/usr/include/trilinos/MappingFunction.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | /* *****************************************************************
MESQUITE -- The Mesh Quality Improvement Toolkit
Copyright 2006 Lawrence Livermore National Laboratory. Under
the terms of Contract B545069 with the University of Wisconsin --
Madison, Lawrence Livermore National Laboratory retains certain
rights in this software.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
(lgpl.txt) along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
(2006) kraftche@cae.wisc.edu
***************************************************************** */
#ifndef MSQ_MAPPING_FUNCTION_HPP
#define MSQ_MAPPING_FUNCTION_HPP
/** \file MappingFunction.hpp
* \brief Header containg defintion of MappingFunction
* \author Jason Kraftcheck
*/
#include "Mesquite.hpp"
#include <vector>
#include "MsqMatrix.hpp"
#include "TopologyInfo.hpp"
#include "NodeSet.hpp"
namespace MESQUITE_NS {
class MsqError;
class PatchData;
/**\brief An interface for a mapping function of the form
* \f$\vec{x}(\vec{\xi})=\sum_{i=1}^n N_i(\vec{\xi})\vec{x_i}\f$,
* where \f$\vec{x_i}\f$ is a point
* in \f$\mathbf{R}^3\f$ (i.e. \f$x_i,y_i,z_i\f$),
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \end{array}\right\}\f$
* for surface elements and
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \zeta_i\\ \end{array}\right\}\f$
* for volume elements.
*
* This is an interface for describing a mapping function for a
* single element topology. A mapping function is assumed to be
* of the following form:
* \f$\vec{x}(\vec{\xi})=\sum_{i=1}^n N_i(\vec{\xi})\vec{x_i}\f$
* where \f$n\f$ is the number of nodes in the element,
* \f$\vec{x_i}\f$ is a point
* in \f$\mathbf{R}^3\f$ (i.e. \f$x_i,y_i,z_i\f$), and
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \end{array}\right\}\f$
* for surface elements and
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \zeta_i\\ \end{array}\right\}\f$
* for volume elements. For example,
* for a linear quadrilateral element, the mapping function will be
* of the form:
* \f$\vec{x}(\xi,\eta)=N_1(\xi,\eta)\vec{x_1}
* +N_2(\xi,\eta)\vec{x_2}
* +N_3(\xi,\eta)\vec{x_3}
* +N_4(\xi,\eta)\vec{x_4}\f$
*
* A single implementation of this interface may support multiple
* types of elements of the same topology. Element types within
* a topology may vary by the presences or lack there of of mid-edge,
* mid-face, and mid-element nodes.
*/
class MESQUITE_EXPORT MappingFunction
{
public:
virtual
~MappingFunction() {}
/**\brief Get Mesquite::EntityTopology handled by this mapping function */
virtual
EntityTopology element_topology() const = 0;
/**\brief Get number of nodes in the element type
*
* Get the number of nodes in the element type that the mapping
* function implements. It is assumed that the result of this
* function, in combination with the element topology, is sufficient
* to determine the element type.
*/
virtual
int num_nodes() const = 0;
/**\brief Get sample points at which to evaluate mapping function
*
* Get the points within the element at which TMP quality metrics
* that are a function of the mapping function Jacobian should
* be evaluated. The default (which may be overridden by individual
* mapping functions) is to evaluate at all nodes.
*/
virtual
NodeSet sample_points( NodeSet higher_order_nodes ) const;
/**\brief Mapping Function Coefficients
*
* This function returns the list of scalar values (\f$N_i\f$'s) resulting
* from the evaluation of the mapping function coefficient terms
* \f$N_1(\vec{\xi}), N_2(\vec{\xi}), \ldots, N_n(\vec{\xi})\f$
* for a given \f$\vec{\xi}\f$.
*\param location Where within the element at which to evaluate the coefficients.
*\param nodeset List of which nodes are present in the element.
*\param coefficients_out The coefficients (\f$N_i(\vec{\xi})\f$) for each
* vertex in the element.
*\param indices_out The index ($i$ in $N_i$) for each term in 'coeffs_out'.
* The assumption is that mapping function implementations
* will not return zero coefficients. This is not required,
* but for element types with large numbers of nodes it may
* have a significant impact on performance.
*/
virtual
void coefficients( Sample location,
NodeSet nodeset,
double* coeff_out,
size_t* indices_out,
size_t& num_coeff_out,
MsqError& err ) const = 0;
/*\brief Convert connectivity list indices for different element types.
*
* Given two elements of the same topology but different types
* (number of nodes) and a list of indices into the connectivity
* list for one element type, convert the list to be indices
* into a second element type such that the node in the same logical
* position (e.g. middle of edge 1) is indicated.
*/
static inline
void convert_connectivity_indices( EntityTopology topology,
int num_nodes_in_input_elem_type,
int num_nodes_in_output_elem_type,
size_t* index_list,
unsigned num_indices,
MsqError& err );
/*\brief Convert connectivity list indices for different element types.
*
* Given an element type with the same topology as that of this
* mapping function but with a different number of nodes, convert
* indices into the connectivity list of this element type to
* those of the specified element type such that indices indicate
* nodes at the corresponding logical locations (e.g. middle of edge 1).
*/
inline
void convert_connectivity_indices( int num_nodes_in_output_element_type,
size_t* index_list,
unsigned num_indices,
MsqError& err ) const
{ convert_connectivity_indices( element_topology(), num_nodes(),
num_nodes_in_output_element_type,
index_list, num_indices, err ); }
private:
static
void convert_connectivity_indices_impl( EntityTopology topology,
int num_nodes_in_input_elem_type,
int num_nodes_in_output_elem_type,
size_t* index_list,
unsigned num_indices,
MsqError& err );
};
/**\brief MappingFunction for topologically 2D (surface) elements. */
class MESQUITE_EXPORT MappingFunction2D : public MappingFunction
{
public:
virtual
~MappingFunction2D() {}
/**\brief Mapping Function Derivatives
*
* This function returns the partial derivatives of the mapping
* function coefficient terms
* \f$\nabla N_1(\vec{\xi}), \nabla N_2(\vec{\xi}), \ldots, \nabla N_n(\vec{\xi})\f$
* evaluated for a given \f$\vec{\xi}\f$, where \f$\vec{x_i}\f$ is a point
* in \f$\mathbf{R}^3\f$ (i.e. \f$x_i,y_i,z_i\f$).
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \end{array}\right\}\f$
* for surface elements and
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \zeta_i\\ \end{array}\right\}\f$
* for volume elements.
*
* The list of returned partial derivatives may be considered list of elements
* of a matrix \f$\mathbf{D}\f$ in row major order. For surface elements,
* \f$\mathbf{D}\f$ is a \f$n\times 2\f$ matrix and for volume elements it
* is a \f$n \times 3\f$ matrix. Each row of
* \f$\mathbf{D}\f$ corresponds to one of the
* coefficient functions \f$N_i(\vec{\xi})\f$ and each column corresponds
* to one of the components of \f$\vec{\xi}\f$
* that the corresponding coefficient function is differentiated with
* respect to.
*
* \f$ \mathbf{D} = \left[ \begin{array}{ccc}
* \frac{\delta N_1}{\delta \xi} & \frac{\delta N_1}{\delta \eta} & \ldots \\
* \frac{\delta N_2}{\delta \xi} & \frac{\delta N_2}{\delta \eta} & \ldots \\
* \vdots & \vdots & \ddots \end{array} \right]\f$
*
* The Jacobian matrix (\f$\mathbf{J}\f$) of the mapping function can be calculated
* as follows. Define a matrix \f$\mathbf{X}\f$ such that each column contains
* the coordinates of the element nodes.
*
* \f$ \mathbf{X} = \left[ \begin{array}{ccc}
* x_1 & x_2 & \ldots \\
* y_1 & y_2 & \ldots \\
* z_1 & z_2 & \ldots
* \end{array}\right]\f$
*
* The Jacobian matrix is then:
*
* \f$\mathbf{J} = \mathbf{X} \times \mathbf{D}\f$
*
* \f$\mathbf{X}\f$ is always \f$3\times n\f$, so \f$\mathbf{J}\f$ is
* either \f$3\times 2\f$ (surface elements) or \f$3\times 3\f$ (volume
* elements) depending on the dimensions of \f$\mathbf{D}\f$.
*
* If the Jacobian matrix of the mapping function is considered as a
* function of the element vertex coordinates \f$\mathbf{J}(\vec{x_1},\vec{x_2},\ldots)\f$
* with \f$\vec{\xi}\f$ constant, then the gradient of that Jacobian matrix
* function (with respect
* to the vertex coordinates) can be obtained from the same output list of
* partial deravitves.
*
* \f$\frac{\delta \mathbf{J}}{\delta x_i} =
* \left[ \begin{array}{ccc}
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots \\
* 0 & 0 & \ldots \\
* 0 & 0 & \ldots
* \end{array} \right]\f$
* \f$\frac{\delta \mathbf{J}}{\delta y_i} =
* \left[ \begin{array}{ccc}
* 0 & 0 & \ldots \\
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots \\
* 0 & 0 & \ldots
* \end{array} \right]\f$
* \f$\frac{\delta \mathbf{J}}{\delta z_i} =
* \left[ \begin{array}{ccc}
* 0 & 0 & \ldots \\
* 0 & 0 & \ldots \\
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots
* \end{array} \right]\f$
*
*
*\param location Where within the element at which to evaluate the derivatives.
*\param nodeset List of which nodes are present in the element.
*\param vertices_out The list of vertices for which the corresponding
* coefficient in the mapping function is non-zero. The
* vertices are specified by their index in the canonical
* ordering for an element with all mid-nodes present (i.e.
* first all the corner nodes, then the mid-edge nodes, ...).
*\param d_coeff_d_xi_out The mapping function is composed of a series of
* coefficient functions \f$N_i(\vec{\xi})\f$, one correspoding
* to the position \f$\vec{x_i}\f$ of each node in the
* element such that the mapping function is of the form:
* \f$\vec{x}(\vec{\xi})=\sum_{i=1}^n N_i(\vec{\xi})\vec{x_i}\f$.
* For each vertex indicated in vertex_indices_out,
* this list contains the partial derivatives of the cooresponding
* coefficient function \f$N_i\f$ with respect to each
* component of \f$\vec{\xi}\f$ in the same order as the
* corresponding nodes in vertex_indices_out.
*\param num_vtx Output: The number of vertex indices and derivitive
* tuples returned in vertices_out and d_coeff_d_xi_out,
* respectively.
*/
virtual
void derivatives( Sample location,
NodeSet nodeset,
size_t* vertex_indices_out,
MsqVector<2>* d_coeff_d_xi_out,
size_t& num_vtx,
MsqError& err ) const = 0;
/**\brief Mapping function derivatives and Jacobian
*
* This function returns the partial derivatives of the mapping
* function coefficient terms and the Jacobian calculated from
* those terms and the cooresponding vertex coordinates.
*
* This function returns the same logical data as 'derivatives',
* except that it also calculates the Jacobian from the actual
* vertex coordinates. Also, unlike the 'derivatives' function
* which returns the vertex indices as positions in the element
* connectivity list, this function is expected to
* a) return the actual indices of the vertices in the PatchData
* vertex list and
* b) remove from the list of indices and derivatives and values
* corresponding to fixed vertices.
*
* The default implementation of this function will calculate the
* Jacobian and modify the vertex and derivative lists returned
* from "derivatives". The default implementation serves as a
* utility function for other classes using this one. The function
* is virtual to allow mapping function implementations to provide
* an optimized version that avoids extra calculations for zero terms
* in the derivative list.
*
*\param pd The PatchData instance containing the vertex coordinates
* and element connectcivity.
*\param element_number The index of the mesh element in the PatchData.
*\param nodeset List of which nodes are present in the element.
*\param location Where within the element at which to evaluate the Jacobian.
*\param vertex_patch_indices_out For each free vertex in the element
* the influences the mapping function value at
* the specified logical location, the index of
* that vertex in the PatchData.
*\param d_coeff_d_xi_out For each vertex in 'vertex_patch_indices_out',
* the partial derivatives of the corresponding
* coefficient of the mapping function.
*\param num_vtx_out The number of values passed back in
* 'vertex_patch_indices_out' and 'd_coeff_d_xi_out'.
*\param jacobian_out The Jacobian of the mapping function at the
* specified logical location.
*/
virtual
void jacobian( const PatchData& pd,
size_t element_number,
NodeSet nodeset,
Sample location,
size_t* vertex_patch_indices_out,
MsqVector<2>* d_coeff_d_xi_out,
size_t& num_vtx_out,
MsqMatrix<3,2>& jacobian_out,
MsqError& err ) const;
/**\brief Get ideal Jacobian matrix
*
* Returns the Jacobian matrix of an ideal element. The orientation
* of element or corresponding matrix is arbitrary. The "ideal" element
* should be scaled such the Jacobian (determinant of the Jacobian
* matrix) is 1.0.
*
*\param location Where within the element at which to evaluate the Jacobian.
* Typically doesn't matter except for degenerate elements
* (e.g. pyramid as degenerate hex.)
*\param jacobian_out The Jacobian of the mapping function at the
* specified logical location.
*/
virtual
void ideal( Sample location,
MsqMatrix<3,2>& jacobian_out,
MsqError& err ) const;
};
/**\brief MappingFunction for topologically 3D (volume) elements. */
class MESQUITE_EXPORT MappingFunction3D : public MappingFunction
{
public:
virtual
~MappingFunction3D() {}
/**\brief Mapping Function Derivatives
*
* This group of methods return the partial derivatives of the mapping
* function coefficient terms
* \f$\nabla N_1(\vec{\xi}), \nabla N_2(\vec{\xi}), \ldots, \nabla N_n(\vec{\xi})\f$
* evaluated for a given \f$\vec{\xi}\f$, where \f$\vec{x_i}\f$ is a point
* in \f$\mathbf{R}^3\f$ (i.e. \f$x_i,y_i,z_i\f$).
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \end{array}\right\}\f$
* for surface elements and
* \f$\vec{\xi_i} = \left\{\begin{array}{c}\xi_i\\ \eta_i\\ \zeta_i\\ \end{array}\right\}\f$
* for volume elements.
*
* The list of returned partial derivatives may be considered list of elements
* of a matrix \f$\mathbf{D}\f$ in row major order. For surface elements,
* \f$\mathbf{D}\f$ is a \f$n\times 2\f$ matrix and for volume elements it
* is a \f$n \times 3\f$ matrix. Each row of
* \f$\mathbf{D}\f$ corresponds to one of the
* coefficient functions \f$N_i(\vec{\xi})\f$ and each column corresponds
* to one of the components of \f$\vec{\xi}\f$
* that the corresponding coefficient function is differentiated with
* respect to.
*
* \f$ \mathbf{D} = \left[ \begin{array}{ccc}
* \frac{\delta N_1}{\delta \xi} & \frac{\delta N_1}{\delta \eta} & \ldots \\
* \frac{\delta N_2}{\delta \xi} & \frac{\delta N_2}{\delta \eta} & \ldots \\
* \vdots & \vdots & \ddots \end{array} \right]\f$
*
* The Jacobian matrix (\f$\mathbf{J}\f$) of the mapping function can be calculated
* as follows. Define a matrix \f$\mathbf{X}\f$ such that each column contains
* the coordinates of the element nodes.
*
* \f$ \mathbf{X} = \left[ \begin{array}{ccc}
* x_1 & x_2 & \ldots \\
* y_1 & y_2 & \ldots \\
* z_1 & z_2 & \ldots
* \end{array}\right]\f$
*
* The Jacobian matrix is then:
*
* \f$\mathbf{J} = \mathbf{X} \times \mathbf{D}\f$
*
* \f$\mathbf{X}\f$ is always \f$3\times n\f$, so \f$\mathbf{J}\f$ is
* either \f$3\times 2\f$ (surface elements) or \f$3\times 3\f$ (volume
* elements) depending on the dimensions of \f$\mathbf{D}\f$.
*
* If the Jacobian matrix of the mapping function is considered as a
* function of the element vertex coordinates \f$\mathbf{J}(\vec{x_1},\vec{x_2},\ldots)\f$
* with \f$\vec{\xi}\f$ constant, then the gradient of that Jacobian matrix
* function (with respect
* to the vertex coordinates) can be obtained from the same output list of
* partial deravitves.
*
* \f$\frac{\delta \mathbf{J}}{\delta x_i} =
* \left[ \begin{array}{ccc}
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots \\
* 0 & 0 & \ldots \\
* 0 & 0 & \ldots
* \end{array} \right]\f$
* \f$\frac{\delta \mathbf{J}}{\delta y_i} =
* \left[ \begin{array}{ccc}
* 0 & 0 & \ldots \\
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots \\
* 0 & 0 & \ldots
* \end{array} \right]\f$
* \f$\frac{\delta \mathbf{J}}{\delta z_i} =
* \left[ \begin{array}{ccc}
* 0 & 0 & \ldots \\
* 0 & 0 & \ldots \\
* \frac{\delta N_i}{\delta \xi} & \frac{\delta N_i}{\delta \eta} & \ldots
* \end{array} \right]\f$
*
*
*\param location Where within the element at which to evaluate the derivatives.
*\param nodeset List of which nodes are present in the element.
*\param vertices_out The list of vertices for which the corresponding
* coefficient in the mapping function is non-zero. The
* vertices are specified by their index in the canonical
* ordering for an element with all mid-nodes present (i.e.
* first all the corner nodes, then the mid-edge nodes, ...).
*\param d_coeff_d_xi_out The mapping function is composed of a series of
* coefficient functions \f$N_i(\vec{\xi})\f$, one correspoding
* to the position \f$\vec{x_i}\f$ of each node in the
* element such that the mapping function is of the form:
* \f$\vec{x}(\vec{\xi})=\sum_{i=1}^n N_i(\vec{\xi})\vec{x_i}\f$.
* For each vertex indicated in vertex_indices_out,
* this list contains the partial derivatives of the cooresponding
* coefficient function \f$N_i\f$ with respect to each
* component of \f$\vec{\xi}\f$ in the same order as the
* corresponding nodes in vertex_indices_out.
*\param num_vtx Output: The number of vertex indices and derivitive
* tuples returned in vertices_out and d_coeff_d_xi_out,
* respectively.
*/
virtual
void derivatives( Sample location,
NodeSet nodeset,
size_t* vertex_indices_out,
MsqVector<3>* d_coeff_d_xi_out,
size_t& num_vtx,
MsqError& err ) const = 0;
/**\brief Mapping function derivatives and Jacobian
*
* This function returns the partial derivatives of the mapping
* function coefficient terms and the Jacobian calculated from
* those terms and the cooresponding vertex coordinates.
*
* This function returns the same logical data as 'derivatives',
* except that it also calculates the Jacobian from the actual
* vertex coordinates. Also, unlike the 'derivatives' function
* which returns the vertex indices as positions in the element
* connectivity list, this function is expected to
* a) return the actual indices of the vertices in the PatchData
* vertex list and
* b) remove from the list of indices and derivatives and values
* corresponding to fixed vertices.
*
* The default implementation of this function will calculate the
* Jacobian and modify the vertex and derivative lists returned
* from "derivatives". The default implementation serves as a
* utility function for other classes using this one. The function
* is virtual to allow mapping function implementations to provide
* an optimized version that avoids extra calculations for zero terms
* in the derivative list.
*\param pd The PatchData instance containing the vertex coordinates
* and element connectcivity.
*\param element_number The index of the mesh element in the PatchData.
*\param nodeset List of which nodes are present in the element.
*\param location Where within the element at which to evaluate the Jacobian.
*\param vertex_patch_indices_out For each free vertex in the element
* the influences the mapping function value at
* the specified logical location, the index of
* that vertex in the PatchData.
*\param d_coeff_d_xi_out For each vertex in 'vertex_patch_indices_out',
* the partial derivatives of the corresponding
* coefficient of the mapping function.
*\param num_vtx_out The number of values passed back in
* 'vertex_patch_indices_out' and 'd_coeff_d_xi_out'.
*\param jacobian_out The Jacobian of the mapping function at the
* specified logical location.
*/
virtual
void jacobian( const PatchData& pd,
size_t element_number,
NodeSet nodeset,
Sample location,
size_t* vertex_patch_indices_out,
MsqVector<3>* d_coeff_d_xi_out,
size_t& num_vtx_out,
MsqMatrix<3,3>& jacobian_out,
MsqError& err ) const;
/**\brief Get ideal Jacobian matrix
*
* Returns the Jacobian matrix of an ideal element. The orientation
* of element or corresponding matrix is arbitrary. The "ideal" element
* should be scaled such the Jacobian (determinant of the Jacobian
* matrix) is 1.0.
*
*\param location Where within the element at which to evaluate the Jacobian.
* Typically doesn't matter except for degenerate elements
* (e.g. pyramid as degenerate hex.)
*\param jacobian_out The Jacobian of the mapping function at the
* specified logical location.
*/
virtual
void ideal( Sample location,
MsqMatrix<3,3>& jacobian_out,
MsqError& err ) const;
};
inline void
MappingFunction::convert_connectivity_indices( EntityTopology topo,
int input_type,
int output_type,
size_t* index_list,
unsigned num_indices,
MsqError& err )
{
// If the types are the same or either type has only corner
// vertices, then no conversion is necessary.
const int num_corners = TopologyInfo::corners(topo);
if (input_type != output_type && input_type != num_corners && output_type != num_corners)
convert_connectivity_indices_impl( topo, input_type, output_type, index_list, num_indices, err );
}
} // namespace Mesquite
#endif
|