/usr/include/trilinos/NOX_MeritFunction_Generic.H is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// LOCA: Library of Continuation Algorithms Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef NOX_MERITFUNCTION_GENERIC_H
#define NOX_MERITFUNCTION_GENERIC_H
#include "NOX_Common.H" // for ostream
// Forward declaration
namespace NOX {
namespace Abstract {
class Vector;
class Group;
}
}
namespace NOX {
namespace MeritFunction {
//! Base class to support a user defined merit function that can be passed to line searches and directions through the parameter list.
/*!
This class allows the user to define their own merit function for use in a line search. Each line search type will specify in it's input parameter list if it supports this functionality.
To create and use a user defined merit function:
<ol>
<li> Create a merit function that derives from
NOX::Parameter::MeritFunction. For example, the merit function \c Foo might be
defined as shown below.
\code
class Foo : public NOX::Parameter::MeritFunction {
// Insert class definition here
}
\endcode
<li> Create the appropriate entries in the parameter list, as follows.
\code
Foo foo();
params.sublist("Solver Options").set("User Defined Merit Function", foo);
\endcode
</ol>
*/
class Generic {
public:
//! Default Constructor.
Generic(){};
//! Destructor.
virtual ~Generic(){};
//! Computes the merit function, \f$ f(x) \f$.
virtual double computef(const NOX::Abstract::Group& grp) const = 0;
//! Computes the gradient of the merit function, \f$ \nabla f \f$, and returns the result in the \c result vector.
virtual void computeGradient(const NOX::Abstract::Group& group,
NOX::Abstract::Vector& result) const = 0;
//! Computes the inner product of the given direction and the gradient associated with the merit function. Returns the steepest descent direction in the \c result vector.
/*!
Calculates and returns \f$ \zeta \f$:
\f[
\zeta = \nabla f(x)^T d
\f]
Here \f$d\f$ represents the input parameter \c dir and \f$\nabla
f(x)\f$ is the gradient of the merit function.
*/
virtual double computeSlope(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const = 0;
//! Compute the quadratic model,\f$ m(d) \f$, for the given merit function.
/*! Computes and returns \f$ m(d) \f$:
\f[
m(d) = f(x) + \nabla f(x)^T d + d^T \nabla^2 f(x) d + d^T \mathbf{B} d
\f]
Here \f$d\f$ represents the input parameter \c dir. \f$ B \f$ is
the Hessian of the merit function,\f$\nabla^2 f(x)\f$, but can be
approximated with the restriction that it is a symmetric and has
uniform boundedness in the iterate sequence (see J. Nocedal and
S. J. Wright, "Numerical Optimization", Springer, 1999. Chapters 4
and 6).
*/
virtual double computeQuadraticModel(const NOX::Abstract::Vector& dir,
const NOX::Abstract::Group& grp) const = 0;
//! Computes the vector in the steepest descent direction that minimizes the quadratic model.
/*! The quadratic model is defined as:
\f[
m(d) = f(x) + \nabla f(x)^T d + d^T \nabla^2 f(x) d + d^T \mathbf{B} d
\f]
where \f$ B \f$ is ideally the Hessian of the merit
function,\f$\nabla^2 f(x)\f$, but can be approximated with the
restriction that it is a symmetric and has uniform boundedness in
the iterate sequence (see J. Nocedal and S. J. Wright, "Numerical
Optimization", Springer, 1999. Chapters 4 and 6).
The \c result vector should be computed as:
\f[
result = -\frac{\nabla f^T \nabla f}{\nabla f^T B \nabla f} \nabla f
\f]
*/
virtual void computeQuadraticMinimizer(const NOX::Abstract::Group& grp,
NOX::Abstract::Vector& result) const = 0;
//! Returns the name of the merit function.
virtual const string& name() const = 0;
};
} // namespace MeritFunction
} // namespace NOX
#endif
|