/usr/include/trilinos/NLPInterfacePack_NLP.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 | // @HEADER
// ***********************************************************************
//
// Moocho: Multi-functional Object-Oriented arCHitecture for Optimization
// Copyright (2003) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef NLP_H
#define NLP_H
#include <stdexcept>
#include <string>
#include "NLPInterfacePack_Types.hpp"
#include "AbstractLinAlgPack_VectorMutable.hpp"
#include "AbstractLinAlgPack_Permutation.hpp"
#include "StandardCompositionRelationshipsPack.hpp"
#include "Teuchos_RCP.hpp"
#include "Teuchos_VerboseObject.hpp"
namespace OptionsFromStreamPack {
class OptionsFromStream;
}
namespace NLPInterfacePack {
/** \brief %NLP interface class {abstract}.
*
* <b>Overview:</b>
*
* This class represents an abstract interface to a general nonlinear programming problem of the form
* (in mathematical and ASCII notation):
\f[
\begin{array}{lcl}
\mbox{min} & & f(x) \\
\mbox{s.t.} & & c(x) = 0 \\
& & x^L \leq x \leq x^U
\end{array}
\f]
* where:<ul>
* <li> \f$x, x^L, x^U \:\in\:\mathcal{X}\f$
* <li> \f$f(x) : \:\mathcal{X} \rightarrow \Re\f$
* <li> \f$c(x) : \:\mathcal{X} \rightarrow \mathcal{C}\f$
* <li> \f$\mathcal{X} \:\in\:\Re\:^n\f$
* <li> \f$\mathcal{C} \:\in\:\Re\:^m\f$
* </ul>
\verbatim
min f(x)
s.t. c(x) = 0
xl <= x <= xu
where:
x <: space_x
f(x) <: space_x -> R^1
c(x) <: space_x -> space_c
space_x <: R^n
space_c <: R^n -> R^m
\endverbatim
* The %NLP is defined in terms of vector spaces for the unknowns \a x (\c space_x),
* the equality constraints \a c (\c space_c)and nonlinear operator functions
* \a f(x) and \a c(x). In the above form, none of the variables are fixed between
* bounds (strictly xl < xu). It is allowed however for <tt>m == 0</tt> for the
* elimination of general constriants. It is also allowed for <tt>n == m</tt>
* in which case <tt>this</tt> represents a fully determined system of nonlinear
* equaltions. In any case, an objective function is always
* included in the formutation and will impact solution algorithms.
*
* Special types of NLPs are identified as: <ol>
* <li> Fully general %NLP :
* <ul><li><tt>( xl != -Inf || xu != +Inf ) && ( m > 0 )</tt></ul>
* <li> General equality only constrained %NLP :
* <ul><li><tt>( xl == -Inf && xu == +Inf ) && ( m > 0 )</tt></ul>
* <li> Bound constrained %NLP :
* <ul><li><tt>( xl != -Inf || xu != +Inf ) && ( m == 0 )</tt></ul>
* <li> Unconstrained %NLP :
* <ul><li><tt>( xl == -Inf && xu == +Inf ) && ( m == 0 )</tt></ul>
* <li> Nonlinear Equations (NLE) :
* <ul><li><tt>n == m</tt></ul>
* </ol>
*
* If <tt>n==m</tt> but some of the equations in <tt>c(x)</tt> are
* dependent (but consistent) then the problem is actually an NLP
* and not an NLE and it is possible that some of the variable bounds
* my be active at the solution but in general they can not be.
* An optimization algorithm may refuse to solve some of the above problems but this
* interface allows all of these different types of mathematical programming problems
* to be represented using this interface.
*
* The Lagrangian for this problem is defined by:
\verbatim
L = f(x) + lambda' * c(x) + nul' * ( xl - x ) + nuu' * ( x - xu )
\endverbatim
* The optimality conditions are given by:
\verbatim
del(L,x) = del(f,x) + del(c,x) * lambda + nu = 0
c(x) = 0
nuu(i) * ( x(i) - xu(i) ) = 0, for i = 1...n
nuu(i) * ( x(i) - xu(i) ) = 0, for i = 1...n
where:
nu = nuu - nul
\endverbatim
* What is unique about this interface is that the vector objects are hidden behind
* abstact interfaces. Clients can create vectors from the various vector spaces
* using the <tt>\ref AbstractLinAlgPack::VectorSpace "VectorSpace"</tt> objects returned from
* <tt>this->space_x()</tt> (dim \c n), and <tt>this->space_c()</tt> (dim \c m).
* In this sense, an <tt>%NLP</tt> object
* acks as an "Abstract Factory" to create the vectors needed by an optimization
* algorithm. This allows optimization software to be written in a way that is
* completly independent from the linear algebra components.
*
* <b>General Inequalities and Slacks</b>
*
* The underlying NLP may containe general inequality
* constraints which where converted to equalities using slack
* variables. The actual underlying NLP may take the form
* (in mathematical and ASCII notation):
\f[
\begin{array}{lcl}
\mbox{min} & & \hat{f}(\hat{x}) \\
\mbox{s.t.} & & \hat{c}(\hat{x}) = 0 \\
& & \hat{h}^L \leq \hat{h}(\hat{x}) \leq \hat{h}^U \\
& & \hat{x}^L \leq \hat{x} \leq \hat{x}^U
\end{array}
\f]
* where:<ul>
* <li> \f$\hat{x}, \hat{x}^L, \hat{x}^U \:\in\:\hat{\mathcal{X}}\f$
* <li> \f$\hat{f}(\hat{x}) : \:\hat{\mathcal{X}} \rightarrow \Re\f$
* <li> \f$\hat{c}(\hat{x}) : \:\hat{\mathcal{X}} \rightarrow \hat{\mathcal{C}}\f$
* <li> \f$h(x) : \:\hat{\mathcal{X}} \rightarrow \hat{\mathcal{H}}\f$
* <li> \f$\hat{\mathcal{X}} \:\in\:\Re\:^{\hat{n}}\f$
* <li> \f$\hat{\mathcal{C}} \:\in\:\Re\:^{\hat{m}}\f$
* <li> \f$\hat{\mathcal{H}} \:\in\:\Re\:^{\hat{m^I}}\f$
* </ul>
\verbatim
min f_breve(x_breve)
s.t. c_breve(x_breve) = 0
hl_breve <= h_breve(x_breve) <= hu_breve
xl_breve <= x_breve <= xu_breve
where:
x_breve <: space_x
f_breve(x_breve) <: space_x_breve -> R^1
c_breve(x_breve) <: space_x_breve -> space_c_breve
h_breve(x_breve) <: space_x_breve -> space_h_breve
space_x_breve <: R^n_breve
space_c_breve <: R^n -> R^m_breve
space_h_breve <: R^n -> R^mI_breve
\endverbatim
*
* ToDo: Finish!
*
* <b>Client Usage:</b>
*
* Before an %NLP object can be used, the <tt>initialize()</tt> method must be called to
* make sure that all of the initializations needed for the NLP have been performed.
* This method also resets counters an other information. Before calling <tt>initialize()</tt>
* the client can specify whether the initial point for \c x must be in bounds by calling
* <tt>force_xinit_in_bounds(bool)</tt>.
*
* Smart reference counted pointers to the three vector spaces for \a x, \a c(x) and \a h(x)
* are returned by the methods <tt>space_x()</tt>, <tt>space_c()</tt> and <tt>space_h()</tt>
* respectively. The vector space objects returned by these methods are ment to be more
* than transient. In fact, it is expected that these vector space objects should remain
* valid for the entire run of an NLP algorithm. Only if the underlying NLP is changed in
* a fundamental way (i.e. \c n, or \c m changes) should the vector space objects returned
* from these function become invalid. In this case the client must call these methods again
* to get updated vector space objects.
*
* The dimensionality of the NLP is returned by the methods <tt>n()</tt> and <tt>m()</tt>
* but they have default implementations based on <tt>space_x()</tt> and <tt>space_c()</tt>
* respectively.
*
* The number of variables \c x with finite bounds is returned by the method <tt>num_bounded_x()</tt>.
* The methods <tt>xl()</tt> and <tt>xu()</tt> return references
* to vector objects representing these bounds. A lower bound is considered infinite if
* <tt>xl().get_ele(i) == -infinite_bound()</tt> and an upper bound is considered infinite if
* <tt>xu().get_ele(i) == +infinite_bound()</tt>.
*
* If <tt>ns() > 0</tt>, the methods \c hl_breve() and \c hu_breve() return references to the upper and lower
* bounds to the general inequality constraints \a h_breve(x_breve). While it is expected that
* <tt>hl_breve().get_ele(j) != -infinite_bound() || hu_breve().get_ele(j) != +infinite_bound</tt> for <tt>j = 1...ns()</tt>
* this is not required by this interface. On the other hand it seems silly to define general inequality constriants
* that are not bounded but there may be some reason to include these that makes things easier for the
* implementor of the NLP subclass.
*
* The initial guess for the unknowns \a x (primal variables) is returned by the method <tt>xinit()</tt>.
* Vectors containing the initial guesses for the Lagrange multipliers can be obtained by calling the
* method <tt>get_init_lagrange_mult()</tt>.
*
* The bread and butter of an %NLP interface is the calculation of the functions that define the objective
* and constraints and various points \a x using the methods \c calc_f() and \c calc_c().
* The quantities that these functions update must be set prior by calling the methods
* \c set_f() and \c set_c() respectively. It may seem strange not to pass these quantities
* directly to the calculation functions but there is a good reason for this.
* The reason is that this interface supports the efficient update of mutiple quantities at a given
* point \a x. For example, in many %NLPs some of the same terms are shared between the constriants
* functions and objective function. Therefore it is more efficient to compute \a f(x) and \a c(x)
* simultaneously rather than computing them separately. In order to allow for this possibility,
* the client can set the desired quantities (i.e. \c set_f() and \c set_c()) prior to calling \c calc_f()
* and \c calc_c(). Then, whatever quantities that have been set will be computed my any call to
* <tt>calc_?()</tt> method.
*
* Once an optimization algorithm has the solution (or gives up with a suboptimal point), it should
* report this solution to the %NLP object using the method \c report_final_solution().
*
* Finally, the client can get the counts for the number of function evaluations since \c initialize()
* was called using the methods \c num_f_evals() and \c num_c_evals().
* These counts do not include any function evaluations that may have been used internally for finite
* difference evaluations or anything of that nature. Also, if the client calls <tt>calc_info(x,false)</tt>
* (where \c info = \c f or \c c) several times then the default implementation will increment the count
* for each call even though the actual quantity may not actually be recalculated each time (i.e. if <tt>newx==false</tt>).
* This information is not known here in this base class but the subclasses can overide this behavior if desired.
*
* <b>Subclass developer's notes:</b>
*
* The calcuation methods \c calc_f() and \c calc_c() have default implementations in this base
* class that should meet the needs of all the subclasses. These method implementations call the protected
* pure virtual methods \c imp_calc_f() and \c imp_calc_c() to compute the actual quantities.
* Subclasses must override these methods (in addition to several methods from the public interface).
* Pointers to the quantities to be updated are passed to these methods to the subclasses in the form of
* an aggregate \c ZeroOrderInfo object that is returned from the protected method \c zero_order_info().
* This ensures that the only interaction between an NLP base object and its subclass objects is through
* member functions and never through pulic or protected data members.
*
* <A NAME="must_override"></A>
* The following methods must be overridden by a subclass in order to create a concrete NLP object:
* \c force_xinit_in_bounds(bool), \c force_xinit_in_bounds(), \c is_initialized(),
* \c space_x(), \c space_c(), \c num_bounded_x(), \c xl(), xu(), \c xinit(),]
* \c scale_f(value_type), \c scale_f().
*
* <A NAME="should_override"></A>
* The following methods should be overridden by most subclasses but do not have to be: \c initialize(),
* \c get_init_lagrange_mult(), \c report_final_solution().
*
* The following methods should never have to be overridden by most subclasses except in some very
* strange situations: \c set_f(), \c get_f(), \c f(), \c set_c(), \c get_c(), \c c(),
* \c calc_f(), \c calc_c(), \c num_f_evals(), \c num_c_evals().
*
* <b>Additional notes:</b>
*
* The bounds on the variables can play a very critical role in many optimization algorithms. It is desirable
* for the functions \a f(x) and \a c(x) to be defined and
* relatively well behaved (i.e. smooth, continous, differentiable etc.) in the region <tt>xl <= x <= xu</tt>.
* While this is not always possible, an NLP can often be reformulated to have this properly. For example, suppose
* there are constraints has the form:
\verbatim
log(x(1) - x(5)) - 4 == 0
x(1) - x(5) >= 1e-8
\endverbatim
* where \c x(1) and x(5) are unbounded. It is clear that if <tt>x(1) < x(5)</tt> that this constraint will be
* undefined and will return \c NaN on most computers (if you are lucky). The constraint <tt>x(1) < x(5)</tt> is
* very hard to enforce at every iteration in an NLP solver so that this will not happen A better approach would be
* to add an extra varaible (say \c x(51) for an %NLP with <tt>n == 50</tt>) and add an extra constraint:
\verbatim
log(x(51)) == 0
x(51) - (x(1) - x(5)) == 0
x(51) >= 1e-8
\endverbatim
* In the above expanded formulation the simple bound <tt>x(51) >= 1e-8</tt> is easy to inforce and these undefined
* regions can be avoided. While the property that \a f(x), \a c(x) and \a h(x) being bounded for all
* <tt>x <: { x | xl <= x <= x}</tt> is a desireable properly, this is not required by this interface. As a result
* the client should be prepaired to deal with return values of \c NaN or \c Inf for \c f, \c c and \c h.
*/
class NLP : virtual public Teuchos::VerboseObject<NLP> {
public:
typedef AbstractLinAlgPack::Vector Vector; // doxygen likes typedef?
typedef AbstractLinAlgPack::VectorMutable VectorMutable; // doxygen likes typedef?
/** \brief . */
typedef Teuchos::RCP<const VectorSpace> vec_space_ptr_t;
/** \brief . */
typedef Teuchos::RCP<
const OptionsFromStreamPack::OptionsFromStream> options_ptr_t;
/** @name exceptions */
//@{
/// Thrown if any member functions are called before initialize() has been called.
class UnInitialized : public std::logic_error
{public: UnInitialized(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown from <tt>initialize()</tt> if some logical error occured
class InvalidInitialization : public std::logic_error
{public: InvalidInitialization(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown if an incompatible object is used
class IncompatibleType : public std::logic_error
{public: IncompatibleType(const std::string& what_arg) : std::logic_error(what_arg) {}};
/// Thrown some bounds do not existe
class NoBounds : public std::logic_error
{public: NoBounds(const std::string& what_arg) : std::logic_error(what_arg) {}};
//@}
/// Value for an infinite bound.
static value_type infinite_bound();
/** @name Constructors, Destructor */
//@{
/// Initialize to no reference set to calculation quanities
NLP();
/// Destructor that cleans all the memory it owns
virtual ~NLP();
//@}
/** @name NLP initialization */
//@{
/** \brief Set if the initial point must be within the bounds.
*
* This method must be called before <tt>this->initialize()</tt> is called.
*
* Postconditions:<ul>
* <li> <tt>this->is_initialized() == false</tt>
* </ul>
*/
virtual void force_xinit_in_bounds(bool force_xinit_in_bounds) = 0;
/** \brief Returns if the initial point must be within the bounds.
*/
virtual bool force_xinit_in_bounds() const = 0;
/** \brief Set the options that <tt>this</tt> %NLP may be interested in.
*
* Note that it is allowed for the client to alter <tt>*options.get()</tt> after
* this method is called so <tt>this</tt> had better read the options inside of
* the <tt>this->initialize()</tt> method.
*
* The default implementation is to just ignore these options.
*
* Note that if the subclass overrides this method then it must also override
* the <tt>get_options()</tt> method.
*/
virtual void set_options( const options_ptr_t& options );
/** \brief Get the <tt>OptionsFromStream</tt> object being used to extract the options from.
*
* The default implementation returns <tt>return.get() == NULL</tt>.
*/
virtual const options_ptr_t& get_options() const;
/** \brief Initialize the NLP before it is used.
*
* Postconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt>
* <li> [<tt>this->force_xinit_in_bounds()==true</tt>]
* <tt>this->xl() <= this->xinit() <= this->xu()</tt>
* <li> <tt>this->num_f_evals() == 0</tt>
* <li> [<tt>this->m() > 0</tt>] <tt>this->num_c_evals() == 0</tt>
* </ul>
*
* Note that subclasses must call this function to reset what needs to be
* reset in this base object.
*/
virtual void initialize( bool test_setup = false );
/** \brief Return if <tt>this</tt> is initialized.
*/
virtual bool is_initialized() const = 0;
//@}
/** @name Dimensionality. */
//@{
/** \brief Return the number of variables.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Default implementation returns <tt>this-space_x()->dim()</tt>.
*/
virtual size_type n() const;
/** \brief Return the number of general equality constraints.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Default implementation returns <tt>( this->space_c().get() != NULL ? this-space_c()->dim() : 0 )</tt>.
*/
virtual size_type m() const;
//@}
/** @name Vector space objects */
//@{
/** \brief Vector space object for unknown variables x (dimension n).
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>return.get() != NULL</tt>
* </ul>
*/
virtual vec_space_ptr_t space_x() const = 0;
/** \brief Vector space object for general equality constraints c(x) (dimension m).
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> [<tt>this->m() > 0</tt>] <tt>return.get() != NULL</tt>
* <li> [<tt>this->m() == 0</tt>] <tt>return.get() == NULL</tt>
* </ul>
*/
virtual vec_space_ptr_t space_c() const = 0;
//@}
/** @name Bounds on the unknown variables x. */
//@{
/** \brief Returns the number of variables in <tt>x(i)</tt> for which <tt>xl(i)> -infinite_bound()</tt>
* or <tt>xu(i) < +infinite_bound()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual size_type num_bounded_x() const = 0;
/** \brief Returns the lower bounds on the variables <tt>x</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Any bounds that are non-existant will return <tt>this->xl().get_ele(i) == -NLP::infinite_bound()</tt>.
*/
virtual const Vector& xl() const = 0;
/** \brief Returns a reference to the vector of upper bounds on the variables <tt>x</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Any bounds that are non-existant will return <tt>this->xu().get_ele(i) == +NLP::infinite_bound()</tt>.
*/
virtual const Vector& xu() const = 0;
/** \brief Set the maximum absolute value for which the variable bounds may be violated
* by when computing function and gradient values.
*
* In other words the client should never never call on the NLP to compute
* a function and gradient evaluation outside of:
\verbatim
xl - max_var_bounds_viol <= x <= xu + max_var_bounds_viol
\endverbatim
*/
virtual value_type max_var_bounds_viol() const = 0;
//@}
/** @name Initial guess of NLP solution */
//@{
/** \brief Returns a reference to the vector of the initial guess for the solution <tt>x</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>return.space().is_compatible(*this->space_x()) == true)</tt>
* </ul>
*/
virtual const Vector& xinit() const = 0;
/** \brief Get the initial value of the Lagrange multipliers lambda.
*
* By default this function just sets them to zero.
*
*
* @param lambda [out] Pointer to lagrange multipliers for equalities.
* lambda == NULL is allowed in which case it will not
* be set. Must have been created by <tt>this->space_c()->create_member()</tt>.
* Must be NULL if m() == 0.
* @param nu [out] Pointer to lagrange multipliers for bounds.
* nu == NULL is allowed in which case it will not
* be set. Must have been created by <tt>this->space_x()->create_member()</tt>.
* Must be NULL if num_bounded_x() == 0.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual void get_init_lagrange_mult(
VectorMutable* lambda
,VectorMutable* nu
) const;
//@}
/** @name Set and access storage for the objective function value f(x). */
//@{
/** \brief Set a pointer to an value to be updated when <tt>this->calc_f()</tt> is called.
*
* @param f [in] Pointer to objective function value. May be \c NULL.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->get_f() == f</tt>
* </ul>
*/
virtual void set_f(value_type* f);
/** \brief Return pointer passed to <tt>this->set_f()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual value_type* get_f();
/** \brief Returns non-<tt>const</tt> <tt>*this->get_f()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_f() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual value_type& f();
/** \brief Returns <tt>const</tt> <tt>*this->get_f()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_f() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual const value_type& f() const;
//@}
/** @name Set and access storage for the residual of the general equality constriants c(x). */
//@{
/** \brief Set a pointer to a vector to be updated when <tt>this->calc_c()</tt> is called.
*
* @param c [in] Pointer to constraint residual vector. May be \c NULL.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> [<tt>c != NULL</tt>] <tt>c->space().is_compatible(*this->space_c()) == true</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->get_c() == c</tt>
* </ul>
*/
virtual void set_c(VectorMutable* c);
/** \brief Return pointer passed to <tt>this->set_c()</tt>.
*/
virtual VectorMutable* get_c();
/** \brief Returns non-<tt>const</tt> <tt>*this->get_c()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_c() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual VectorMutable& c();
/** \brief Returns <tt>const</tt> <tt>*this->get_c()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_c() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual const Vector& c() const;
//@}
/** @name Unset calculation quantities */
//@{
/** \brief Call to unset all storage quantities (both in this class and all subclasses).
*
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->get_f() == NULL</tt>
* <li> <tt>this->get_c() == NULL</tt>
* <li> <tt>this->get_c_breve() == NULL</tt>
* <li> <tt>this->get_h_breve() == NULL</tt>
* </ul>
*
* This method must be called by all subclasses that override it.
*/
virtual void unset_quantities();
//@}
/** @name Calculation members */
//@{
/** \brief Set the scaling of the objective function.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->scale_f() == true</tt>
* </ul>
*/
virtual void scale_f( value_type scale_f ) = 0;
/** \brief Return the scaling being used for the objective function.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual value_type scale_f() const = 0;
/** \brief Update the value for the objective <tt>f</tt> at the point <tt>x</tt> and put it in the stored reference.
*
* @param x [in] Point at which to calculate the object function <tt>f</tt>.
* @param newx [in] (default \c true) If \c false, the values in \c x are assumed to be the same as
* the last call to a <tt>this->calc_*(x,newx)</tt> member.
* If \c true, the values in \c x are assumed to not be the same as the last call to a
* <tt>this->calc_*(x,newx)</tt> member.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>x.space().is_compatible(*this->space_x()) == true</tt> (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> <tt>this->get_f() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->f()</tt> is updated to \a f(x)
* </ul>
*
* The storage reference for <tt>c</tt> may also be updated at this point (if <tt>get_c() != NULL</tt>)
* but is not guarentied to be. But no other quanities from possible subclasses are allowed
* to be updated as a side effect.
*/
virtual void calc_f(const Vector& x, bool newx = true) const;
/** \brief Update the constraint residual vector for <tt>c</tt> at the point <tt>x</tt> and put it in the stored reference.
*
* @param x [in] Point at which to calculate residual to the equality constraints <tt>c</tt>.
* @param newx [in] (default \c true) If \c false, the values in \c x are assumed to be the same as
* the last call to a <tt>this->calc_*(x,newx)</tt> member.
* If \c true, the values in \c x are assumed to not be the same as the last call to a
* <tt>this->calc_*(x,newx)</tt> member.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>x.space().is_compatible(*this->space_x()) == true</tt> (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> <tt>this->get_c() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->c()</tt> is updated to \a c(x)
* </ul>
*
* The storage reference for <tt>f</tt> may also be updated at this point (if <tt>get_f() != NULL</tt>)
* but is not guarentied to be. But no other quanities from possible subclasses are allowed
* to be updated as a side effect.
*/
virtual void calc_c(const Vector& x, bool newx = true) const;
//@}
/** @name Report final solution */
//@{
/** \brief Used by the solver to report the final solution and multipliers.
*
* Call this function to report the final solution of the
* unknows x and the Lagrange multipliers for the
* equality constriants <tt>lambda</tt> and the varaible bounds
* <tt>nu</tt>. If any of the Lagrange multipliers
* are not known then you can pass <tt>NULL</tt> in for them.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* The default behavior is to just ignore this.
*/
virtual void report_final_solution(
const Vector& x
,const Vector* lambda
,const Vector* nu
,bool is_optimal
);
//@}
/** @name Objective and constraint function evaluation counts. */
//@{
/** \brief Gives the number of object function f(x) evaluations called by the solver
* since initialize() was called.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual size_type num_f_evals() const;
/** \brief Gives the number of constraint function c(x) evaluations called by the solver
* since initialize() was called. Throws exception if <tt>this->m() == 0</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*/
virtual size_type num_c_evals() const;
//@}
/** @name General inequalities and slack variables */
//@{
/** \brief Return the number of slack variables (i.e. number of general inequalities).
*
* Default implementation returns
* <tt>(this->space_h_breve().get() ? this->space_h_breve()->dim() : 0)</tt>.
*/
virtual size_type ns() const;
/** \brief Vector space object for the original equalities <tt>c_breve(x_breve)</tt>
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> [<tt>this->m() - this->ns() > 0</tt>] <tt>return.get() != NULL</tt>
* <li> [<tt>this->m() - this->ns() == 0</tt>] <tt>return.get() == NULL</tt>
* </ul>
*
* The default implementation returns <tt>this->space_c()</tt>.
*/
virtual vec_space_ptr_t space_c_breve() const;
/** \brief Vector space object for the original inequalities <tt>h_breve(x_breve)</tt>
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> [<tt>this->ns() > 0</tt>] <tt>return.get() != NULL</tt>
* <li> [<tt>this->ns() == 0</tt>] <tt>return.get() == NULL</tt>
* </ul>
*
* The default implementation returns <tt>return.get() == NULL</tt>.
*/
virtual vec_space_ptr_t space_h_breve() const;
/** \brief Returns a reference to the vector of lower bounds on the general inequality constraints <tt>h_breve(x_breve)</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->ns() > 0</tt> (throw <tt>std::logic_error</tt>)
* </ul>
*
* Any bounds that are non-existant will return <tt>this->hl_breve().get_ele(i) == -NLP::infinite_bound()</tt>.
*
* The default implementation throws an exception.
*/
virtual const Vector& hl_breve() const;
/** \brief Returns a reference to the vector of upper bounds on the general inequality constraints <tt>h_breve(x_breve)</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Any bounds that are non-existant will return <tt>this->hu_breve().get_ele(i) == +NLP::infinite_bound()</tt>.
*
* The default implementation throws an exception.
*/
virtual const Vector& hu_breve() const;
/** \brief Set a pointer to a vector to be updated when <tt>this->calc_c_breve()</tt> is called.
*
* @param c_breve [in] Pointer to constraint residual vector. May be \c NULL.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> [<tt>c != NULL</tt>] <tt>c->space().is_compatible(*this->space_c_breve()) == true</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->get_c_breve() == c_breve</tt>
* </ul>
*/
virtual void set_c_breve(VectorMutable* c_breve);
/** \brief Return pointer passed to <tt>this->set_c_breve()</tt>.
*/
virtual VectorMutable* get_c_breve();
/** \brief Returns non-<tt>const</tt> <tt>*this->get_c_breve()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_c() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual VectorMutable& c_breve();
/** \brief Returns <tt>const</tt> <tt>*this->get_c_breve()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_c_breve() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual const Vector& c_breve() const;
/** \brief Set a pointer to a vector to be updated when <tt>this->calc_h_breve()</tt> is called.
*
* @param h_breve [in] Pointer to constraint residual vector. May be \c NULL.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> [<tt>c != NULL</tt>] <tt>c->space().is_compatible(*this->space_h_breve()) == true</tt>
* (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->get_h_breve() == h_breve</tt>
* </ul>
*/
virtual void set_h_breve(VectorMutable* h_breve);
/** \brief Return pointer passed to <tt>this->set_h_breve()</tt>.
*/
virtual VectorMutable* get_h_breve();
/** \brief Returns non-<tt>const</tt> <tt>*this->get_h_breve()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_c() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual VectorMutable& h_breve();
/** \brief Returns <tt>const</tt> <tt>*this->get_h_breve()</tt>.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->get_h_breve() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*/
virtual const Vector& h_breve() const;
/** \brief Return the permutation object for the variables.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>return.space()is_compatible(*this->space_x()) == true</tt>
* </ul>
*
* The default returns <tt>return.is_identity() == true</tt>
*/
virtual const Permutation& P_var() const;
/** \brief Return the permutation object for the constraints.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>this->m() > 0</tt> (throw <tt>std::logic_error</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>return.space()is_compatible(*this->space_c()) == true</tt>
* </ul>
*
* The default returns <tt>return.is_identity() == true</tt>
*/
virtual const Permutation& P_equ() const;
/** \brief Update the constraint residual vector for <tt>c_breve</tt> at the point <tt>x</tt> and put it
* in the stored reference.
*
* @param x [in] Point at which to calculate residual to the equality constraints <tt>c_breve</tt>.
* @param newx [in] (default \c true) If \c true, the values in \c x are the same as
* the last call to a <tt>this->calc_*(x,newx)</tt> member.
* If \c false, the values in \c x are not the same as the last call to a
* <tt>this->calc_*(x,newx)</tt> member.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>x.space().is_compatible(*this->space_x()) == true</tt> (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> <tt>this->get_c_breve() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->c_breve()</tt> is updated to \a c_breve(x_breve)
* </ul>
*
* The storage reference for <tt>f</tt> and/or <tt>h_breve</tt> may also be updated at this point
* (if <tt>get_f() != NULL</tt> and/or <tt>get_h_breve() != NULL</tt>) but is not guarentied to be.
* But no other quanities from possible subclasses are allowed to be updated as a side effect.
*/
virtual void calc_c_breve(const Vector& x, bool newx = true) const;
/** \brief Update the constraint residual vector for <tt>h_breve</tt> at the point <tt>x</tt> and put it
* in the stored reference.
*
* @param x [in] Point at which to calculate residual to the equality constraints <tt>h_breve</tt>.
* @param newx [in] (default \c true) If \c true, the values in \c x are the same as
* the last call to a <tt>this->calc_*(x,newx)</tt> member.
* If \c false, the values in \c x are not the same as the last call to a
* <tt>this->calc_*(x,newx)</tt> member.
*
* Preconditions:<ul>
* <li> <tt>this->is_initialized() == true</tt> (throw <tt>NotInitialized</tt>)
* <li> <tt>x.space().is_compatible(*this->space_x()) == true</tt> (throw <tt>VectorSpace::IncompatibleVectorSpaces</tt>)
* <li> <tt>this->get_h_breve() != NULL</tt> (throw <tt>NoRefSet</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>this->h_breve()</tt> is updated to \a h_breve(x_breve)
* </ul>
*
* The storage reference for <tt>f</tt> and/or <tt>c_breve</tt> may also be updated at this point
* (if <tt>get_f() != NULL</tt> and/or <tt>get_c_breve() != NULL</tt>) but is not guarentied to be.
* But no other quanities from possible subclasses are allowed to be updated as a side effect.
*/
virtual void calc_h_breve(const Vector& x, bool newx = true) const;
//@}
/** \brief Struct for objective and constriants (pointer).
*
* Objects of this type are passed on to subclasses and contain pointers to
* quantities to be updated.
*/
struct ZeroOrderInfo {
public:
/** \brief . */
ZeroOrderInfo() : f(NULL), c(NULL), h(NULL)
{}
/** \brief . */
ZeroOrderInfo( value_type* f_in, VectorMutable* c_in, VectorMutable* h_in )
: f(f_in), c(c_in), h(h_in)
{}
/// Pointer to objective function <tt>f</tt> (Will be NULL if not set)
value_type* f;
/// Pointer to constraints residual <tt>c</tt> (Will be NULL if not set)
VectorMutable* c;
/// Pointer to inequality constraints <tt>h</tt> (Will be NULL if not set)
VectorMutable* h;
}; // end struct ZeroOrderInfo
/// Return pointer to set quantities
const ZeroOrderInfo zero_order_info() const;
/// Return pointer to set <tt>hat</tt> quantities
const ZeroOrderInfo zero_order_info_breve() const;
protected:
/** @name Protected methods to be overridden by subclasses */
//@{
/** \brief Overridden to compute f(x) (and perhaps other quantities if set).
*
* Preconditions:<ul>
* <li> <tt>x.space().is_compatible(*this->space_x())</tt> (throw <tt>IncompatibleType</tt>)
* <li> <tt>zero_order_info.f != NULL</tt> (throw <tt>std::invalid_argument</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>*zero_order_info.f</tt> is updated to \a f(x).
* </ul>
*
* @param x [in] Unknown vector (size n).
* @param newx [in] True if is a new point.
* @param zero_order_info
* [out] Pointers to \c f, \c c and \c h.
* On output, <tt>*zero_order_info.f</tt> is updated to \a f(x)
* If <tt>this->multi_calc() == true</tt> then
* any of the other quantities pointed to in \c zero_order_info may be set on
* output, but are not guaranteed to be.
*/
virtual void imp_calc_f(const Vector& x, bool newx, const ZeroOrderInfo& zero_order_info) const = 0;
/** \brief Overridden to compute c(x) and perhaps f(x) and/or h(x) (if multiple calculaiton = true).
*
* Preconditions:<ul>
* <li> <tt>x.space().is_compatible(*this->space_x())</tt> (throw <tt>IncompatibleType</tt>)
* <li> <tt>zero_order_info.c != NULL</tt> (throw <tt>std::invalid_argument</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>*zero_order_info.c</tt> is updated to c(x).
* </ul>
*
* @param x [in] Unknown vector (size n).
* @param newx [in] True if is a new point.
* @param zero_order_info
* [out] Pointers to \c f, \c c and \c h.
* On output, <tt>*zero_order_info.c</tt> is updated to \a c(x)
* If <tt>this->multi_calc() == true</tt> then
* any of the other quantities pointed to in \c zero_order_info may be set on
* output, but are not guaranteed to be.
*/
virtual void imp_calc_c(const Vector& x, bool newx, const ZeroOrderInfo& zero_order_info) const = 0;
/** \brief Overridden to compute c_breve(x_breve) and perhaps f(x) and/or h_breve(x_breve)
*
* Preconditions:<ul>
* <li> <tt>x.space().is_compatible(*this->space_x())</tt> (throw <tt>IncompatibleType</tt>)
* <li> <tt>zero_order_info.c != NULL</tt> (throw <tt>std::invalid_argument</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>*zero_order_info.c</tt> is updated to c_breve(x_breve).
* </ul>
*
* @param x [in] Unknown vector (size n).
* @param newx [in] True if is a new point.
* @param zero_order_info_breve
* [out] Pointers to \c f, \c c_breve and \c h_breve.
* On output, <tt>*zero_order_info.c</tt> is updated to \a c_breve(x_breve)
*
* The default implementation calls <tt>this->imp_calc_c()</tt>.
*/
virtual void imp_calc_c_breve(const Vector& x, bool newx, const ZeroOrderInfo& zero_order_info_breve) const;
/** \brief Overridden to compute h_breve(x_breve) and perhaps f(x) and/or c_breve(x_breve).
*
* Preconditions:<ul>
* <li> <tt>x.space().is_compatible(*this->space_x())</tt> (throw <tt>IncompatibleType</tt>)
* <li> <tt>zero_order_info.h != NULL</tt> (throw <tt>std::invalid_argument</tt>)
* </ul>
*
* Postconditions:<ul>
* <li> <tt>*zero_order_info.h</tt> is updated to <tt>h_breve(x_breve)</tt>.
* </ul>
*
* @param x [in] Unknown vector (size n).
* @param newx [in] True if is a new point.
* @param zero_order_info_breve
* [out] Pointers to \c f, \c c_breve and \c h_breve.
* On output, <tt>*zero_order_info.h</tt> is updated to \a h_breve(x_breve)
*
* The default implementation throws an exception.
*/
virtual void imp_calc_h_breve(const Vector& x, bool newx, const ZeroOrderInfo& zero_order_info_breve) const;
//@}
/// Assert referece has been set for a quanity
template<class T>
void assert_ref_set(T* p, std::string info) const {
StandardCompositionRelationshipsPack::assert_role_name_set(p, false, info);
}
private:
// ////////////////////////////////////////
// Private data members
#ifdef DOXYGEN_COMPILE
AbstractLinAlgPack::VectorSpace *space_x;
AbstractLinAlgPack::VectorSpace *space_c;
AbstractLinAlgPack::VectorSpace *space_c_breve;
AbstractLinAlgPack::VectorSpace *space_h_breve;
Permutation *P_var;
Permtuation *P_equ;
#else
Teuchos::RCP<Permutation> P_var_;
Teuchos::RCP<Permutation> P_equ_;
#endif
mutable ZeroOrderInfo first_order_info_;
mutable ZeroOrderInfo first_order_info_breve_;
mutable size_type num_f_evals_;
mutable size_type num_c_evals_;
}; // end class NLP
// /////////////////
// Inline members
inline
const NLP::ZeroOrderInfo NLP::zero_order_info() const
{
return first_order_info_;
}
inline
const NLP::ZeroOrderInfo NLP::zero_order_info_breve() const
{
return first_order_info_breve_;
}
} // end namespace NLPInterfacePack
#endif // NLP_H
|