/usr/include/trilinos/MsqHessian.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2004 Sandia Corporation and Argonne National
Laboratory. Under the terms of Contract DE-AC04-94AL85000
with Sandia Corporation, the U.S. Government retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
diachin2@llnl.gov, djmelan@sandia.gov, mbrewer@sandia.gov,
pknupp@sandia.gov, tleurent@mcs.anl.gov, tmunson@mcs.anl.gov
***************************************************************** */
// -*- Mode : c++; tab-width: 3; c-tab-always-indent: t; indent-tabs-mode: nil; c-basic-offset: 3 -*-
//
// AUTHOR: Todd Munson <tmunson@mcs.anl.gov>
// ORG: Argonne National Laboratory
// E-MAIL: tmunson@mcs.anl.gov
//
// ORIG-DATE: 2-Jan-03 at 11:02:19 bu Thomas Leurent
// LAST-MOD: 5-Oct-04 by Jason Kraftcheck
//
// DESCRIPTION:
// ============
/*! \file MsqHessian.hpp
The MsqHessian class stores a sparse hessian for a given objective
function. The objective function must be C2 and such that its hessian
has non-zero entries only for the duplet of derivatives corresponding
to nodes of a same element.
\author Thomas Leurent
*/
#ifndef MsqHessian_hpp
#define MsqHessian_hpp
#include "Mesquite.hpp"
#include "Matrix3D.hpp"
#include "PatchData.hpp"
#include "MsqTimer.hpp"
#include <iosfwd>
namespace MESQUITE_NS
{
class ObjectiveFunction;
/*!
\class MsqHessian
\brief Vector3D is the object that effeciently stores the objective function
Hessian each entry is a Matrix3D object (i.e. a vertex Hessian).
*/
class MESQUITE_EXPORT MsqHessian
{
protected: // data accessed directly in tests.
Matrix3D* mEntries; //!< CSR block entries. size: nb of nonzero blocks, i.e. mRowStart[mSize] .
size_t* mRowStart; //!< start of each row in mEntries. size: nb of vertices (mSize).
size_t* mColIndex; //!< CSR block structure: column indexes of the row entries.
size_t mSize; //!< number of rows (or number of columns, this is a square matrix).
Matrix3D* mPreconditioner;
size_t precondArraySize;
Vector3D* mR; //!< array used in the CG solver
Vector3D* mZ; //!< array used in the CG solver
Vector3D* mP; //!< array used in the CG solver
Vector3D* mW; //!< array used in the CG solver
size_t cgArraySizes; //!< size of arrays allocated in the CG solver.
size_t maxCGiter; //!< max nb of iterations of the CG solver.
public:
MsqHessian();
~MsqHessian();
void initialize(PatchData &pd, MsqError &err);
void initialize( const MsqHessian& other );
inline void zero_out();
size_t size() const {return mSize;}
//! returns the diagonal blocks, memory must be allocated before call.
void get_diagonal_blocks(std::vector<Matrix3D> &diag, MsqError &err) const;
Matrix3D* get_block(size_t i, size_t j);
const Matrix3D* get_block(size_t i, size_t j) const;
//inline void accumulate_entries(PatchData &pd, const size_t &elem_index,
// Matrix3D* const &mat3d_array, MsqError &err);
void compute_preconditioner(MsqError &err);
void apply_preconditioner(Vector3D zloc[], Vector3D rloc[], MsqError &err);
void cg_solver(Vector3D x[], Vector3D b[], MsqError &err);
//! Hessian - vector product, summed with a second vector (optional).
friend void axpy(Vector3D res[], size_t size_r,
const MsqHessian &H, const Vector3D x[], size_t size_x,
const Vector3D y[], size_t size_y, MsqError &err);
//! r = this * x, where r and x are arrays of length size().
void product( Vector3D* r, const Vector3D* x ) const;
friend std::ostream& operator<<( std::ostream&, const MsqHessian& );
inline void add( size_t row, size_t col, const Matrix3D& m, MsqError& err );
inline void scale( double value );
void add( const MsqHessian& other );
// Release all storage. Object is invalid until next call
// to initialize(..).
void clear();
private:
MsqHessian& operator=( const MsqHessian& h );
MsqHessian( const MsqHessian& copy );
};
/*! Sets all Hessian entries to zero. This is usually used before
starting to accumulate elements hessian in the objective function
hessian. */
inline void MsqHessian::zero_out()
{
if (mSize==0) return; // empty hessian.
size_t i;
for (i=0; i<mRowStart[mSize]; ++i) {
mEntries[i].zero();
}
}
inline void MsqHessian::scale( double value )
{
for (size_t i = 0; i < mRowStart[mSize]; ++i)
mEntries[i] *= value;
}
/*! Accumulates entries of an element hessian into an objective function
hessian. Make sure to use zero_out() before starting the accumulation
process.
\param pd: PatchData in that contains the element which Hessian
we are accumulating in the Hessian matrix. This must be the same
PatchData that was used in MsqHessian::initialize().
\param elem_index: index of the element in the PatchData.
\param mat3d_array: This is the upper triangular part of the element Hessian
for all nodes, including fixed nodes, for which the entries must be null Matrix3Ds.
\param nb_mat3d. The size of the mat3d_array: (n+1)n/2, where n is
the number of nodes in the element.
*/
// inline void MsqHessian::accumulate_entries(PatchData &pd, const size_t &elem_index,
// Matrix3D* const &mat3d_array, MsqError &err)
// {
// if (&pd != origin_pd) {
// MSQ_SETERR(err)(
// "Cannot accumulate elements from a different patch. "
// "Use MsqHessian::initialize first.",
// MsqError::INVALID_ARG );
// return;
// }
//
// size_t nve = pd.get_element_array(err)[elem_index].vertex_count();
// size_t* ve = pd.get_element_array(err)[elem_index].get_vertex_index_array();
// size_t e = mAccumElemStart[elem_index];
// size_t i, j, c = 0;
// for (i = 0; i < nve; ++i)
// {
// for (j = i; j < nve; ++j)
// {
// if (ve[i] < mSize && ve[j] < mSize)
// {
// int k = mAccumulation[e++];
// if (k >= 0)
// mEntries[k] += mat3d_array[c];
// else
// mEntries[-k].plus_transpose_equal( mat3d_array[c] );
// }
// ++c;
// }
// }
// }
inline void MsqHessian::add( size_t row, size_t col, const Matrix3D& m, MsqError& err )
{
if (row <= col) {
for (size_t i = mRowStart[row]; i != mRowStart[row+1]; ++i)
if (mColIndex[i] == col) {
mEntries[i] += m;
return;
}
}
else {
for (size_t i = mRowStart[col]; i != mRowStart[col+1]; ++i)
if (mColIndex[i] == row) {
mEntries[i].plus_transpose_equal( m );
return;
}
}
MSQ_SETERR(err)(MsqError::INVALID_ARG,
"Hessian entry (%lu,%lu) does not exist.",
(unsigned long)row, (unsigned long)col);
}
/*!
\param res: array of Vector3D in which the result is stored.
\param size_r: size of the res array.
\param x: vector multiplied by the Hessian.
\param size_x: size of the x array.
\param y: vector added to the Hessian vector product. Set to 0 (NULL) if not needed.
\param size_y: size of the y array. Set to 0 if not needed.
*/
inline void axpy(Vector3D res[], size_t size_r,
const MsqHessian &H, const Vector3D x[], size_t size_x,
const Vector3D y[], size_t size_y, MsqError &/*err*/)
{
if ((size_r != H.mSize) || (size_x != H.mSize) ||
(size_y != H.mSize && size_y != 0)) {
// throw an error
}
Vector3D tmpx, tmpm; // for cache opt.
size_t* col = H.mColIndex;
const size_t nn = H.mSize;
size_t rl; // row length
size_t el; // entries index
size_t lo;
size_t c; // column index
size_t i, j;
if (y != 0) {
for (i = 0; i < nn; ++i) {
res[i] = y[i];
}
}
else { // y == 0
for (i = 0; i < nn; ++i) {
res[i] = 0.;
}
}
el = 0;
for (i = 0; i < nn; ++i) {
rl = H.mRowStart[i+1] - H.mRowStart[i];
lo = *col++;
// Diagonal entry
tmpx = x[i];
eqAx(tmpm, H.mEntries[el], tmpx);
++el;
//Non-diagonal entries
for (j = 1; j < rl; ++j) {
c = *col++;
// res[i] += H.mEntries[e] * x[c];
plusEqAx(tmpm, H.mEntries[el], x[c]);
// res[c] += transpose(H.mEntries[e]) * tmpxi;
plusEqTransAx(res[c], H.mEntries[el], tmpx);
++el;
}
res[lo] += tmpm;
}
}
/*! Computes \f$ z=M^{-1}r \f$ . */
inline void MsqHessian::apply_preconditioner(Vector3D zloc[],
Vector3D rloc[],
MsqError& /*err*/)
{
size_t m;
for (m=0; m<mSize; ++m) {
#ifdef DIAGONAL_PRECONDITIONER
// preconditioner is identity matrix for now.
zloc[m][0] = mPreconditioner[m][0][0] * rloc[m][0];
zloc[m][1] = mPreconditioner[m][1][1] * rloc[m][1];
zloc[m][2] = mPreconditioner[m][2][2] * rloc[m][2];
#else
// z = inv(L^T) * r
zloc[m][0] = rloc[m][0];
zloc[m][1] = rloc[m][1] - mPreconditioner[m][0][1] * zloc[m][0];
zloc[m][2] = rloc[m][2] - mPreconditioner[m][0][2] * zloc[m][0] - mPreconditioner[m][1][2] * zloc[m][1];
// z = inv(D) * z
zloc[m][0] *= mPreconditioner[m][0][0];
zloc[m][1] *= mPreconditioner[m][1][1];
zloc[m][2] *= mPreconditioner[m][2][2];
// z = inv(L) * z
zloc[m][2] = zloc[m][2];
zloc[m][1] = zloc[m][1] - mPreconditioner[m][1][2] * zloc[m][2];
zloc[m][0] = zloc[m][0] - mPreconditioner[m][0][1] * zloc[m][1] - mPreconditioner[m][0][2] * zloc[m][2];
#endif
}
}
/*! Returns a pointer to the Matrix3D block at position i,j if it exist.
Returns the NULL pointer if position i,j (0-based) is a NULL entry.
Note that block i,j must be in the upper triangular part of the
(symetric) hessian. */
inline Matrix3D* MsqHessian::get_block(size_t i, size_t j)
{
size_t c;
if (i >= mSize || j >= mSize || j < i)
return NULL;
for (c=mRowStart[i]; c<mRowStart[i+1]; ++c) {
if (mColIndex[c] == j)
return ( mEntries + c );
}
// if there is no block at position i,j (zero entry).
return NULL;
}
inline const Matrix3D* MsqHessian::get_block(size_t i, size_t j) const
{ return const_cast<MsqHessian*>(this)->get_block(i,j); }
/* ------------------ I/O ----------------- */
std::ostream& operator<<(std::ostream &s, const MsqHessian &h);
} // namespace
#endif // MsqHessian_hpp
|