/usr/include/trilinos/NOX_Direction_NonlinearCG.H is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// LOCA: Library of Continuation Algorithms Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef SOLVER_NONLINEARCG_H
#define SOLVER_NONLINEARCG_H
#include "NOX_Direction_Generic.H" // base class
// Forward declaration
namespace NOX {
class Utils;
class GlobalData;
}
namespace NOX {
namespace Direction {
//! Calculates a search direction using the Nonlinear Conjugate Gradient method
/*!
Calculates the direction
\f[
d = - M^{-1}(x) F(x) + \beta d_{prev}
\f]
where \f$ M \f$ is a preconditioner and \f$ \beta \f$ is an
orthogonalization parameter which can be computed in various ways
(see below), and \f$ d_{prev} \f$ is the search direction from the
previous nonlinear iteration.
This method provides a generalization of %Linear CG to nonlinear
problems. It does this by computing a search direction using
an expression analogous to that of %Linear CG. The negative of
the current residual vector, \f$ F(x) \f$ is taken, allowed to be
preconditioned, and then orthogonalized against the previous search
direction. This direction can sometimes be used successfully with the
various choices provided in NOX::Linesearch but is intended to be used
with NOX::Linesearch::NonlinearCG. In fact, the expected convergence
behavior of linear problems can only be achieved in this way.
To use this direction, specify that the "Method" is "NonlinearCG" in the
"Direction" sublist of the parameters that are passed to the solver
(see NOX::Direction::Manager for more information on choosing the
search direction).
The following options may be specified in the "Nonlinear CG" sublist
of the "Direction" sublist of the solver parameters.
<ul>
<li> "Orthogonalize" can be either of:
<ul>
<li>"Fletcher-Reeves" [default] - \f$ \beta = \frac{F(x)^T M^{-1}(x)
F(x)}{F(x_{prev})^T M^{-1}(x_{prev}) F(x_{prev})}\f$
<li>"Polak-Ribiere" - \f$ \beta = max \left\{ \beta^{PR}, 0 \right\} \f$ ,
where
\f$ \beta^{PR} = \frac{F(x)^T \left[M^{-1}(x) F(x)
- M^{-1}(x_{prev}) F(x_{prev})\right]}{F(x_{prev})^T M^{-1}(x_{prev})
F(x_{prev})}\f$
</ul>
These comprise the two most popular choices for orthogonalization.
Both reduce to the linear result for linear problems. "Polak-Ribiere"
provides an implied restart capability by setting \f$ \beta = 0 \f$
anytime the computed value is less than zero.
<li> "Precondition" can be either "On" or "Off" [default]:
determines whether or not to compute and apply preconditioner \f$ M \f$.
If "Off" is selected, no preconditioner is computed and the behavior is
equivalent to \f$ M = I \f$ where \f$ I \f$ is the identity matrix.
If "On", \f$ M \f$ is computed and applied as determined by the
underlying implementation of the "applyRightPreconditioning" method
in the Group.
<li> "Restart Frequency" - An integer specification of the number of nonlinear
iterations between restarts [default = 10]. Restart corresponds to
setting \f$\beta = 0\f$. A good heuristic is to limit this value to
the number of problem degrees of freedom. Setting this value to 1
forces \f$ \beta = 0 \f$ for every nonlinear iteration which corresponds
to suppressing orthogonalization against the previous search direction.
</ul>
<b>References</b>
<ul>
Additional information about both linear and nonlinear conjugate gradient
methods can be found in Chapter 5 of:
<li>Nocedal & Wright, "Numerical Optimization", Springer-Verlag,
New York, 1999.</li>
Though presented within the context of nonlinear optimization, the connection
to nonlinear systems of equations is made by the correspondence
\f$ \nabla f(x) \leftrightarrow F(x) \f$ (cf Algorithm 5.4).
Another useful useful reference is:
<li>Jonathan Richard Shewchuk,
<A HREF="http://www-2.cs.cmu.edu/~jrs/jrspapers.html"/>
"An Introduction to the Conjugate Gradient Method Without the Agonizing
Pain</A>," 1994.</li> Chapter 14 provides a summary of issues in generalizing
linear CG to the nonlinear case. Correspondence to NOX notation
is made by the equivalence \f$ r \leftrightarrow f' \leftrightarrow F(x) \f$
(cd Section 14.1).
</ul>
*/
class NonlinearCG : public Generic {
public:
//! Constructor.
NonlinearCG(const Teuchos::RCP<NOX::GlobalData>& gd,
Teuchos::ParameterList& params);
//! Destructor.
virtual ~NonlinearCG();
//! derived
virtual bool reset(const Teuchos::RCP<NOX::GlobalData>& gd,
Teuchos::ParameterList& p);
//! derived
virtual bool compute(Abstract::Vector& dir, Abstract::Group& grp,
const Solver::Generic& solver);
// derived
virtual bool compute(NOX::Abstract::Vector& dir, NOX::Abstract::Group& grp,
const NOX::Solver::LineSearchBased& solver);
private:
//! Global data pointer. Keep this so the parameter list remains valid.
Teuchos::RCP<NOX::GlobalData> globalDataPtr;
//! Printing Utils
Teuchos::RCP<NOX::Utils> utils;
//! Previous solution pointer.
const Abstract::Group* oldSolnPtr;
//! Temporary vector used in applying preconditioner.
Teuchos::RCP<Abstract::Vector> tmpVecPtr;
//! Previous search direction pointer.
/*! The current search direction is found by orthogonalizing against the
previous search direction. This vector provides storage for the
old search direction. */
Teuchos::RCP<Abstract::Vector> oldDirPtr;
//! Pointer to previous descent direction.
/*! This vector stores the old descent direction which was orthogonalized
to determine the old search direction. It is needed in the numerator
of the expression for Polak-Ribiere \f$ \beta \f$. */
Teuchos::RCP<Abstract::Vector> oldDescentDirPtr;
//! Temporary vector used in computing the numerator of Polak-Ribiere \f$ \beta \f$.
Teuchos::RCP<Abstract::Vector> diffVecPtr;
//! Input parameters.
Teuchos::ParameterList* paramsPtr;
//! Orthogonalization parameter \f$ \beta \f$.
double beta;
//! Number of nonlinear iterations.
int niter;
//! Restart frequency.
int restartFrequency;
//! Boolean flag indicating whether or not to use preconditioning
bool doPrecondition;
//! Boolean flag indicating if beta is computed using Polak-Ribiere
bool usePRbeta;
};
} // namespace Direction
} // namespace NOX
#endif
|