = x2 - x1;
double dDX3 = x3 - x1;
double dDX4 = x4 - x1;
double dDY2 = y2 - y1;
double dDY3 = y3 - y1;
double dDY4 = y4 - y1;
double dDZ2 = z2 - z1;
double dDZ3 = z3 - z1;
double dDZ4 = z4 - z1;
/* dDet is proportional to the cell volume */
double dDet = dDX2*dDY3*dDZ4 + dDX3*dDY4*dDZ2 + dDX4*dDY2*dDZ3
- dDZ2*dDY3*dDX4 - dDZ3*dDY4*dDX2 - dDZ4*dDY2*dDX3 ;
/* Compute a length scale based on edge lengths. */
double dScale = ( sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) +
(z1-z2)*(z1-z2)) +
sqrt((x1-x3)*(x1-x3) + (y1-y3)*(y1-y3) +
(z1-z3)*(z1-z3)) +
sqrt((x1-x4)*(x1-x4) + (y1-y4)*(y1-y4) +
(z1-z4)*(z1-z4)) +
sqrt((x2-x3)*(x2-x3) + (y2-y3)*(y2-y3) +
(z2-z3)*(z2-z3)) +
sqrt((x2-x4)*(x2-x4) + (y2-y4)*(y2-y4) +
(z2-z4)*(z2-z4)) +
sqrt((x3-x4)*(x3-x4) + (y3-y4)*(y3-y4) +
(z3-z4)*(z3-z4)) ) / 6.;
/* Use the length scale to get a better idea if the tet is flat or
just really small. */
if (fabs(dScale) < MSQ_MACHINE_EPS)
{
return(valid = 0);
}
else
{
dDet /= (dScale*dScale*dScale);
}
if (dDet > dEps)
{
valid = 1;
}
else if (dDet < -dEps)
{
valid = -1;
}
else
{
valid = 0;
}
} // end for i=1,numElements
} // end mDimension==3
// MSQ_DEBUG_ACTION(2,{fprintf(stdout,"Mesh Validity is: %d \n",valid);});
// FUNCTION_TIMER_END();
return(valid);
}
inline void NonSmoothDescent::get_active_directions(double **gradient,
double ***dir,
MsqError &/*err*/)
{
int i;
int num_active = mActive->num_active;
(*dir) =(double **)malloc(sizeof(double *)*num_active);
for (i=0;i<num_active;i++) {
(*dir)[i] =(double *)malloc(sizeof(double)*mDimension);
MSQ_COPY_VECTOR((*dir)[i],gradient[mActive->active_ind[i]],mDimension);
}
}
inline int NonSmoothDescent::check_vector_dots(double **vec,
int num_vec,
double *normal,
MsqError &/*err*/)
{
int equil;
int i, ind;
double test_dot, dot;
equil = MSQ_FALSE;
MSQ_DOT(test_dot,vec[0],normal,3);
ind = 1;
while ((fabs(test_dot) < MSQ_MACHINE_EPS) && (ind<num_vec)) {
MSQ_DOT(test_dot,vec[ind],normal,3);
ind++;
}
for (i=ind;i<num_vec;i++) {
MSQ_DOT(dot,vec[i],normal,3);
if ( ((dot>0 && test_dot<0) || (dot<0 && test_dot>0)) &&
(fabs(dot)>MSQ_MACHINE_EPS)) {
return(equil = MSQ_TRUE);
}
}
return(equil);
}
inline void NonSmoothDescent::find_plane_normal(double pt1[3],
double pt2[3],
double pt3[3],
double *cross,
MsqError &/*err*/)
{
int i;
double vecA[3], vecB[3];
for (i=0;i<3;i++) {
vecA[i] = pt2[i] - pt1[i];
vecB[i] = pt3[i] - pt1[i];
}
cross[0] = vecA[1]*vecB[2] - vecA[2]*vecB[1];
cross[1] = vecA[2]*vecB[0] - vecA[0]*vecB[2];
cross[2] = vecA[0]*vecB[1] - vecA[1]*vecB[0];
MSQ_NORMALIZE(cross, 3);
}
inline int NonSmoothDescent::convex_hull_test(double **vec, int num_vec, MsqError &err)
{
// int ierr;
int equil;
int status, dir_done;
double pt1[3], pt2[3], pt3[3];
double normal[3];
// FUNCTION_TIMER_START("Convex Hull Test");
/* tries to determine equilibrium for the 3D case */
equil = 0;
status = MSQ_CHECK_Z_COORD_DIRECTION;
dir_done = -1;
if (num_vec <= 2) status = MSQ_NO_EQUIL;
while ((status != MSQ_EQUIL) && (status != MSQ_NO_EQUIL) &&
(status != MSQ_HULL_TEST_ERROR)) {
if (status == MSQ_CHECK_Z_COORD_DIRECTION) {
this->find_plane_points(MSQ_ZDIR, MSQ_YDIR,
vec, num_vec, pt1, pt2, pt3, &status, err);
dir_done = 2;
}
if (status == MSQ_CHECK_Y_COORD_DIRECTION) {
this->find_plane_points(MSQ_YDIR, MSQ_XDIR,
vec, num_vec, pt1, pt2, pt3, &status, err);
dir_done = 1;
}
if (status == MSQ_CHECK_X_COORD_DIRECTION) {
this->find_plane_points(MSQ_XDIR, MSQ_ZDIR,
vec, num_vec, pt1, pt2, pt3, &status, err);
dir_done = 0;
}
if (status == MSQ_TWO_PT_PLANE) {
pt3[0]=0.; pt3[1]=0.; pt3[2]=0.;
}
if ((status == MSQ_TWO_PT_PLANE) || (status == MSQ_THREE_PT_PLANE)){
this->find_plane_normal(pt1,pt2,pt3,normal,err);
equil = this->check_vector_dots(vec,num_vec,normal,err);
if (equil == 1) {
switch(dir_done){
case 2:
equil = 0; status = MSQ_CHECK_Y_COORD_DIRECTION;
break;
case 1:
equil = 0; status = MSQ_CHECK_X_COORD_DIRECTION;
break;
case 0:
equil = 1; status = MSQ_EQUIL;
}
} else if (equil == 0) {
status = MSQ_NO_EQUIL;
} else {
MSQ_SETERR(err)("equil flag not set to 0 or 1",MsqError::INVALID_STATE);
}
}
}
switch (status){
case MSQ_NO_EQUIL:
MSQ_PRINT(3)("Not an equilibrium point\n");
equil = 0;
break;
case MSQ_EQUIL:
MSQ_PRINT(3)("An equilibrium point\n");
equil = 1;
break;
default:
MSQ_PRINT(3)("Failed to determine equil or not; status = %d\n",status);
}
// FUNCTION_TIMER_END();
return (equil);
}
inline void NonSmoothDescent::form_grammian(double **vec, MsqError &err)
{
int i, j;
int num_active = mActive->num_active;
if (num_active > 150) {
MSQ_SETERR(err)("Exceeded maximum allowed active values",MsqError::INVALID_STATE);
return;
}
/* form the grammian with the dot products of the gradients */
for (i=0; i<num_active; i++) {
for (j=i; j<num_active; j++) {
mG[i][j] = 0.;
MSQ_DOT(mG[i][j],vec[i],vec[j],mDimension);
mG[j][i] = mG[i][j];
}
}
}
inline void NonSmoothDescent::check_equilibrium(int *equil, int *status, MsqError &err)
{
// int ierr;
int i,j;
int ind1, ind2;
double min;
double **dir;
double mid_vec[3], mid_cos, test_cos;
//TODO - this subroutine is no longer clear to me... is it still
// appropriate for quads and hexes? I think it might be in 2D, but
// 3D is less clear. Is there a more general algorithm to use?
// ask Todd/check in numerical optimization
*equil = MSQ_FALSE;
ind1 = ind2 = -1;
int num_active = mActive->num_active;
if (num_active==numFunctionValues)
{
*equil = 1; *status = MSQ_EQUILIBRIUM;
MSQ_PRINT(3)("All the function values are in the active set\n");
}
/* set up the active mGradient directions */
this->get_active_directions(mGradient,&dir,err);
/* normalize the active directions */
for (j=0;j<num_active;j++) MSQ_NORMALIZE(dir[j],mDimension);
if (mDimension == 2) {
/* form the grammian */
this->form_grammian(dir,err);
/* find the minimum element in the upper triangular portion of G*/
min = 1;
for (i=0;i<num_active;i++) {
for (j=i+1;j<num_active;j++) {
if ( fabs(-1 - mG[i][j]) < 1E-08 ) {
*equil = 1; *status = MSQ_EQUILIBRIUM;
MSQ_PRINT(3)("The gradients are antiparallel, eq. pt\n");
}
if (mG[i][j] < min) {
ind1 = i; ind2 = j;
min = mG[i][j];
}
}
}
if ((ind1 != -1) && (ind2 != -1)) {
/* find the diagonal of the parallelepiped */
for (j=0;j<mDimension;j++) {
mid_vec[j]=.5*(dir[ind1][j]+dir[ind2][j]);
}
MSQ_NORMALIZE(mid_vec,mDimension);
MSQ_DOT(mid_cos,dir[ind1],mid_vec,mDimension);
/* test the other vectors to be sure they lie in the cone */
for (i=0;i<num_active;i++) {
if ((i != ind1) && (i != ind2)) {
MSQ_DOT(test_cos,dir[i],mid_vec,mDimension);
if ((test_cos < mid_cos) && fabs(test_cos-mid_cos) > MSQ_MACHINE_EPS) {
MSQ_PRINT(3)("An equilibrium point \n");
*equil = 1; *status = MSQ_EQUILIBRIUM;
}
}
}
}
}
if (mDimension == 3) {
*equil = this->convex_hull_test(dir,num_active,err);
if (*equil == 1) *status = MSQ_EQUILIBRIUM;
}
for (i = 0; i < num_active; ++i)
free( dir[i] );
free(dir);
}
inline void NonSmoothDescent::condition3x3(double **A, double *cond,
MsqError &/*err*/)
{
// int ierr;
double a11, a12, a13;
double a21, a22, a23;
double a31, a32, a33;
// double s1, s2, s4, s3, t0;
double s1, s2, s3;
double denom;
// double one = 1.0;
double temp;
int zero_denom = MSQ_TRUE;
a11 = A[0][0]; a12=A[0][1]; a13=A[0][2];
a21 = A[1][0]; a22=A[1][1]; a23=A[1][2];
a31 = A[2][0]; a32=A[2][1]; a33=A[2][2];
denom = -a11*a22*a33+a11*a23*a32+a21*a12*a33-a21*a13*a32-
a31*a12*a23+a31*a13*a22;
if ( (fabs(a11) > MSQ_MACHINE_EPS) &&
(fabs(denom/a11) > MSQ_MACHINE_EPS)) {
zero_denom = MSQ_FALSE;
}
if ( (fabs(a22) > MSQ_MACHINE_EPS) &&
(fabs(denom/a22) > MSQ_MACHINE_EPS)) {
zero_denom = MSQ_FALSE;
}
if ( (fabs(a33) > MSQ_MACHINE_EPS) &&
(fabs(denom/a33) > MSQ_MACHINE_EPS)) {
zero_denom = MSQ_FALSE;
}
if (zero_denom) {
(*cond) = 1E300;
} else {
s1 = sqrt(a11*a11 + a12*a12 + a13*a13 +
a21*a21 + a22*a22 + a23*a23 +
a31*a31 + a32*a32 + a33*a33);
temp = (-a22*a33+a23*a32)/denom;
s3 = temp*temp;
temp =(a12*a33-a13*a32)/denom;
s3 += temp*temp;
temp = (a12*a23-a13*a22)/denom;
s3 += temp*temp;
temp = (a21*a33-a23*a31)/denom;
s3 += temp*temp;
temp = (a11*a33-a13*a31)/denom;
s3 += temp*temp;
temp = (a11*a23-a13*a21)/denom;
s3 += temp*temp;
temp = (a21*a32-a22*a31)/denom;
s3 += temp*temp;
temp = (-a11*a32+a12*a31)/denom;
s3 += temp*temp;
temp = (-a11*a22+a12*a21)/denom;
s3 += temp*temp;
s2 = sqrt(s3);
(*cond) = s1*s2;
}
}
inline void NonSmoothDescent::singular_test(int n, double **A, int *singular, MsqError &err)
{
// int test;
// double determinant;
double cond;
if ((n>3) || (n<1)) {
MSQ_SETERR(err)("Singular test works only for n=1 to n=3",MsqError::INVALID_ARG);
return;
}
(*singular)=MSQ_TRUE;
switch(n) {
case 1:
if (A[0][0] > 0) (*singular) = MSQ_FALSE;
break;
case 2:
if (fabs(A[0][0]*A[1][1] - A[0][1]*A[1][0]) > MSQ_MACHINE_EPS)
(*singular) = MSQ_FALSE;
break;
case 3:
/* calculate the condition number */
this->condition3x3(A, &cond, err);
if (cond < 1E14) (*singular)=MSQ_FALSE;
break;
}
}
inline void NonSmoothDescent::form_PD_grammian(MsqError &err)
{
int i,j,k;
int g_ind_1;
int singular = 0;
int num_active = mActive->num_active;
/* this assumes the grammian has been formed */
for (i=0;i<num_active;i++) {
for (j=0;j<num_active;j++) {
if (mG[i][j]==-1) {
MSQ_SETERR(err)("Grammian not computed properly",MsqError::INVALID_STATE);
return;
}
}
}
/* use the first gradient in the active set */
g_ind_1 = 0;
mPDG[0][0] = mG[0][0];
pdgInd[0] = mActive->active_ind[0];
/* test the rest and add them as appropriate */
k = 1; i = 1;
while( (k<mDimension) && (i < num_active) ) {
mPDG[0][k] = mPDG[k][0] = mG[0][i];
mPDG[k][k] = mG[i][i];
if ( k == 2) { /* add the dot product of g1 and g2 */
mPDG[1][k] = mPDG[k][1] = mG[g_ind_1][i];
}
this->singular_test(k+1,mPDG,&singular,err);
if (!singular) {
pdgInd[k] = mActive->active_ind[i];
if (k==1) g_ind_1 = i;
k++;
}
i++;
}
}
inline void NonSmoothDescent::search_edges_faces(double **dir, MsqError &err)
{
// int ierr;
int i,j,k;
int viable;
double a,b,denom;
double g_bar[3];
double temp_search[3];
double projection, min_projection;
int num_active = mActive->num_active;
if ( (mDimension != 2) && (mDimension != 3)) {
MSQ_SETERR(err)("Dimension must be 2 or 3", MsqError::INVALID_MESH);
}
/* initialize the search direction to 0,0 */
for (i=0;i<mDimension;i++) temp_search[i] = 0;
/* Check for viable faces */
min_projection = 1E300;
for (i=0; i<num_active; i++) {
/* FACE I */
viable = 1;
/* test the viability */
for (j=0;j<num_active;j++) { /* lagrange multipliers>0 */
if (mG[j][i] < 0) viable = 0;
}
/* find the minimum of viable directions */
if ((viable) && (mG[i][i] < min_projection)) {
min_projection = mG[i][i];
MSQ_COPY_VECTOR(temp_search,dir[i],mDimension);
mSteepest = mActive->active_ind[i];
}
/* INTERSECTION IJ */
for (j=i+1; j<num_active; j++) {
viable = 1;
/* find the coefficients of the intersection
and test the viability */
denom = 2*mG[i][j] - mG[i][i] - mG[j][j];
a = b = 0;
if (fabs(denom) > MSQ_MACHINE_EPS) {
b = (mG[i][j] - mG[i][i])/denom;
a = 1 - b;
if ((b < 0) || (b > 1)) viable=0; /* 0 < b < 1 */
for (k=0;k<num_active;k++) { /* lagrange multipliers>0 */
if ((a*mG[k][i] + b*mG[k][j]) <= 0) viable=0;
}
} else {
viable = 0; /* Linearly dependent */
}
/* find the minimum of viable directions */
if (viable) {
for (k=0;k<mDimension;k++) {
g_bar[k] = a * dir[i][k] + b * dir[j][k];
}
MSQ_DOT(projection,g_bar,g_bar,mDimension);
if (projection < min_projection) {
min_projection = projection;
MSQ_COPY_VECTOR(temp_search,g_bar,mDimension);
mSteepest = mActive->active_ind[i];
}
}
}
}
if (optStatus != MSQ_EQUILIBRIUM) {
MSQ_COPY_VECTOR(mSearch,temp_search,mDimension);
}
}
inline void NonSmoothDescent::solve2x2(double a11, double a12,
double a21, double a22,
double b1, double b2,
double **x, MsqError &/*err*/)
{
double factor;
/* if the system is not singular, solve it */
if (fabs(a11*a22 - a21*a12) > MSQ_MACHINE_EPS) {
(*x)=(double *)malloc(sizeof(double)*2);
if (fabs(a11) > MSQ_MACHINE_EPS) {
factor = (a21/a11);
(*x)[1] = (b2 - factor*b1)/(a22 - factor*a12);
(*x)[0] = (b1 - a12*(*x)[1])/a11;
} else if (fabs(a21) > MSQ_MACHINE_EPS) {
factor = (a11/a21);
(*x)[1] = (b1 - factor*b2)/(a12 - factor*a22);
(*x)[0] = (b2 - a22*(*x)[1])/a21;
}
} else {
(*x) = NULL;
}
}
inline void NonSmoothDescent::form_reduced_matrix(double ***P,
MsqError &/*err*/)
{
int i,j;
int num_active = mActive->num_active;
(*P)=(double **)malloc(sizeof(double *)*(num_active-1));
for (i=0; i<num_active-1; i++)
(*P)[i]=(double *)malloc(sizeof(double)*(num_active-1));
for (i=0;i<num_active-1;i++) {
(*P)[i][i] = mG[0][0] - 2*mG[0][i+1] + mG[i+1][i+1];
for (j=i+1;j<num_active-1;j++) {
(*P)[i][j] = mG[0][0] - mG[0][j+1] - mG[i+1][0] + mG[i+1][j+1];
(*P)[j][i] = (*P)[i][j];
}
}
}
inline void NonSmoothDescent::get_min_estimate(double *final_est,
MsqError &/*err*/)
{
int i;
double est_imp;
*final_est = -1E300;
for (i=0;i<mActive->num_active;i++) {
est_imp = -mAlpha*mGS[mActive->active_ind[i]];
if (est_imp>*final_est) *final_est = est_imp;
}
if (*final_est == 0) {
*final_est = -1E300;
for (i=0;i<numFunctionValues;i++) {
est_imp = -mAlpha*mGS[i];
if ((est_imp>*final_est) && (fabs(est_imp) > MSQ_MACHINE_EPS)) {
*final_est = est_imp;
}
}
}
}
inline void NonSmoothDescent::get_gradient_projections(MsqError &/*err*/)
{
for (int i=0;i<numFunctionValues;i++)
MSQ_DOT(mGS[i],mGradient[i],mSearch,mDimension);
MSQ_PRINT(3)("steepest in get_gradient_projections %d\n",mSteepest);
}
inline void NonSmoothDescent::compute_alpha(MsqError &/*err*/)
{
// int ierr;
// int j;
int i;
// int ind;
int num_values;
double steepest_function;
double steepest_grad;
double alpha_i;
double min_positive_value=1E300;
// FUNCTION_TIMER_START("Compute Alpha");
MSQ_PRINT(2)("In compute alpha\n");
num_values = numFunctionValues;
mAlpha = 1E300;
steepest_function = mFunction[mSteepest];
steepest_grad = mGS[mSteepest];
for (i=0;i<num_values;i++)
{
/* if it's not active */
if (i!=mSteepest)
{
alpha_i = steepest_function - mFunction[i];
if (fabs(mGS[mSteepest] - mGS[i])>1E-13) {
/* compute line intersection */
alpha_i = alpha_i/(steepest_grad - mGS[i]);
} else {
/* the lines don't intersect - it's not under consideration*/
alpha_i = 0;
}
if ((alpha_i > minStepSize ) && (fabs(alpha_i) < fabs(mAlpha))) {
mAlpha = fabs(alpha_i);
MSQ_PRINT(3)("Setting alpha %d %g\n",i,alpha_i);
}
if ((alpha_i > 0) && (alpha_i < min_positive_value)) {
min_positive_value = alpha_i;
}
}
}
if ((mAlpha == 1E300) && (min_positive_value != 1E300)) {
mAlpha = min_positive_value;
}
/* if it never gets set, set it to the default */
if (mAlpha == 1E300) {
mAlpha = maxAlpha;
MSQ_PRINT(3)("Setting alpha to the maximum step length\n");
}
MSQ_PRINT(3)(" The initial step size: %f\n",mAlpha);
// FUNCTION_TIMER_END();
}
inline void NonSmoothDescent::copy_active(ActiveSet *active1, ActiveSet *active2,
MsqError &err)
{
if (active1==NULL || active2==NULL) {
MSQ_SETERR(err)("Null memory in copy_active\n",MsqError::INVALID_ARG);
return;
}
active2->num_active = active1->num_active;
active2->num_equal = active1->num_equal;
active2->true_active_value = active1->true_active_value;
for (int i=0;i<active1->num_active;i++) {
active2->active_ind[i] = active1->active_ind[i];
}
}
inline void NonSmoothDescent::print_active_set(ActiveSet *active_set,
double * func,
MsqError &err)
{
if (active_set==0) {
MSQ_SETERR(err)("Null ActiveSet", MsqError::INVALID_ARG);
return;
}
if (active_set->num_active == 0) MSQ_DBGOUT(3)<< "No active values\n";
/* print the active set */
for (int i=0;i<active_set->num_active;i++) {
MSQ_PRINT(3)("Active value %d: %f \n",
i+1,func[active_set->active_ind[i]]);
}
}
inline void NonSmoothDescent::init_opt(MsqError &err)
{
int i, j;
MSQ_PRINT(2)("\nInitializing Optimization \n");
if (numFunctionValues > 150) {
MSQ_SETERR(err)("num_values exceeds 150", MsqError::INVALID_STATE);
}
/* for the purposes of initialization will be set to zero after */
equilibriumPt = 0;
optStatus = 0;
iterCount = 0;
optIterCount = 0;
mSteepest = 0;
mAlpha = 0;
maxAlpha = 0;
MSQ_PRINT(3)(" Initialized Constants \n");
for (i=0;i<3;i++) {
mSearch[i] = 0;
pdgInd[i] = -1;
for (j=0;j<3;j++) mPDG[i][j] = 0;
}
MSQ_PRINT(3)(" Initialized search and PDG \n");
for (i=0;i<numFunctionValues;i++) {
mFunction[i] = 0;
testFunction[i] = 0;
originalFunction[i] = 0;
mGS[i] = 0;
for (j=0;j<3;j++) {
mGradient[i][j] = 0;
}
}
MSQ_PRINT(3)(" Initialized function/gradient \n");
if (numFunctionValues > 150) {
for (i=0;i<150;i++) {
for (j=0;j<150;j++) mG[i][j] = -1;
}
} else {
for (i=0;i<numFunctionValues;i++) {
for (j=0;j<numFunctionValues;j++) mG[i][j] = -1;
}
}
MSQ_PRINT(3)(" Initialized G\n");
for (i=0;i<100;i++) prevActiveValues[i] = 0;
MSQ_PRINT(3)(" Initialized prevActiveValues\n");
}
inline void NonSmoothDescent::init_max_step_length(PatchData& pd, MsqError &err)
{
size_t i, j;
double max_diff = 0;
double diff=0;
MSQ_PRINT(2)("In init_max_step_length\n");
/* check that the input data is correct */
if (pd.num_elements()==0) {
MSQ_SETERR(err)("Num incident vtx = 0\n",MsqError::INVALID_MESH);
return;
}
if ((mDimension!=2) && (mDimension!=3)) {
MSQ_SETERR(err)("Problem dimension is incorrect", MsqError::INVALID_MESH);
return;
}
/* find the maximum distance between two incident vertex locations */
const MsqVertex* coords = pd.get_vertex_array(err);
for (i=0;i<pd.num_nodes()-1;i++) {
for (j=i;j<pd.num_nodes();j++) {
diff = (coords[i]-coords[j]).length_squared();
if (max_diff < diff) max_diff=diff;
}
}
max_diff = sqrt(max_diff);
if (max_diff==0) {
MSQ_SETERR(err)("Maximum distance between incident vertices = 0\n",
MsqError::INVALID_MESH);
return;
}
maxAlpha = max_diff/100;
MSQ_PRINT(3)(" Maximum step is %g\n",maxAlpha);
}
} // namespace
#endif // Mesquite_NonSmoothDescent_hpp
|