/usr/include/trilinos/NOX_Abstract_Group.H is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 | // $Id$
// $Source$
//@HEADER
// ************************************************************************
//
// NOX: An Object-Oriented Nonlinear Solver Package
// Copyright (2002) Sandia Corporation
//
// LOCA: Library of Continuation Algorithms Package
// Copyright (2005) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions? Contact Roger Pawlowski (rppawlo@sandia.gov) or
// Eric Phipps (etphipp@sandia.gov), Sandia National Laboratories.
// ************************************************************************
// CVS Information
// $Source$
// $Author$
// $Date$
// $Revision$
// ************************************************************************
//@HEADER
#ifndef NOX_ABSTRACT_GROUP_H
#define NOX_ABSTRACT_GROUP_H
#include "NOX_Abstract_Vector.H" // for NOX::CopyType
#include "NOX_Common.H" // for string
#include "Teuchos_RCP.hpp"
namespace Teuchos {
class ParameterList;
}
namespace NOX {
namespace Abstract {
class MultiVector;
}
}
namespace NOX {
namespace Abstract {
/*!
\brief %NOX pure abstract interface to a "group"; i.e., a
solution vector and the corresponding F-vector, Jacobian matrix,
gradient vector, and Newton vector.
This class is a member of the namespace NOX::Abstract.
The user should implement their own concrete implementation of this
class or use one of the implementations provided by us. Typically
the implementation is also tied to a particular
NOX::Abstract::Vector implementation.
\note The group may be implemented so that multiple groups can
share underlying memory space. This is particularly important when
it comes to the Jacobian, which is often to big to be replicated
for every group. Thus, we have included instructions on how
<em>shared data</em> should be treated for the operator=() and
clone() functions.
*/
class Group {
public:
/*!
\brief The computation of, say, the Newton direction in
computeNewton() may fail in many different ways, so we have
included a variety of return codes to describe the failures. Of
course, we also have a code for success.
\note These return types may be expanded in future releases.
*/
enum ReturnType {
//! Computation completed successfully
Ok,
//! This function is not implemented
NotDefined,
//! Data dependencies not satisfied
BadDependency,
//! Unable to satisfy convergence criteria
NotConverged,
//! Any other type of failure
Failed
};
//! Constructor.
/*!
\note Constructors for any derived object should always define a default
x-value so that getX() is always defined.
*/
Group() {};
//! Destructor.
virtual ~Group() {};
/*!
\brief Copies the source group into this group.
\note Any <em>shared data</em> owned by the source should have
its ownership transfered to this group. This may result in
a secret modification to the source object.
*/
virtual NOX::Abstract::Group& operator=(const NOX::Abstract::Group& source) = 0;
//@{ \name "Compute" functions.
//! Set the solution vector x to y.
/*!
\note
This should invalidate the function value, Jacobian,
gradient, and Newton direction.
\note
Throw an error if the copy fails.
\return
Reference to this object
*/
virtual void setX(const NOX::Abstract::Vector& y) = 0;
//! Compute x = grp.x + step * d.
/*!
Let \f$x\f$ denote this group's solution vector.
Let \f$\hat x\f$ denote the result of grp.getX().
Then set
\f[
x = \hat x + \mbox{step} \; d.
\f]
\note
This should invalidate the function value, Jacobian,
gradient, and Newton direction.
\note
Throw an error if the copy fails.
\return
Reference to this object
*/
virtual void computeX(const NOX::Abstract::Group& grp,
const NOX::Abstract::Vector& d, double step) = 0;
//! Compute and store F(x).
/*!
\note
It's generally useful to also compute and store the 2-norm of F(x)
at this point for later access by the getNormF() function.
\return
<ul>
<li> NOX::Abstract::Group::Failed - If the computation fails in any way
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType computeF() = 0;
//! Compute and store Jacobian.
/*!
Recall that
\f[
F(x) = \left[ \begin{array}{c} F_1(x) \\ F_2(x) \\ \vdots \\ F_n(x) \\ \end{array} \right].
\f]
The \b Jacobian
is denoted by \f$J\f$ and defined by
\f[
J_{ij} = \frac{\partial F_i}{\partial x_j} (x).
\f]
\note
If this is a <em>shared object</em>, this group should taken
ownership of the Jacobian before it computes it.
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::Failed - If the computation fails in any other way
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType computeJacobian();
//! Compute and store gradient.
/*!
We can pose the nonlinear equation problem \f$F(x) = 0\f$ as an optimization problem as follows:
\f[
\min f(x) \equiv \frac{1}{2} \|F(x)\|_2^2.
\f]
In that case, the \b gradient (of \f$f\f$) is defined as
\f[
g \equiv J^T F.
\f]
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If either \f$F\f$ or \f$J\f$ has not been computed
<li> NOX::Abstract::Group::Failed - If the computation fails in any other way
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType computeGradient();
//! Compute the Newton direction, using parameters for the linear solve.
/*!
The <b>Newton direction</b> is the solution, s, of
\f[
J s = -F.
\f]
The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.
The "Tolerance" parameter may be added/modified in the sublist of
"Linear Solver" parameters that is passed into this function. The
solution should be such that
\f[
\frac{\| J s - (-F) \|_2}{\max \{ 1, \|F\|_2\} } < \mbox{Tolerance}
\f]
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If either \f$F\f$ or \f$J\f$ has not been computed
<li> NOX::Abstract::Group::NotConverged - If the linear solve fails to satisfy the "Tolerance"
specified in \c params
<li> NOX::Abstract::Group::Failed - If the computation fails in any other way
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType computeNewton(Teuchos::ParameterList& params);
//@}
/** @name Jacobian operations.
Operations using the Jacobian matrix.
*/
//@{
//! Applies Jacobian to the given input vector and puts the answer in the result.
/*!
Computes
\f[ v = J u, \f]
where \f$J\f$ is the Jacobian, \f$u\f$ is the input vector, and \f$v\f$ is the result vector.
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If the Jacobian \f$J\f$ has not been computed
<li> NOX::Abstract::Group::Failed - If the computation fails
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobian(const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//! Applies Jacobian-Transpose to the given input vector and puts the answer in the result.
/*!
Computes
\f[ v = J^T u, \f]
where \f$J\f$ is the Jacobian, \f$u\f$ is the input vector, and \f$v\f$ is the result vector.
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If \f$J\f$ has not been computed
<li> NOX::Abstract::Group::Failed - If the computation fails
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobianTranspose(const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
/*!
\brief Applies the inverse of the Jacobian matrix to the given
input vector and puts the answer in result.
Computes
\f[ v = J^{-1} u, \f]
where \f$J\f$ is the Jacobian, \f$u\f$ is the input vector, and \f$v\f$ is the result vector.
The "Tolerance" parameter specifies that the
solution should be such that
\f[
\frac{\| J v - u \|_2}{\max \{ 1, \|u\|_2\} } < \mbox{Tolerance}
\f]
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If \f$J\f$ has not been computed
<li> NOX::Abstract::Group::NotConverged - If the linear solve fails to satisfy the "Tolerance"
specified in \c params
<li> NOX::Abstract::Group::Failed - If the computation fails
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
The parameter "Tolerance" may be added/modified in the list of
parameters - this is the ideal solution tolerance for an iterative
linear solve.
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobianInverse(Teuchos::ParameterList& params,
const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//! Apply right preconditiong to the given input vector
/*!
Let \f$M\f$ be a right preconditioner for the Jacobian \f$J\f$; in
other words, \f$M\f$ is a matrix such that
\f[ JM \approx I. \f]
Compute
\f[ u = M^{-1} v, \f]
where \f$u\f$ is the input vector and \f$v\f$ is the result vector.
If <em>useTranspose</em> is true, then the transpose of the
preconditioner is applied:
\f[ u = {M^{-1}}^T v, \f]
The transpose preconditioner is currently only required for
Tensor methods.
The "Tolerance" parameter specifies that the
solution should be such that
\f[
\frac{\| M v - u \|_2}{\max \{ 1, \|u\|_2\} } < \mbox{Tolerance}
\f]
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::NotConverged - If the linear solve fails to satisfy the "Tolerance"
specified in \c params
<li> NOX::Abstract::Group::Failed - If the computation fails
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
The parameters are from the "Linear %Solver" sublist of the
"Direction" sublist that is passed to solver during construction.
*/
virtual NOX::Abstract::Group::ReturnType
applyRightPreconditioning(bool useTranspose,
Teuchos::ParameterList& params,
const NOX::Abstract::Vector& input,
NOX::Abstract::Vector& result) const;
//@}
/** @name Block Jacobian operations.
Operations using the Jacobian matrix.
*/
//@{
//! applyJacobian for multiple right-hand sides
/*!
* The default implementation here calls applyJacobian() for
* each right hand side serially but should be overloaded if a
* block method is available.
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobianMultiVector(const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! applyJacobianTranspose for multiple right-hand sides
/*!
* The default implementation here calls applyJacobianTranspose() for
* each right hand side serially but should be overloaded if a
* block method is available.
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobianTransposeMultiVector(const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! applyJacobianInverse for multiple right-hand sides
/*!
* The default implementation here calls applyJacobianInverse() for
* each right hand side serially but should be overloaded if a
* block solver is available.
*/
virtual NOX::Abstract::Group::ReturnType
applyJacobianInverseMultiVector(Teuchos::ParameterList& params,
const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//! applyRightPreconditioning for multiple right-hand sides
/*!
* The default implementation here calls applyRightPreconditioning() for
* each right hand side serially but should be overloaded if a
* block method is available.
*/
virtual NOX::Abstract::Group::ReturnType
applyRightPreconditioningMultiVector(
bool useTranspose,
Teuchos::ParameterList& params,
const NOX::Abstract::MultiVector& input,
NOX::Abstract::MultiVector& result) const;
//@}
/** @name "Is" functions.
Checks to see if various objects have been computed. Returns true
if the corresponding "compute" function has been called since the
last change to the solution vector.
*/
//@{
//! Return true if F is valid.
virtual bool isF() const = 0;
//! Return true if the Jacobian is valid.
/*! \note Default implementation in NOX::Abstract::Group returns false. */
virtual bool isJacobian() const;
//! Return true if the gradient is valid.
/*! \note Default implementation in NOX::Abstract::Group returns false. */
virtual bool isGradient() const;
//! Return true if the Newton direction is valid.
/*! \note Default implementation in NOX::Abstract::Group returns false. */
virtual bool isNewton() const;
//@}
/** @name "Get" functions.
Note that these function do not check whether or not the vectors
are valid. Must use the "Is" functions for that purpose.
*/
//@{
//! Return solution vector.
virtual const NOX::Abstract::Vector& getX() const = 0;
//! Return F(x)
virtual const NOX::Abstract::Vector& getF() const = 0;
//! Return 2-norm of F(x).
/*! In other words, \f[ \sqrt{\sum_{i=1}^n F_i^2} \f] */
virtual double getNormF() const = 0;
//! Return gradient.
virtual const NOX::Abstract::Vector& getGradient() const = 0;
//! Return Newton direction.
virtual const NOX::Abstract::Vector& getNewton() const = 0;
/*!
\brief
Return the norm of the last linear solve residual as the result of
either a call to computeNewton() or applyJacobianInverse().
\return
<ul>
<li> NOX::Abstract::Group::NotDefined - Returned by default implementation in NOX::Abstract::Group
<li> NOX::Abstract::Group::BadDependency - If no linear solve has been calculated
<li> NOX::Abstract::Group::Failed - Any other type of failure
<li> NOX::Abstract::Group::Ok - Otherwise
</ul>
*/
virtual NOX::Abstract::Group::ReturnType
getNormLastLinearSolveResidual(double& residual) const;
//@}
//@{ \name Creating new Groups.
/*!
\brief Create a new %Group of the same derived type as this one by
cloning this one, and return a ref count pointer to the new group.
If type is NOX::DeepCopy, then we need to create an exact replica
of "this". Otherwise, if type is NOX::ShapeCopy, we need only
replicate the shape of "this" (only the memory is allocated, the
values are not copied into the vectors and Jacobian). Returns NULL
if clone is not supported.
\note Any <em>shared data</em> should have its ownership transfered to this
group from the source for a NOX::DeepCopy.
*/
virtual Teuchos::RCP<NOX::Abstract::Group>
clone(NOX::CopyType type = NOX::DeepCopy) const = 0;
//@}
private:
};
} // namespace Abstract
} // namespace NOX
#endif
|