This file is indexed.

/usr/include/trilinos/NOX_MeritFunction_SumOfSquares.H is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// $Id$ 
// $Source$ 

//@HEADER
// ************************************************************************
// 
//            NOX: An Object-Oriented Nonlinear Solver Package
//                 Copyright (2002) Sandia Corporation
// 
//            LOCA: Library of Continuation Algorithms Package
//                 Copyright (2005) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// 
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or 
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
//  CVS Information
//  $Source$
//  $Author$
//  $Date$
//  $Revision$
// ************************************************************************
//@HEADER

#ifndef NOX_MERITFUNCTION_SUMOFSQUARES_H
#define NOX_MERITFUNCTION_SUMOFSQUARES_H

#include "NOX_Common.H"  // for ostream
#include "Teuchos_RCP.hpp"
#include "NOX_Utils.H"
#include "NOX_MeritFunction_Generic.H"
#include "NOX_LineSearch_Utils_Slope.H"

namespace NOX {

namespace MeritFunction {

  //! Sum of squares merit function.
  /*!
    A basic merit function used in many nonlinear equation solvers:
    
    \f[
      f = \frac{1}{2} \| F(x) \| ^2
    \f]

    Where the norm is the 2-Norm using the NOX::Abstract::Vector's
    inner product.

    This is the default merit function used in nox.

    This merit function is taken from: J. E. Dennis Jr. and Robert B.
    Schnabel, "Numerical Methods for Unconstrained Optimization and
    Nonlinear Equations," Prentice Hall, 1983
  */
  class SumOfSquares : public virtual NOX::MeritFunction::Generic {

  public:			

    //! Constructor.
    SumOfSquares(const Teuchos::RCP<NOX::Utils>& u);
    
    //! Destructor.
    virtual ~SumOfSquares();

    //! Computes the merit function, \f$ f(x) = \frac{1}{2}\| F(x) \|^2 \f$. 
    virtual double computef(const NOX::Abstract::Group& grp) const;
    
    //! Computes the gradient, \f$ g = \nabla f(x) = J(x)^T F(x) \f$.
    virtual void computeGradient(const NOX::Abstract::Group& group,
				 NOX::Abstract::Vector& result) const;
    
    //! Computes the slope, \f$ s(x,d) = d^T \nabla f(x) = d^T J(x)^T F(x) \f$.
    /*! If the Jacobian is not computed in the \c grp object, then the
      slope can be approximated using directional derivatives.  More
      information can be found in the method computeSlopeWithoutJac.
     */
    virtual double computeSlope(const NOX::Abstract::Vector& dir,
				const NOX::Abstract::Group& grp) const;
    
    //! Computes the quadratic model, \f$ m(x,d) = f(x) + \nabla f(x)^T d + d^T \nabla^2 f(x) d \f$.
    /*!
      We approximate \f$ \nabla^2f(x) \approx J^TJ \f$: 

      \f[
        m(d) = f(x) + (J(x)^T F)^T d + \frac{1}{2} d^T B d
      \f]
    */
    virtual double computeQuadraticModel(const NOX::Abstract::Vector& dir,
				   const NOX::Abstract::Group& grp) const;
    
    //! Computes the vector  in the steepest descent direction that minimizes, the quadratic model.
    /*!
      Computes the vector \c result:
    \f[
      result = \frac{\nabla f^T \nabla f}{\nabla f^T B \nabla f} \nabla f = -\frac{(J^T F)^T (J^T F)}{(J J^T F)^T (J J^T F)} J^T F
    \f]
    */
    virtual void computeQuadraticMinimizer(const NOX::Abstract::Group& grp,
				     NOX::Abstract::Vector& result) const;

    virtual const string& name() const;

  private:
    
    //! Disallow default ctor.
    SumOfSquares() {};

    //! This is a variant of the computeSlope() method above optimized to work with out having to compute an explicit Jacobian.  
    /*!
      Calculates and returns 
      \f[
      \zeta = d^T \nabla f(x) = d^TJ^TF
      \f]

    Here \f$d\f$ represents the input parameter \c dir \f$\nabla
    f(x)\f$ is the gradient associated with the given group (for
    nonlinear solves this equates to \f$ J^TF \f$ where \f$ J \f$ is
    the Jacobian and \f$ F \f$ is the original nonlinear function).

    We can rewrite this equation as:

    \f[ d^TJ^TF = F^TJd \f]
    
    which allows us to use directional derivatives to estimate \f$ J^TF \f$:

    \f[ F^TJd = F^T \frac{F(x + \eta d) - F(x)}{\eta} \f]

    This may allow for faster computations of the slope if the
    Jacobian is expensive to evaluate.

    where \f$\eta\f$ is a scalar perturbation calculated by:

    \f[ \eta = \lambda * (\lambda + \frac{\| x\|}{\| d\|} ) \f]

    \f$ \lambda \f$ is a constant fixed at 1.0e-6.

    */
    virtual double 
    computeSlopeWithoutJacobian(const NOX::Abstract::Vector& dir,
				const NOX::Abstract::Group& grp) const;

    //! This is a variant of the computeSlope() method above that works when the Jacobian operator is available but doesn't support transpose
    /*!
      Calculates and returns 
      \f[
      \zeta = d^T \nabla f(x) = (Jd)^TF
      \f]

    Variables are as defined above.  This alternative form for the slope
    is provided to support Jacobian operators which do not
    support the transpose operation.
    */
    virtual double 
    computeSlopeWithoutJacobianTranspose(const NOX::Abstract::Vector& dir,
				         const NOX::Abstract::Group& grp) const;

  private:

    //!Printing utilities.
    Teuchos::RCP<Utils> utils;

    //! Temporary vector for computations.
    mutable Teuchos::RCP<NOX::Abstract::Vector> tmpVecPtr;

    //! Temporary vector for computations.
    /*! Only allocated if the method computeJacobianWithOutJac is called. */
    mutable Teuchos::RCP<NOX::Abstract::Group> tmpGrpPtr;

    //! Name of this function
    string meritFunctionName;

  };
} // namespace MeritFunction
} // namespace NOX

#endif