/usr/include/trilinos/NLPInterfacePack_NLPDirectTester.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef NLP_FIRST_ORDER_DIRECT_TESTER_H
#define NLP_FIRST_ORDER_DIRECT_TESTER_H
#include <iosfwd>
#include "NLPInterfacePack_Types.hpp"
#include "NLPInterfacePack_CalcFiniteDiffProd.hpp"
#include "Teuchos_StandardCompositionMacros.hpp"
#include "Teuchos_StandardMemberCompositionMacros.hpp"
namespace NLPInterfacePack {
/** \brief Concrete class that tests the computed values of the
* <tt>NLPDirect</tt> interface using finite differences.
*
* There are two options for testing the derivatives by finite differences.
* Each option can be picked independently for the computations with
* the objective \c f(x) and its gradient \c Gf and for the constraints
* \a c(x) and its Jacobian <tt>Gc'</tt>. The tests involving the objective
* and the constraints will be discussed separatly.
*
* For testing the gradient of the objective function, two options
* are available. The first option (<tt>Gf_testing_method==FD_COMPUTE_ALL</tt>)
* is to compute \c FDGf by brute force which requries <tt>2*n</tt> evaluations of
* \a f(x) using central differences. Given <tt>FDGf</tt> the following comparison
* is then made:
\verbatim
(1) FDGf \approx Gf
\endverbatim
* The other option (<tt>Gf_testing_method==FD_DIRECTIONAL</tt>) is to compute
* random dot products of the form <tt>DFGf'*y</tt> where \c y is a randomly generated
* vector. Using central differences <tt>DFGf'*y</tt> can be computed using
* two evaluations of \a f(x) per random \c y. The number of random
* <tt>y</tt>'s used is determined by the option <tt>num_fd_directions()</tt>. So the
* number of evaluations of \a f(x) for this option is <tt>2*num_fd_directions()</tt>.
*
* The test for the quantity <tt>py = -inv(C)*c(con_decomp)</tt> is shown below:
\verbatim
(2) - FDC * (-inv(C)*c) \approx c(c_decomp)
\_________/
py
\endverbatim
* Computing <tt>-FDC * py</tt> requires only two evaluations of
* \a c(x) using central differences. There is no other option needed
* for this test.
*
* Lastly, we have to test <tt>D = -inv(C)*N</tt>. The first option
* (<tt>Gc_testing_method==FD_COMPUTE_ALL</tt>) is to directly compute
* \c N using central differences (<tt>2*(n-m)</tt> evaluations of \a c(x)) as
* \c FDN and then perform the comparison:
\verbatim
(3) - FDC * (-inv(C)*N) \approx FDN
\_________/
D
\endverbatim
* The matrix <tt>-FDC * D</tt> can be computed using <tt>2*(n-m)</tt> evaluations
* with \a c(x) using central differences.
* Therefore, the total number of evaluations with \a c(x) for
* comparing (3) is <tt>4*(n-m)</tt>. If <tt>n-m</tt> is not too large then this
* is definitely the preferred method to use.
*
* The other option for testing <tt>D = -inv(C)*N</tt> is to compute
* directional derivatives using finite differences. In this approach,
* for the random vector \c y, we can compute:
\verbatim
(4) - FDC * (-inv(C)*N) * y \approx FDN * y
\_________/
D
\endverbatim
* Using central differences, (4) can be computed with 4 evaluations
* of \a c(x). The number of random <tt>y</tt>'s used is determined by the option
* \c num_fd_directions(). So the number of evaluations of \a c(x) for this
* option is <tt>4*num_fd_directions()</tt>.
*
* The client can pick a set of tolerances to measure if the
* values of the above comparisons are close enough to the finite difference
* values. Let's define the relative error between the computed value and the
* finite difference value to be:
\verbatim
err(i) = | (h(i) - fdh(i)) | / (||h||inf + ||fdh||inf + sqrt(epsilon))
\endverbatim
* The above error takes into account the relative sizes of the elements and also
* allows one or both of the elements to be zero without ending up with <i>0/0</i>
* or something like <tt>1e-16</tt> not comparing with zero.
*
* All errors <tt>err(i) >= warning_tol</tt> are reported to <tt>*out</tt> if
* <tt>out != NULL</tt>. The first error <tt>err(i) >= error_tol</tt> that is found
* is reported to <tt>*out</tt> if <tt>out != NULL</tt> and immediatly
* <tt>finite_diff_check()</tt> returns \c false. If all errors <tt>err(i) < error_tol</tt>,
* then <tt>finite_diff_check()</tt> will return \c true.
*
* Given these two tolerances the client can do many things:
*
* 1) Print out all the comparisons that are not equal by setting <tt>warning_tol
* <= epsilon</tt> and <tt>error_tol >> 1</tt>.
*
* 2) Print out all suspect comparisons by setting <tt>epsilon < warning_tol < 1</tt>
* and <tt>error_tol >> 1</tt>.
*
* 3) Just validate that the quantities are approximatly equal and report the first
* discrepency if not by setting <tt>epsilon < error_tol < 1</tt> and <tt>warning_tol
* >= error_tol</tt>.
*
* 4) Print out any suspect comparisons by setting <tt>epsilon < warning_tol < 1</tt>
* but also quit if the error is too large by setting <tt>1 > error_tol > warning_tol</tt>.
*
* The tolerances \c Gf_warning_tol and \c Gf_error_tol are applied to the tests for
* \c Gf shown in (1) for instance. The tolerances \c Gc_warning_tol and \c Gc_error_tol
* are used for the comparisions (2), (3) and (4).
*
* There is one minor hitch to this testing. For many NLPs, there is a * strict region of \a x where \a f(x) or \a c(x) are not defined. In order to
* help ensure that we stay out of these regions, variable bounds and a scalar
* \c max_var_bounds_viol can be included so that the testing software
* will never evaluate \a f(x) or \a c(x) outside the region:
\verbatim
xl - max_var_bounds_viol <= x <= xu + max_var_bounds_viol
\endverbatim
* This is an important agreement made with the user.
*/
class NLPDirectTester {
public:
/** \brief . */
enum ETestingMethod {
FD_COMPUTE_ALL
,FD_DIRECTIONAL
};
/** \brief . */
STANDARD_COMPOSITION_MEMBERS( CalcFiniteDiffProd, calc_fd_prod );
/// Members for option \c Gf_testing_method()
STANDARD_MEMBER_COMPOSITION_MEMBERS( ETestingMethod, Gf_testing_method );
/// Members for option \c Gc_testing_method()
STANDARD_MEMBER_COMPOSITION_MEMBERS( ETestingMethod, Gc_testing_method );
/// Members for option \c Gf_warning_tol()
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, Gf_warning_tol );
/// Members for option \c Gf_error_tol()
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, Gf_error_tol );
/// Members for option \c Gc_warning_tol()
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, Gc_warning_tol );
/// Members for option \c Gc_error_tol()
STANDARD_MEMBER_COMPOSITION_MEMBERS( value_type, Gc_error_tol );
/// Members for option \c num_fd_directions()
STANDARD_MEMBER_COMPOSITION_MEMBERS( size_type, num_fd_directions );
/// Members for option \c dump_all()
STANDARD_MEMBER_COMPOSITION_MEMBERS( bool, dump_all );
/// Constructor
NLPDirectTester(
const calc_fd_prod_ptr_t &calc_fd_prod = Teuchos::null
,ETestingMethod Gf_testing_method = FD_DIRECTIONAL
,ETestingMethod Gc_testing_method = FD_DIRECTIONAL
,value_type Gf_warning_tol = 1e-6
,value_type Gf_error_tol = 1e-1
,value_type Gc_warning_tol = 1e-6
,value_type Gc_error_tol = 1e-1
,size_type num_fd_directions = 1
,bool dump_all = false
);
/** \brief This function takes an NLP object and its computed derivatives
* and function values and validates
* the functions and the derivatives by evaluating them
* about the given point <tt>xo</tt>.
*
* If all the checks as described in the
* intro checkout then this function will return true, otherwise it
* will return false.
*
* If the finite difference steps are limited by relaxed variable
* bounds then a warning message is printed and the derivatives
* computed could be very inaccurate.
*
* @param nlp [in] %NLP object used to compute and test derivatives for.
* @param xo [in] Point at which the derivatives are computed at.
* @param xl [in] If != NULL then this is the lower variable bounds.
* @param xu [in] If != NULL then this is the upper variable bounds.
* If xl != NULL then xu != NULL must also be true
* and visa-versa or a std::invalid_arguement exceptions
* will be thrown.
* @param c [in] Value of c(x) computed at xo.
* If NULL, then none of the tests involving it will
* be performed.
* @param Gf [in] Gradient of f(x) computed at xo.
* If NULL, then none of the tests involving it will
* be performed.
* @param py [in] Newton step <tt>py = -inv(C) * c(con_decomp)</tt>
* If NULL, then none of the tests involving it will
* be performed.
* @param rGf [in] Reduced gradient of the objective function
* </tt>rGf = Gf(var_indep) - D' * Gf(var_dep)</tt>. If NULL,
* then none of the tests involving it will be performed.
* @param GcU [in] Auxiliary jacobian matrix <tt>del(c(con_undecomp),x)</tt>.
* If NULL, htne none of the tests involving it will be performed.
* @param D [in] Direct sensitivity matrix <tt>D = -inv(C)*N</tt>. If NULL,
* none of the tests involving it will be performed.
* @param Uz [in] <tt>Uz = F + E * D</tt>, which is the an auxiliary sensitivity matrix.
* If NULL, then none of the tests involving it will be performed.
* @param print_all_warnings
* [in] If true then all errors greater than warning_tol
* will be printed if out!=NULL
* @param out [in/out] If != null then some summary information is printed to it
* and if a derivative does not match up then it prints which
* derivative failed. If <tt>out == 0</tt> then no output is printed.
*
* @return Returns <tt>true</tt> if all the derivatives comparisons are
* within the error tolerances or returns false
* otherwise. This function will return false if any NaN or Inf values
* where encountered.
*/
bool finite_diff_check(
NLPDirect *nlp
,const Vector &xo
,const Vector *xl
,const Vector *xu
,const Vector *c
,const Vector *Gf
,const Vector *py
,const Vector *rGf
,const MatrixOp *GcU
,const MatrixOp *D
,const MatrixOp *Uz
,bool print_all_warnings
,std::ostream *out
) const;
}; // end class NLPDirectTester
} // end namespace NLPInterfacePack
#endif // NLP_FIRST_ORDER_DIRECT_TESTER_H
|