This file is indexed.

/usr/include/trilinos/Matrix3D.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/* ***************************************************************** 
    MESQUITE -- The Mesh Quality Improvement Toolkit

    Copyright 2004 Sandia Corporation and Argonne National
    Laboratory.  Under the terms of Contract DE-AC04-94AL85000 
    with Sandia Corporation, the U.S. Government retains certain 
    rights in this software.

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License 
    (lgpl.txt) along with this library; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 
    diachin2@llnl.gov, djmelan@sandia.gov, mbrewer@sandia.gov, 
    pknupp@sandia.gov, tleurent@mcs.anl.gov, tmunson@mcs.anl.gov      
   
  ***************************************************************** */
//
//    AUTHOR: Thomas Leurent <tleurent@mcs.anl.gov>
//       ORG: Argonne National Laboratory
//    E-MAIL: tleurent@mcs.anl.gov
//
// ORIG-DATE: 18-Dec-02 at 11:08:22
//  LAST-MOD: 27-May-04 at 14:48:56 by Thomas Leurent
//
// DESCRIPTION:
// ============
/*! \file Matrix3D.hpp

3*3 Matric class, row-oriented, 0-based [i][j] indexing.

 \author Thomas Leurent
 
*/
// DESCRIP-END.
//



#ifndef Matrix3D_hpp
#define Matrix3D_hpp

#include <iostream>
#include <sstream>
#include <cstdlib>

#include "Mesquite.hpp"
#include "Vector3D.hpp"
#include "SymMatrix3D.hpp"

namespace MESQUITE_NS
{

  /*! \class Matrix3D
      \brief 3*3 Matric class, row-oriented, 0-based [i][j] indexing.

      Since the size of the object is fixed at compile time, the Matrix3D
      object is as fast as a double[9] array.
  */
  class MESQUITE_EXPORT Matrix3D 
  {
  protected:
    double v_[9];                  

   
    void copy(const double*  v)
    { 
      v_[0] = v[0];
      v_[1] = v[1];
      v_[2] = v[2];
      v_[3] = v[3];
      v_[4] = v[4];
      v_[5] = v[5];
      v_[6] = v[6];
      v_[7] = v[7];
      v_[8] = v[8];
    }

    void set(double val)
    {
      v_[0]=val;  v_[1]=val;  v_[2]=val;
      v_[3]=val;  v_[4]=val;  v_[5]=val;
      v_[6]=val;  v_[7]=val;  v_[8]=val;
    }

    inline void set_values(const char *s);
    
  public:

    // constructors
    //! Default constructor sets all entries to 0. 
    Matrix3D()
    {
      zero();
    }
    
    Matrix3D(const Matrix3D &A)
    {
      copy(A.v_);
    }

    //! sets all entries of the matrix to value.
    Matrix3D(double value)
    {
      set(value);
    }
    
    Matrix3D( double a00, double a01, double a02,
              double a10, double a11, double a12,
              double a20, double a21, double a22 )
    {
      v_[0] = a00; v_[1] = a01; v_[2] = a02;
      v_[3] = a10; v_[4] = a11; v_[5] = a12;
      v_[6] = a20; v_[7] = a21; v_[8] = a22;
    }
    
    Matrix3D( const Vector3D& col1,
              const Vector3D& col2,
              const Vector3D& col3 )
    {
      set_column( 0, col1 );
      set_column( 1, col2 );
      set_column( 2, col3 );
    }
    
    Matrix3D( double radians, const Vector3D& axis )
    {
      Vector3D v(axis);
      v.normalize();
      const double c = std::cos( radians );
      const double s = std::sin( radians );
      v_[0] =  c      + (1.0 - c) * v[0]*v[0];
      v_[1] = -v[2]*s + (1.0 - c) * v[0]*v[1];
      v_[2] =  v[1]*s + (1.0 - c) * v[0]*v[2];
      v_[3] =  v[2]*s + (1.0 - c) * v[0]*v[1];
      v_[4] =  c      + (1.0 - c) * v[1]*v[1];
      v_[5] = -v[0]*s + (1.0 - c) * v[1]*v[2];
      v_[6] = -v[1]*s + (1.0 - c) * v[0]*v[2];
      v_[7] =  v[0]*s + (1.0 - c) * v[1]*v[2];
      v_[8] =  c      + (1.0 - c) * v[2]*v[2];
    }
      

    //! sets matrix entries to values in array.
    //! \param v is an array of 9 doubles. 
    Matrix3D(const double* v)
    {
      copy(v);
    }

    //! for test purposes, matrices can be instantiated as
    //! \code Matrix3D A("3 2 1  4 5 6  9 8 7"); \endcode
    Matrix3D(const char *s)
    {
      set_values(s);
    }
    
    Matrix3D( const SymMatrix3D& m )
    {
      *this = m;
    }

    // destructor
    ~Matrix3D() { }

    // assignments
    Matrix3D& operator=(const Matrix3D &A)
    {
      copy(A.v_);
      return *this;
    }
    
    Matrix3D& operator=( const SymMatrix3D& m )
    {
      v_[0]         = m[0];
      v_[1] = v_[3] = m[1];
      v_[2] = v_[6] = m[2];
      v_[4]         = m[3];
      v_[5] = v_[7] = m[4];
      v_[8]         = m[5];
      return *this;
    }
    
        
    Matrix3D& operator=(double scalar)
    { 
      set(scalar); 
      return *this;
    }

    //! for test purposes, matrices can be assigned as follows
    //! \code A = "3 2 1  4 5 6  9 8 7"; \endcode
    Matrix3D& operator=(const char* s)
    { 
      set_values(s); 
      return *this;
    }

    //! Sets all entries to zero (more efficient than assignement).
    void zero()
    {
      v_[0]=0.;  v_[1]=0.;  v_[2]=0.;
      v_[3]=0.;  v_[4]=0.;  v_[5]=0.;
      v_[6]=0.;  v_[7]=0.;  v_[8]=0.;
    }
    
    void identity()
    {
      v_[0]=1.;  v_[1]=0.;  v_[2]=0.;
      v_[3]=0.;  v_[4]=1.;  v_[5]=0.;
      v_[6]=0.;  v_[7]=0.;  v_[8]=1.;
    }
      
     
    //! Sets column j (0, 1 or 2) to Vector3D c.
    void set_column(int j, const Vector3D& c)
    {
      v_[0+j]=c[0];
      v_[3+j]=c[1];
      v_[6+j]=c[2];
    }
    
    //! returns the column length -- i is 0-based. 
    double column_length(int i) const 
    { return sqrt( v_[0+i]*v_[0+i] + v_[3+i]*v_[3+i] + v_[6+i]*v_[6+i] ); }


    double sub_det( int r, int c ) const
    {
      int r1 = 3 * ((r + 1) % 3);
      int r2 = 3 * ((r + 2) % 3);
      int c1 =     ((c + 1) % 3);
      int c2 =     ((c + 2) % 3);
      return v_[r1+c1] * v_[r2+c2] - v_[r2+c1] * v_[r1+c2];
    }
    
    // Matrix Operators
    friend bool operator==(const Matrix3D &lhs, const Matrix3D &rhs);
    friend bool operator!=(const Matrix3D &lhs, const Matrix3D &rhs);
    friend Matrix3D operator-( const Matrix3D& A );
    friend double Frobenius_2(const Matrix3D &A);
    friend Matrix3D transpose(const Matrix3D &A);
    inline Matrix3D& transpose();
    friend const Matrix3D operator+(const Matrix3D &A, const Matrix3D &B);
    friend const Matrix3D operator-(const Matrix3D &A, const Matrix3D &B) ;
    friend const Matrix3D operator*(const Matrix3D &A, const Matrix3D &B);
    inline Matrix3D& equal_mult_elem( const Matrix3D& A );
    friend const Matrix3D mult_element(const Matrix3D &A, const Matrix3D &B);
    inline Matrix3D& assign_product( const Matrix3D& A, const Matrix3D& B );
    friend void matmult(Matrix3D& C, const Matrix3D  &A, const Matrix3D &B);
    friend const Vector3D operator*(const Matrix3D  &A, const Vector3D &x);
    friend const Vector3D operator*(const Vector3D &x, const Matrix3D  &A);
    const Matrix3D operator*(double s) const;
    friend const Matrix3D operator*(double s, const Matrix3D &A);    
    void operator+=(const Matrix3D &rhs);
    void operator+=(const SymMatrix3D &rhs);
    void operator-=(const Matrix3D &rhs);
    void operator-=(const SymMatrix3D &rhs);
    void operator*=(double s);
    friend Matrix3D plus_transpose(const Matrix3D& A, const Matrix3D &B);
    Matrix3D& plus_transpose_equal(const Matrix3D &B);
    Matrix3D& outer_product(const Vector3D &v1, const Vector3D &v2);
    void fill_lower_triangle();

    //! \f$ v = A*x \f$
    friend void eqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
    //! \f$ v += A*x \f$
    friend void plusEqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
    friend void eqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x); 
    //! \f$ v += A^T*x \f$
    friend void plusEqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x);
     
    //! \f$ B += a*A \f$
    friend void plusEqaA(Matrix3D& B, const double a, const Matrix3D &A);

    //! determinant of matrix A, det(A).
    friend double det(const Matrix3D &A);

    //! \f$ B = A^{-1} \f$
    friend void inv(Matrix3D& B, const Matrix3D &A);

    //! \f$ B *= A^{-1} \f$
    friend void timesInvA(Matrix3D& B, const Matrix3D &A);

    //! \f$ Q*R = A \f$
    friend void QR(Matrix3D &Q, Matrix3D &R, const Matrix3D &A);

    size_t num_rows() const { return 3; }
    size_t num_cols() const { return 3; }

    //! returns a pointer to a row.
    inline double* operator[](unsigned i)
    {
      return v_ + 3*i;
    }

    //! returns a pointer to a row.
    inline const double* operator[](unsigned i) const
    {
      return v_ + 3*i;
    }
    
    inline double& operator()(unsigned short r, unsigned short c)
    {
      return v_[3*r+c];
    }
    inline double operator()(unsigned short r, unsigned short c) const
    {
      return v_[3*r+c];
    }
    
    
    
    inline Vector3D row(unsigned r) const
    {
      return Vector3D( v_ + 3*r );
    }
    
    inline Vector3D column( unsigned c ) const
    {
      return Vector3D( v_[c], v_[c+3], v_[c+6] );
    }

    inline bool positive_definite() const;
    
    inline SymMatrix3D upper() const
    {
      return SymMatrix3D( v_[0], v_[1], v_[2],
                                 v_[4], v_[5],
                                        v_[8] );
    }
    inline SymMatrix3D lower() const
    {
      return SymMatrix3D( v_[0], v_[3], v_[6],
                                 v_[4], v_[7],
                                        v_[8] );
    }
  };


  /* ***********  I/O  **************/

  inline std::ostream& operator<<(std::ostream &s, const Matrix3D &A)
  {
    for (size_t i=0; i<3; ++i)
      {
        for (size_t j=0; j<3; ++j)
          s << A[i][j] << " ";
        s << "\n";
      }
    return s;
  }

  inline std::istream& operator>>(std::istream &s, Matrix3D &A)
  {
    for (size_t i=0; i<3; i++)
      for (size_t j=0; j<3; j++)
        {
          s >>  A[i][j];
        }
    return s;
  }

  void Matrix3D::set_values(const char *s)
  {
    std::istringstream ins(s);
    ins >> *this;
  }

  // *********** matrix operators *******************

  // comparison functions
  inline bool operator==(const Matrix3D &lhs, const Matrix3D &rhs)
  {
    return lhs.v_[0] == rhs.v_[0]
        && lhs.v_[1] == rhs.v_[1]
        && lhs.v_[2] == rhs.v_[2]
        && lhs.v_[3] == rhs.v_[3]
        && lhs.v_[4] == rhs.v_[4]
        && lhs.v_[5] == rhs.v_[5]
        && lhs.v_[6] == rhs.v_[6]
        && lhs.v_[7] == rhs.v_[7]
        && lhs.v_[8] == rhs.v_[8];
  }
  inline bool operator!=(const Matrix3D &lhs, const Matrix3D &rhs)
  { return !(lhs == rhs); }

  inline Matrix3D operator-( const Matrix3D& A )
  {
    return Matrix3D( -A.v_[0],
                     -A.v_[1],
                     -A.v_[2],
                     -A.v_[3],
                     -A.v_[4],
                     -A.v_[5],
                     -A.v_[6],
                     -A.v_[7],
                     -A.v_[8] );
  }
                     
  //! \return A+B
  inline const Matrix3D operator+(const Matrix3D &A, 
                            const Matrix3D &B)
  {
    Matrix3D tmp(A);
    tmp += B;
    return tmp;
  }
  
  inline Matrix3D operator+( const Matrix3D& A, const SymMatrix3D& B )
  {
    return Matrix3D( A(0,0) + B[SymMatrix3D::T00],
                     A(0,1) + B[SymMatrix3D::T01],
                     A(0,2) + B[SymMatrix3D::T02],
                     A(1,0) + B[SymMatrix3D::T10],
                     A(1,1) + B[SymMatrix3D::T11],
                     A(1,2) + B[SymMatrix3D::T12],
                     A(2,0) + B[SymMatrix3D::T20],
                     A(2,1) + B[SymMatrix3D::T21],
                     A(2,2) + B[SymMatrix3D::T22] );
  }
  inline Matrix3D operator+( const SymMatrix3D& B, const Matrix3D& A )
    { return A + B; }

  //! \return A-B
  inline const Matrix3D operator-(const Matrix3D &A, 
                            const Matrix3D &B)
  {
    Matrix3D tmp(A);
    tmp -= B;
    return tmp;
  }
  
  inline Matrix3D operator-( const Matrix3D& A, const SymMatrix3D& B )
  {
    return Matrix3D( A(0,0) - B[SymMatrix3D::T00],
                     A(0,1) - B[SymMatrix3D::T01],
                     A(0,2) - B[SymMatrix3D::T02],
                     A(1,0) - B[SymMatrix3D::T10],
                     A(1,1) - B[SymMatrix3D::T11],
                     A(1,2) - B[SymMatrix3D::T12],
                     A(2,0) - B[SymMatrix3D::T20],
                     A(2,1) - B[SymMatrix3D::T21],
                     A(2,2) - B[SymMatrix3D::T22] );
  }
  inline Matrix3D operator-( const SymMatrix3D& B, const Matrix3D& A )
  {
    return Matrix3D( B[SymMatrix3D::T00] - A(0,0),
                     B[SymMatrix3D::T01] - A(0,1),
                     B[SymMatrix3D::T02] - A(0,2),
                     B[SymMatrix3D::T10] - A(1,0),
                     B[SymMatrix3D::T11] - A(1,1),
                     B[SymMatrix3D::T12] - A(1,2),
                     B[SymMatrix3D::T20] - A(2,0),
                     B[SymMatrix3D::T21] - A(2,1),
                     B[SymMatrix3D::T22] - A(2,2) );
  }
  
  inline Matrix3D& Matrix3D::equal_mult_elem( const Matrix3D& A )
  {
  	v_[0] *= A.v_[0];    
  	v_[1] *= A.v_[1];    
  	v_[2] *= A.v_[2];    
  	v_[3] *= A.v_[3];    
  	v_[4] *= A.v_[4];    
  	v_[5] *= A.v_[5];    
  	v_[6] *= A.v_[6];    
  	v_[7] *= A.v_[7];    
  	v_[8] *= A.v_[8];
    return *this;
  } 

    //! Multiplies entry by entry. This is NOT a matrix multiplication. 
  inline const Matrix3D mult_element(const Matrix3D &A, 
                               const Matrix3D &B)
  {
    Matrix3D tmp(A);
    tmp.equal_mult_elem(B);
    return tmp;
  }

  //! Return the square of the Frobenius norm of A, i.e. sum (diag (A' * A))
  inline double Frobenius_2(const Matrix3D &A)
  {
    return A.v_[0] * A.v_[0]
         + A.v_[1] * A.v_[1]
         + A.v_[2] * A.v_[2]
         + A.v_[3] * A.v_[3]
         + A.v_[4] * A.v_[4]
         + A.v_[5] * A.v_[5]
         + A.v_[6] * A.v_[6]
         + A.v_[7] * A.v_[7]
         + A.v_[8] * A.v_[8];
  }
  
  inline Matrix3D& Matrix3D::transpose()
  {
    double t;
    t = v_[1]; v_[1] = v_[3]; v_[3] = t;
    t = v_[2]; v_[2] = v_[6]; v_[6] = t;
    t = v_[5]; v_[5] = v_[7]; v_[7] = t;
    return *this;
  }
  
  inline Matrix3D transpose(const Matrix3D &A)
  {
    Matrix3D S;
//     size_t i;
//     for (i=0; i<3; ++i) {
//         S[size_t(0)][i] = A[i][0];
//         S[size_t(1)][i] = A[i][1];
//         S[size_t(2)][i] = A[i][2];
//     }
    S.v_[0]=A.v_[0]; S.v_[1]=A.v_[3]; S.v_[2]=A.v_[6];
    S.v_[3]=A.v_[1]; S.v_[4]=A.v_[4]; S.v_[5]=A.v_[7];
    S.v_[6]=A.v_[2]; S.v_[7]=A.v_[5]; S.v_[8]=A.v_[8];
    
    return S;
  }

  inline void Matrix3D::operator+=(const Matrix3D &rhs)
  {
      v_[0] += rhs.v_[0]; v_[1] += rhs.v_[1]; v_[2] += rhs.v_[2];
      v_[3] += rhs.v_[3]; v_[4] += rhs.v_[4]; v_[5] += rhs.v_[5];
      v_[6] += rhs.v_[6]; v_[7] += rhs.v_[7]; v_[8] += rhs.v_[8];
  }

  inline void Matrix3D::operator+=(const SymMatrix3D &rhs)
  {
      v_[0] += rhs[0]; v_[1] += rhs[1]; v_[2] += rhs[2];
      v_[3] += rhs[1]; v_[4] += rhs[3]; v_[5] += rhs[4];
      v_[6] += rhs[2]; v_[7] += rhs[4]; v_[8] += rhs[5];
  }

  inline void Matrix3D::operator-=(const Matrix3D &rhs)
  {
      v_[0] -= rhs.v_[0]; v_[1] -= rhs.v_[1]; v_[2] -= rhs.v_[2];
      v_[3] -= rhs.v_[3]; v_[4] -= rhs.v_[4]; v_[5] -= rhs.v_[5];
      v_[6] -= rhs.v_[6]; v_[7] -= rhs.v_[7]; v_[8] -= rhs.v_[8];
  }

  inline void Matrix3D::operator-=(const SymMatrix3D &rhs)
  {
      v_[0] -= rhs[0]; v_[1] -= rhs[1]; v_[2] -= rhs[2];
      v_[3] -= rhs[1]; v_[4] -= rhs[3]; v_[5] -= rhs[4];
      v_[6] -= rhs[2]; v_[7] -= rhs[4]; v_[8] -= rhs[5];
  }

  //! multiplies each entry by the scalar s
  inline void Matrix3D::operator*=(double s)
  {
      v_[0] *= s; v_[1] *= s; v_[2] *= s;
      v_[3] *= s; v_[4] *= s; v_[5] *= s;
      v_[6] *= s; v_[7] *= s; v_[8] *= s;
  }
  
  //! \f$ += B^T  \f$
  inline Matrix3D& Matrix3D::plus_transpose_equal( const Matrix3D& b )
  {
    if (&b == this) {
      v_[0] *= 2.0;
      v_[1] += v_[3];
      v_[2] += v_[6];
      v_[3]  = v_[1];
      v_[4] *= 2.0;
      v_[5] += v_[7];
      v_[6]  = v_[2];
      v_[7]  = v_[5];
      v_[8] *= 2.0;
    }
    else {
      v_[0] += b.v_[0];
      v_[1] += b.v_[3];
      v_[2] += b.v_[6];

      v_[3] += b.v_[1];
      v_[4] += b.v_[4];
      v_[5] += b.v_[7];

      v_[6] += b.v_[2];
      v_[7] += b.v_[5];
      v_[8] += b.v_[8];
    }
    return *this;
  }

  //! \f$ + B^T  \f$
  inline Matrix3D plus_transpose(const Matrix3D& A, const Matrix3D &B) 
  {
    Matrix3D tmp(A);
    tmp.plus_transpose_equal( B );
    return tmp;
  }

  //! Computes \f$ A = v_1 v_2^T \f$
  inline Matrix3D& Matrix3D::outer_product(const Vector3D  &v1, const Vector3D &v2)
  {
    // remember, matrix entries are v_[0] to v_[8].
    
    // diagonal
    v_[0] = v1[0]*v2[0];
    v_[4] = v1[1]*v2[1];
    v_[8] = v1[2]*v2[2];

    // upper triangular part
    v_[1] = v1[0]*v2[1];
    v_[2] = v1[0]*v2[2];
    v_[5] = v1[1]*v2[2];

    // lower triangular part
    v_[3] = v2[0]*v1[1];
    v_[6] = v2[0]*v1[2];
    v_[7] = v2[1]*v1[2];

    return *this;
  }

  inline void Matrix3D::fill_lower_triangle()
  {
    v_[3] = v_[1];
    v_[6] = v_[2];
    v_[7] = v_[5];
  } 

  //! \return A*B
  inline const Matrix3D operator*(const Matrix3D  &A, 
                            const Matrix3D &B)
  {
    Matrix3D tmp;
    tmp.assign_product( A, B );
    return tmp;
  }
  
  inline const Matrix3D operator*( const Matrix3D& A, 
                                   const SymMatrix3D& B )
  {
    return Matrix3D( A(0,0)*B[0] + A(0,1)*B[1] + A(0,2)*B[2],
                     A(0,0)*B[1] + A(0,1)*B[3] + A(0,2)*B[4],
                     A(0,0)*B[2] + A(0,1)*B[4] + A(0,2)*B[5],
                     
                     A(1,0)*B[0] + A(1,1)*B[1] + A(1,2)*B[2],
                     A(1,0)*B[1] + A(1,1)*B[3] + A(1,2)*B[4],
                     A(1,0)*B[2] + A(1,1)*B[4] + A(1,2)*B[5],
                     
                     A(2,0)*B[0] + A(2,1)*B[1] + A(2,2)*B[2],
                     A(2,0)*B[1] + A(2,1)*B[3] + A(2,2)*B[4],
                     A(2,0)*B[2] + A(2,1)*B[4] + A(2,2)*B[5] );
  }
  
  inline const Matrix3D operator*( const SymMatrix3D& B,
                                   const Matrix3D& A )
  {
    return Matrix3D( A(0,0)*B[0] + A(1,0)*B[1] + A(2,0)*B[2],
                     A(0,1)*B[0] + A(1,1)*B[1] + A(2,1)*B[2],
                     A(0,2)*B[0] + A(1,2)*B[1] + A(2,2)*B[2],

                     A(0,0)*B[1] + A(1,0)*B[3] + A(2,0)*B[4],
                     A(0,1)*B[1] + A(1,1)*B[3] + A(2,1)*B[4],
                     A(0,2)*B[1] + A(1,2)*B[3] + A(2,2)*B[4],

                     A(0,0)*B[2] + A(1,0)*B[4] + A(2,0)*B[5],
                     A(0,1)*B[2] + A(1,1)*B[4] + A(2,1)*B[5],
                     A(0,2)*B[2] + A(1,2)*B[4] + A(2,2)*B[5] );
  }
  
  inline const Matrix3D operator*( const SymMatrix3D& a,
                                   const SymMatrix3D& b )
  {
    return Matrix3D( a[0]*b[0] + a[1]*b[1] + a[2]*b[2],
                     a[0]*b[1] + a[1]*b[3] + a[2]*b[4],
                     a[0]*b[2] + a[1]*b[4] + a[2]*b[5],
                     
                     a[1]*b[0] + a[3]*b[1] + a[4]*b[2],
                     a[1]*b[1] + a[3]*b[3] + a[4]*b[4],
                     a[1]*b[2] + a[3]*b[4] + a[4]*b[5],
                     
                     a[2]*b[0] + a[4]*b[1] + a[5]*b[2],
                     a[2]*b[1] + a[4]*b[3] + a[5]*b[4],
                     a[2]*b[2] + a[4]*b[4] + a[5]*b[5] );
  }
                     
                     
   
   //! multiplies each entry by the scalar s
  inline const Matrix3D Matrix3D::operator*(double s) const
  {
    Matrix3D temp(*this);
    temp *= s;
    return temp;
  }
     //!friend function to allow for commutatative property of
     //! scalar mulitplication.
   inline const Matrix3D operator*(double s, const Matrix3D &A)
   {
     return (A.operator*(s));
   }
   

  inline Matrix3D& Matrix3D::assign_product( const Matrix3D& A, const Matrix3D& B)
  {
    v_[0] = A.v_[0]*B.v_[0] + A.v_[1]*B.v_[3] + A.v_[2]*B.v_[6];
    v_[1] = A.v_[0]*B.v_[1] + A.v_[1]*B.v_[4] + A.v_[2]*B.v_[7];
    v_[2] = A.v_[0]*B.v_[2] + A.v_[1]*B.v_[5] + A.v_[2]*B.v_[8];
    v_[3] = A.v_[3]*B.v_[0] + A.v_[4]*B.v_[3] + A.v_[5]*B.v_[6];
    v_[4] = A.v_[3]*B.v_[1] + A.v_[4]*B.v_[4] + A.v_[5]*B.v_[7];
    v_[5] = A.v_[3]*B.v_[2] + A.v_[4]*B.v_[5] + A.v_[5]*B.v_[8];
    v_[6] = A.v_[6]*B.v_[0] + A.v_[7]*B.v_[3] + A.v_[8]*B.v_[6];
    v_[7] = A.v_[6]*B.v_[1] + A.v_[7]*B.v_[4] + A.v_[8]*B.v_[7];
    v_[8] = A.v_[6]*B.v_[2] + A.v_[7]*B.v_[5] + A.v_[8]*B.v_[8];
    return *this;
  }
   

  //! \f$ C = A \times B \f$
  inline void matmult(Matrix3D& C, const Matrix3D  &A, const Matrix3D &B)
  {
    C.assign_product( A, B );
  }

  /*! \brief Computes \f$ A v \f$ . */
  inline const Vector3D operator*(const Matrix3D  &A, const Vector3D &x)
  {
    Vector3D tmp;
    eqAx( tmp, A, x );
    return tmp;
  }

  /*! \brief Computes \f$ v^T A \f$ .
    
      This function implicitly considers the transpose of vector x times
      the matrix A and it is implicit that the returned vector must be
      transposed. */
  inline const Vector3D operator*(const Vector3D &x, const Matrix3D  &A)
  {
    Vector3D tmp;
    eqTransAx( tmp, A, x );
    return tmp;
  }
   
  inline void eqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x)
  {
     v.mCoords[0] = A.v_[0]*x[0] + A.v_[1]*x.mCoords[1] + A.v_[2]*x.mCoords[2];
     v.mCoords[1] = A.v_[3]*x[0] + A.v_[4]*x.mCoords[1] + A.v_[5]*x.mCoords[2];
     v.mCoords[2] = A.v_[6]*x[0] + A.v_[7]*x.mCoords[1] + A.v_[8]*x.mCoords[2];
  }
   
  inline void plusEqAx(Vector3D& v, const Matrix3D& A, const Vector3D& x)
  {
     v.mCoords[0] += A.v_[0]*x[0] + A.v_[1]*x.mCoords[1] + A.v_[2]*x.mCoords[2];
     v.mCoords[1] += A.v_[3]*x[0] + A.v_[4]*x.mCoords[1] + A.v_[5]*x.mCoords[2];
     v.mCoords[2] += A.v_[6]*x[0] + A.v_[7]*x.mCoords[1] + A.v_[8]*x.mCoords[2];
  }
  
  inline void eqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x)
  {
     v.mCoords[0] = A.v_[0]*x.mCoords[0] + A.v_[3]*x.mCoords[1] + A.v_[6]*x.mCoords[2];
     v.mCoords[1] = A.v_[1]*x.mCoords[0] + A.v_[4]*x.mCoords[1] + A.v_[7]*x.mCoords[2];
     v.mCoords[2] = A.v_[2]*x.mCoords[0] + A.v_[5]*x.mCoords[1] + A.v_[8]*x.mCoords[2];
  } 
   
  inline void plusEqTransAx(Vector3D& v, const Matrix3D& A, const Vector3D& x)
  {
     v.mCoords[0] += A.v_[0]*x.mCoords[0] + A.v_[3]*x.mCoords[1] + A.v_[6]*x.mCoords[2];
     v.mCoords[1] += A.v_[1]*x.mCoords[0] + A.v_[4]*x.mCoords[1] + A.v_[7]*x.mCoords[2];
     v.mCoords[2] += A.v_[2]*x.mCoords[0] + A.v_[5]*x.mCoords[1] + A.v_[8]*x.mCoords[2];
  }
   
  inline void plusEqaA(Matrix3D& B, const double a, const Matrix3D &A) {
    B.v_[0] += a*A.v_[0]; B.v_[1] += a*A.v_[1]; B.v_[2] += a*A.v_[2]; 
    B.v_[3] += a*A.v_[3]; B.v_[4] += a*A.v_[4]; B.v_[5] += a*A.v_[5];
    B.v_[6] += a*A.v_[6]; B.v_[7] += a*A.v_[7]; B.v_[8] += a*A.v_[8];
  }

  inline double det(const Matrix3D &A) {
    return (  A.v_[0]*(A.v_[4]*A.v_[8]-A.v_[7]*A.v_[5])
            -A.v_[1]*(A.v_[3]*A.v_[8]-A.v_[6]*A.v_[5])
            +A.v_[2]*(A.v_[3]*A.v_[7]-A.v_[6]*A.v_[4]) );
  }

  inline void inv(Matrix3D &Ainv, const Matrix3D &A) {
    double inv_detA = 1.0 / (det(A));
      //First row of Ainv
    Ainv.v_[0] = inv_detA*( A.v_[4]*A.v_[8]-A.v_[5]*A.v_[7] );
    Ainv.v_[1] = inv_detA*( A.v_[2]*A.v_[7]-A.v_[8]*A.v_[1] );
    Ainv.v_[2] = inv_detA*( A.v_[1]*A.v_[5]-A.v_[4]*A.v_[2] );
      //Second row of Ainv
    Ainv.v_[3] = inv_detA*( A.v_[5]*A.v_[6]-A.v_[8]*A.v_[3] );
    Ainv.v_[4] = inv_detA*( A.v_[0]*A.v_[8]-A.v_[6]*A.v_[2] );
    Ainv.v_[5] = inv_detA*( A.v_[2]*A.v_[3]-A.v_[5]*A.v_[0] );
      //Third row of Ainv
    Ainv.v_[6] = inv_detA*( A.v_[3]*A.v_[7]-A.v_[6]*A.v_[4] );
    Ainv.v_[7] = inv_detA*( A.v_[1]*A.v_[6]-A.v_[7]*A.v_[0] );
    Ainv.v_[8] = inv_detA*( A.v_[0]*A.v_[4]-A.v_[3]*A.v_[1] );
  }

  inline void timesInvA(Matrix3D& B, const Matrix3D &A) {

    Matrix3D Ainv;
    inv( Ainv, A );
    B = B*Ainv;
  }

  inline void QR(Matrix3D &Q, Matrix3D &R, const Matrix3D &A) {
    // Compute the QR factorization of A.  This code uses the
    // Modified Gram-Schmidt method for computing the factorization.
    // The Householder version is more stable, but costs twice as many
    // floating point operations.

    Q = A;

    R[0][0] = sqrt(Q[0][0]*Q[0][0] + Q[1][0]*Q[1][0] + Q[2][0]*Q[2][0]);
    double temp_dbl = 1.0/R[0][0];
    R[1][0] = 0.0L;
    R[2][0] = 0.0L;
      //Q[0][0] /= R[0][0];
      //Q[1][0] /= R[0][0];
      //Q[2][0] /= R[0][0];
    Q[0][0] *= temp_dbl;
    Q[1][0] *= temp_dbl;
    Q[2][0] *= temp_dbl;
    

    R[0][1]  = Q[0][0]*Q[0][1] + Q[1][0]*Q[1][1] + Q[2][0]*Q[2][1];
    Q[0][1] -= Q[0][0]*R[0][1];
    Q[1][1] -= Q[1][0]*R[0][1];
    Q[2][1] -= Q[2][0]*R[0][1];

    R[0][2]  = Q[0][0]*Q[0][2] + Q[1][0]*Q[1][2] + Q[2][0]*Q[2][2];
    Q[0][2] -= Q[0][0]*R[0][2];
    Q[1][2] -= Q[1][0]*R[0][2];
    Q[2][2] -= Q[2][0]*R[0][2];

    R[1][1] = sqrt(Q[0][1]*Q[0][1] + Q[1][1]*Q[1][1] + Q[2][1]*Q[2][1]);
    temp_dbl = 1.0 / R[1][1];
    R[2][1] = 0.0L;
//     Q[0][1] /= R[1][1];
//     Q[1][1] /= R[1][1];
//     Q[2][1] /= R[1][1];
    Q[0][1] *= temp_dbl;
    Q[1][1] *= temp_dbl;
    Q[2][1] *= temp_dbl;

    
    R[1][2]  = Q[0][1]*Q[0][2] + Q[1][1]*Q[1][2] + Q[2][1]*Q[2][2];
    Q[0][2] -= Q[0][1]*R[1][2];
    Q[1][2] -= Q[1][1]*R[1][2];
    Q[2][2] -= Q[2][1]*R[1][2];
  
    R[2][2] = sqrt(Q[0][2]*Q[0][2] + Q[1][2]*Q[1][2] + Q[2][2]*Q[2][2]);
    temp_dbl = 1.0 / R[2][2];
    
//     Q[0][2] /= R[2][2];
//     Q[1][2] /= R[2][2];
//     Q[2][2] /= R[2][2];
    Q[0][2] *= temp_dbl;
    Q[1][2] *= temp_dbl;
    Q[2][2] *= temp_dbl;
    
    return;
  }
  
inline bool Matrix3D::positive_definite() const
{
  // A = B + C
 //where
 // B = (A + transpose(A))/2
 // C = (A - transpose(A))/2
 // B is always a symmetric matrix and 
 // A is positive definite iff B is positive definite.
 Matrix3D B(*this);
 B.plus_transpose_equal( *this );
 B *= 0.5;
 
 // Sylvester's Criterion for positive definite symmetric matrix
 return (B[0][0] > 0.0) && (B.sub_det(2,2) > 0.0) && (det(B) > 0.0);
}

} // namespace Mesquite

#endif // Matrix3D_hpp