/usr/include/trilinos/NLPInterfacePack_NLPDirect.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef NLP_FIRST_ORDER_DIRECT_H
#define NLP_FIRST_ORDER_DIRECT_H
#include "NLPInterfacePack_NLPObjGrad.hpp"
#include "Teuchos_AbstractFactory.hpp"
namespace NLPInterfacePack {
/** \brief Interface providing only direct first order sensitivity information.
*
* <b>Overview:</b>
*
* This interface defines a basis for the equality constriants and then only
* certain linear systems with this basis are solved for. This interface is
* useful in reduced space SQP-type and other related optimization algorithms.
*
* Specifically, the variables are partitioned into dependent and independent
* sets <tt>x = [ x_dep' x_indep' ]'</tt> and Jacobians of the constraints
* <tt>c(x)</tt> at the point <tt>x</tt> are:
\verbatim
del(c,x) = Gc' = [ del(c(con_decomp)) ] = [ GcD' ] = [ GcDD' GcDI' ] = [ C N ]
[ del(c(con_undecomp)) ] [ GcU' ] [ GcUD' GcUI' ] [ E F ]
where:
C <: R^(r x r) is nonsingular
N <: R^(r x (n-r))
E <: R^((m-r) x r)
F <: R^((m-r) x (n-r))
\endverbatim
* This partitions the general equality constraints c(x) into two sets;
* decomposed c(con_decomp) and undecomposed c(con_undecomp). It is therefore
* expected that sub-vectors and subspaces from
* <tt>space_x().sub_space(var_dep)</tt>,
* <tt>space_x().sub_space(var_indep)</tt>,
* <tt>space_c().sub_space(con_decomp)</tt> and
* <tt>space_c().sub_space(con_undecomp)</tt> can all be accessed. Other
* sub-vectors and sub-spaces may not be available (but the algorithm should
* not need access to other sub-spaces).
*
* Free access to solves with the basis <tt>C</tt> is not given however and instead this interface
* computes, for the current point \a x, the direct sensitivity matrice <tt>D = -inv(C)*N</tt>,
* the auxiliary matrices <tt>Uz = F + E * D</tt> and <tt>GcU = [ GcUD; GcUI ] = [ E'; F' ]</tt>,
* and the Newton step <tt>py = -inv(C)*c(con_decomp)</tt>.
* In general, linear solves with the transpose with <tt>C</tt> are not possible and
* therefore are not avalible. A number of very specialized applications can only
* provide this information but this is all that is needed by many numerical
* optimization (and related) algorithms.
*
* <b>Client Usage:</b>
*
* The dimension of the basis matrix \c C is returned by \c r(). The ranges for the dependent and
* independent varaibles are returned by \c var_dep() and \c var_indep(). The ranges for the
* decomposed and undecomposed equality constraints are \c con_decomp() and \c con_undecomp().
* Note that \c con_undecomp() will return an invalid range if there are no undecomposed equalities.
*
* Note that the matrix objects returned from \c factory_GcU(), \c factory_D()
* and \c factory_Uz() can not be expected to be usable until they are
* passed to the calculation routines or have been intialized in some other way.
*
* <b>Subclass Developer's Notes:</b>
*
* The default implementation of this interface assumes that there are no undecomposed
* equality constraints (i.e. <tt>this->con_decomp().size() == this->m()).
*
* ToDo: Finish Documentation!
*/
class NLPDirect : virtual public NLPObjGrad
{
public:
/** \brief . */
typedef Teuchos::RCP<
const Teuchos::AbstractFactory<MatrixOp> > mat_fcty_ptr_t;
/** \brief . */
typedef Teuchos::RCP<
const Teuchos::AbstractFactory<MatrixSymOp> > mat_sym_fcty_ptr_t;
/** \brief . */
typedef Teuchos::RCP<
const Teuchos::AbstractFactory<MatrixSymOpNonsing> > mat_sym_nonsing_fcty_ptr_t;
/** \brief Initialize the factory objects for the special matrices for <tt>D'*D</tt> and <tt>S = I + D'*D</tt>.
*
* Postconditions:<ul>
* <li>this->factory_transDtD().get() == factory_transDtD.get()</tt>
* <li>this->factory_S().get() == factory_S.get()</tt>
* </ul>
*/
void set_factories(
const mat_sym_fcty_ptr_t &factory_transDtD
,const mat_sym_nonsing_fcty_ptr_t &factory_S
);
/** @name Dimensionality */
//@{
/** \brief Returns the number of decomposed equality constraints (<tt>r <= m</tt>).
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation returns <tt>this->con_decomp().size()</tt>.
* This implementation will work for all implementations.
*/
virtual size_type r() const;
//@}
/** @name Ranges for dependent and independent variables and decomposed and undecomposed equalities
*/
//@{
/** \brief Return the range of dependent (i.e.\ basic) variables.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation returns <tt>Range1D(1,this->m())</tt>.
*/
virtual Range1D var_dep() const;
/** \brief Return the range of independent (i.e.\ nonbasic) variables.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation returns <tt>Range1D(this->m()+1,this->n())</tt>.
*/
virtual Range1D var_indep() const;
/** \brief Return the range of decomposed equality constraints.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation returns <tt>Range1D(1,this->m())</tt>.
*/
virtual Range1D con_decomp() const;
/** \brief Return the range of undecomposed equality constraints.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation returns <tt>Range1D::Invalid</tt>.
*/
virtual Range1D con_undecomp() const;
//@}
/** @name Matrix factory objects */
//@{
/** \brief Return a matrix factory object for creating <tt>GcU</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation is to return <tt>return.get() == NULL</tt>.
* This is the proper implementation when <tt>m() == r()</tt>.
* When <tt>m() > r()</tt> then the subclass must override this method to
* return a valid matrix factory object. Moreover, the returned
* matrix object from <tt>this->factory_GcU()->create()->get_sub_view(rng,Range1D())</tt>
* must be non-null for <tt>rng == this->var_dep()</tt> or <tt>rng == this->var_indep()</tt>.
* This gives access to the matrices <tt>E'</tt> and <tt>F'</tt> as shown above.
*/
virtual const mat_fcty_ptr_t factory_GcU() const;
/** \brief Return a matrix factory object for <tt>D = -inv(C)*N</tt> {abstract}.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual const mat_fcty_ptr_t factory_D() const = 0;
/** \brief Return a matrix factory object for <tt>Uz = F + E * D</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default implementation is to return <tt>return.get() == NULL</tt>.
* This is the correct implementation when <tt>m() == r()</tt>. However,
* when <tt>m() > r()</tt> this method must be overridden to return a
* non-null matrix factory object.
*/
virtual const mat_fcty_ptr_t factory_Uz() const;
/** \brief Return a matrix factory object for a mutable matrix compatible with <tt>GcU(var_dep)</tt>.
*
* This matrix factory object is designed to create mutable matrix objects compatible
* with <tt>GcU(var_dep)</tt>. For example, a matrix object <tt>Uy</tt> created by this matrix factory
* can be used to compute <tt>Uy = Gc(var_dep,con_undecomp)' - Gc(var_indep,con_undecomp)'*D'</tt>
* (this is needed by a orthogonal range/null decomposition.
*
* The default implementation is to return <tt>return.get() == NULL</tt>.
* This is the correct implementation when <tt>m() == r()</tt>. However,
* when <tt>m() > r()</tt> this method must be overridden to return a
* non-null matrix factory object.
*/
virtual const mat_fcty_ptr_t factory_GcUD() const;
/** \brief Returns a matrix factory for the result of <tt>J = D'*D</tt>
*
* The resulting matrix is symmetric but is assumed to be singular.
*/
virtual const mat_sym_fcty_ptr_t factory_transDtD() const;
/** \brief Returns a matrix factory for the result of <tt>S = I + D'*D</tt>
*
* The resulting matrix is symmetric and is guarrenteed to be nonsingular
*/
virtual const mat_sym_nonsing_fcty_ptr_t factory_S() const;
//@}
/** @name Calculation members */
//@{
/** \brief Compute all of the needed quanities for direct sensitivities.
*
* @param x [in] (dim == n()) Current value of unkowns. This vector should
* have been created by <tt>this->space_x()->create_member()</tt>.
* @param f [out] Value of <tt>f(x)</tt>.
* If f == NULL then this quantity is not computed.
* @param c [in/out] (dim == m()) Value of the equality constraints \a c(x).
* If <tt>c == NULL</tt> then this quantity is not computed.
* If </tt>c != NULL and <tt>recalc_c == true</tt> then this quantity is recomputed.
* If </tt>c != NULL and <tt>recalc_c == false</tt> then this quantity is not
* recomputed and is used in the computation of \c py if requested (i.e. <tt>py != NULL</tt>).
* If <tt>c != NULL</tt> this this vector should have been created by
* <tt>this->space_c()->create_member()</tt>.
* @param recalc_c
* [in] If \c true then \c c will be recomputed at \c x.
* If \c false then <tt>c</tt> will not be recomputed but will be used as stated above.
*
* @param Gf [out] (dim == n()) Gradient of <tt>f(x)</tt>.
* If <tt>Gf == NULL</tt> then this quantity is not computed. If <tt>Gf!=NULL</tt> this
* this vector should have been created by <tt>this->space_x()->create_member()</tt>.
* @param py
* [out] (dim == r()) <tt>py = -inv(C)*c(con_decomp)</tt>.
* If <tt>py == NULL</tt> then this quantity is not computed.
* If <tt>recalc_c == false</tt> on input then the input <tt>c != NULL</tt> argument may
* be used in the computation of \c py. If <tt>py!=NULL</tt> this this vector should have
* been created by <tt>this->space_x()->sub_space(this->var_dep())->create_member()</tt>.
* @param rGf
* [out] (dim == n()-r()) <tt>rGf = Gf(var_indep()) + D'*Gf(var_dep())</tt>,
* which is the reduced gradient of the objective function projected
* into the manifold of the decomposed equality constraints. If <tt>rGf==NULL</tt>,
* this vector is not computed. If <tt>rGf!=NULL</tt> then this vector
* should have been created by <tt>this->space_x(this->var_indep())->create_member()</tt>.
* @param GcU [out] (dim = n x (m()-r())) Auxiliary jacobian matrix <tt>del(c(con_undecomp),x)</tt>.
* If m() == r() then <tt>GcU</tt> should be set to <tt>NULL</tt> on input.
* If GcU == NULL then this quantitiy is not computed. If <tt>!=NULL</tt> this this matrix
* should have been created by <tt>this->factory_GcU()->create()</tt>.
* @param D [out] (dim = r() x (n()-r())) <tt>D = -inv(C)*N</tt>, which is the direct
* sensitivity of the constraints to the independent variables.
* If D == NULL then this quantity is not computed. If <tt>!=NULL</tt> this this matrix
* should have been created by <tt>this->factory_D()->create()</tt>.
* @param Uz [out] (dim = (m()-r()) x (n()-r())) <tt>Uz = F + E * D</tt>, which is the an
* auxiliary sensitivity matrix. If <tt>m() == r()</tt> then <tt>Uz</tt> should be set to
* <tt>NULL</tt> on input. If <tt>Uz==NULL</tt> then this quantity is not computed.
* If <tt>!=NULL</tt> this this matrix should have been created by
* <tt>this->factory_Uz()->create()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> Lots more!
* </ul>
*/
virtual void calc_point(
const Vector &x
,value_type *f
,VectorMutable *c
,bool recalc_c
,VectorMutable *Gf
,VectorMutable *py
,VectorMutable *rGf
,MatrixOp *GcU
,MatrixOp *D
,MatrixOp *Uz
) const = 0;
/** \brief Calculate an approximate newton step given the Jacobian computed
* for the last call to <tt>calc_point()</tt>.
*
* The idea behind this method is that with some applications it may be
* much cheaper to compute an approximate Newton step for the constraints
* given information computed during the last call to <tt>calc_point()</tt>.
* It is assumed that this approximate solution <tt>py</tt> will still be a
* descent direction for <tt>c(x)</tt>. Some subclasses may have to perform an equal
* amount of work as <tt>calc_point(...)</tt> to perform this calculation but those
* are the breaks.
*
* @param x [in] (dim == n()) current value of unkowns.
* @param c [out] (dim == m()) Value of the constraints c(x)
* If c == NULL then this quantity is not computed.
* If c != NULL and recalc_c == true on input then this quantity is
* not recomputed and is used in the computation of
* py if requested (i.e. py!=NULL).
* @param recalc_c
* @param py
* [out] (size == r() on output) Approximate value of -inv(C)*c
* Note that py == NULL is not allowed here.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> Lots more.
* </ul>
*/
virtual void calc_semi_newton_step(
const Vector &x
,VectorMutable *c
,bool recalc_c
,VectorMutable *py
) const = 0;
//@}
/** @name Overridden from NLP */
//@{
/** \brief Initialize the NLP for its first use.
*
* This function implementation should be called by subclass implementations
* in order to reset counts for \c f(x), \c c(x), \c h(x) and \c Gf(x) evaluations.
* This implementation calls <tt>this->NLPObjGrad::initialize()</tt>
*
* Postconditions:<ul>
* <li> See <tt>NLPObjGrad::initialize()</tt>
* </ul>
*/
void initialize(bool test_setup);
//@}
private:
mat_sym_fcty_ptr_t factory_transDtD_;
mat_sym_nonsing_fcty_ptr_t factory_S_;
}; // end class NLPDirect
} // end namespace NLPInterfacePack
#endif // NLP_FIRST_ORDER_DIRECT_H
|