/usr/include/trilinos/MLAPI_MultiLevelSA.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | #ifndef MLAPI_MULTILEVEL_H
#define MLAPI_MULTILEVEL_H
/*!
\file MLAPI_MultiLevelSA.h
\brief Standard smoothed aggregation multilevel preconditioner.
\author Marzio Sala, D-INFK/ETHZ.
\date Last updated on Mar-06.
*/
/* ******************************************************************** */
/* See the file COPYRIGHT for a complete copyright notice, contact */
/* person and disclaimer. */
/* ******************************************************************** */
#include "ml_common.h"
#include "ml_agg_genP.h"
#include "MLAPI_Error.h"
#include "MLAPI_CompObject.h"
#include "MLAPI_TimeObject.h"
#include "MLAPI_Operator.h"
#include "MLAPI_Operator_Utils.h"
#include "MLAPI_MultiVector.h"
#include "MLAPI_InverseOperator.h"
#include "MLAPI_Expressions.h"
#include "MLAPI_BaseOperator.h"
#include "MLAPI_Workspace.h"
#include "MLAPI_Aggregation.h"
#include "MLAPI_Eig.h"
#include <vector>
namespace MLAPI {
/*!
\class MultiLevelSA
\brief Black-box multilevel smoothed aggregation preconditioner.
\author Marzio Sala, SNL 9214
\date Last updated on Feb-05.
*/
class MultiLevelSA : public BaseOperator, public CompObject, public TimeObject {
public:
// @{ \name Constructors and destructors
//! Constructs the hierarchy for given Operator and parameters.
MultiLevelSA(const Operator FineMatrix, Teuchos::ParameterList& List,
const bool ConstructNow = true) :
IsComputed_(false)
{
FineMatrix_ = FineMatrix;
List_ = List;
if (ConstructNow) Compute();
}
//! Destructor.
virtual ~MultiLevelSA()
{ }
// @}
// @{ \name Set and Get methods
//! Returns a copy of the internally stored domain space.
const Space GetOperatorDomainSpace() const
{
return(FineMatrix_.GetDomainSpace());
}
//! Returns a copy of the internally stored range space.
const Space GetOperatorRangeSpace() const
{
return(FineMatrix_.GetRangeSpace());
}
//! Returns a copy of the internally stored domain space.
inline const Space GetDomainSpace() const
{
return(FineMatrix_.GetDomainSpace());
}
//! Returns a copy of the internally stored range space.
inline const Space GetRangeSpace() const
{
return(FineMatrix_.GetRangeSpace());
}
//! Returns a reference to the restriction operator of level \c i.
inline const Operator& R(const int i) const
{
return(R_[i]);
}
//! Returns a reference to the operator of level \c i.
inline const Operator& A(const int i) const
{
return(A_[i]);
}
//! Returns a reference to the prolongator operator of level \c i.
inline const Operator& P(const int i) const
{
return(P_[i]);
}
//! Returns a reference to the inverse operator of level \c i.
inline const InverseOperator& S(const int i) const
{
return(S_[i]);
}
//! Returns the actual number of levels
inline int GetMaxLevels() const
{
return(MaxLevels_);
}
//! Returns \c true if the hierarchy has been successfully computed, \c false otherwise.
inline bool IsComputed() const
{
return(IsComputed_);
}
// @}
// @{ \name Mathematical methods
//! Computes the hierarchy.
void Compute()
{
ResetTimer();
StackPush();
IsComputed_ = false;
// get parameter from the input list
int MaxLevels = List_.get("max levels", 10);
double Damping = List_.get("aggregation: damping factor", 1.3333);
string EigenAnalysis = List_.get("eigen-analysis: type", "Anorm");
int MaxCoarseSize = List_.get("coarse: max size", 32);
MultiVector EmptySpace;
MultiVector ThisNS = List_.get("aggregation: null space", EmptySpace);
int NumPDEEqns = List_.get("PDE equations", 1);
string SmootherType = List_.get("smoother: type", "symmetric Gauss-Seidel");
string CoarseType = List_.get("coarse: type", "Amesos-KLU");
// build up the default null space
if (ThisNS.GetNumVectors() == 0) {
ThisNS.Reshape(FineMatrix_.GetDomainSpace(),NumPDEEqns);
if (NumPDEEqns == 1)
ThisNS = 1.0;
else
{
ThisNS = 0.0;
for (int i = 0 ; i < ThisNS.GetMyLength() ; ++i)
for (int j = 0 ; j < NumPDEEqns ;++j)
if (i % NumPDEEqns == j)
ThisNS(i,j) = 1.0;
}
}
MultiVector NextNS; // contains the next-level null space
A_.resize(MaxLevels);
R_.resize(MaxLevels);
P_.resize(MaxLevels);
S_.resize(MaxLevels);
// work on increasing hierarchies only.
A_[0] = FineMatrix_;
double LambdaMax;
Operator A;
Operator C;
Operator R;
Operator P;
Operator Ptent;
Operator IminusA;
InverseOperator S;
int level;
for (level = 0 ; level < MaxLevels - 1 ; ++level) {
// only an alias
A = A_[level];
if (level)
List_.set("PDE equations", ThisNS.GetNumVectors());
if (GetPrintLevel()) {
ML_print_line("-", 80);
cout << "current working level = " << level << endl;
cout << "number of global rows = " << A.GetNumGlobalRows() << endl;
cout << "number of global nnz = " << A.GetNumGlobalNonzeros() << endl;
cout << "threshold = " << List_.get("aggregation: threshold", 0.0) << endl;
cout << "number of PDE equations = " << NumPDEEqns << endl;
cout << "null space dimension = " << ThisNS.GetNumVectors() << endl;
}
// load current level into database
List_.set("workspace: current level", level);
GetPtent(A, List_, ThisNS, Ptent, NextNS);
ThisNS = NextNS;
if (Damping) {
if (EigenAnalysis == "Anorm")
LambdaMax = MaxEigAnorm(A,true);
else if (EigenAnalysis == "cg")
LambdaMax = MaxEigCG(A,true);
else if (EigenAnalysis == "power-method")
LambdaMax = MaxEigPowerMethod(A,true);
else
ML_THROW("incorrect parameter (" + EigenAnalysis + ")", -1);
#if 0
MultiVector Diag = GetDiagonal(A);
Diag.Reciprocal();
Diag.Scale(Damping / LambdaMax);
Operator Dinv = GetDiagonal(Diag);
Operator DinvA = Dinv * A;
Operator I = GetIdentity(A.GetDomainSpace(),A.GetRangeSpace());
Operator IminusA = I - DinvA;
#else
IminusA = GetJacobiIterationOperator(A,Damping / LambdaMax);
#endif
P = IminusA * Ptent;
}
else {
P = Ptent;
LambdaMax = -1.0;
}
if (GetPrintLevel()) {
cout << "omega = " << Damping << endl;
if (LambdaMax != -1.0) {
cout << "lambda max = " << LambdaMax << endl;
cout << "damping factor = " << Damping / LambdaMax << endl;
}
cout << "smoother type = " << SmootherType << endl;
cout << "relaxation sweeps = " << List_.get("smoother: sweeps", 1) << endl;
cout << "smoother damping = " << List_.get("smoother: damping factor", 0.67) << endl;
}
R = GetTranspose(P);
C = GetRAP(R,A,P);
// build smoothers
S.Reshape(A, SmootherType, List_);
// put operators and inverse in hierarchy
R_[level ] = R;
P_[level ] = P;
A_[level + 1] = C;
S_[level ] = S;
// break if coarse matrix is below specified tolerance
if (C.GetNumGlobalRows() <= MaxCoarseSize) {
++level;
break;
}
}
// set coarse solver
S.Reshape(A_[level], CoarseType, List_);
S_[level] = S;
MaxLevels_ = level + 1;
// set the label
SetLabel("SA, L = " + GetString(MaxLevels_) +
", smoother = " + SmootherType);
if (GetPrintLevel()) {
ML_print_line("-", 80);
cout << "final level = " << level << endl;
cout << "number of global rows = " << A_[level].GetNumGlobalRows() << endl;
cout << "number of global nnz = " << A_[level].GetNumGlobalNonzeros() << endl;
cout << "coarse solver = " << CoarseType << endl;
cout << "time spent in constr. = " << GetTime() << " (s)" << endl;
ML_print_line("-", 80);
}
IsComputed_ = true;
StackPop();
// FIXME: update flops!
UpdateTime();
}
//! Applies the preconditioner to \c b_f, returns the result in \c x_f.
int Apply(const MultiVector& b_f, MultiVector& x_f) const
{
ResetTimer();
StackPush();
if (IsComputed() == false)
ML_THROW("Method Compute() must be called before Apply()", -1);
SolveMultiLevelSA(b_f,x_f,0);
UpdateTime();
StackPop();
return(0);
}
//! Recursively called core of the multi level preconditioner.
int SolveMultiLevelSA(const MultiVector& b_f,MultiVector& x_f, int level) const
{
if (level == MaxLevels_ - 1) {
x_f = S(level) * b_f;
return(0);
}
MultiVector r_f(P(level).GetRangeSpace());
MultiVector r_c(P(level).GetDomainSpace());
MultiVector z_c(P(level).GetDomainSpace());
// reset flop counter
S(level).SetFlops(0.0);
A(level).SetFlops(0.0);
R(level).SetFlops(0.0);
P(level).SetFlops(0.0);
// apply pre-smoother
x_f = S(level) * b_f;
// new residual
r_f = b_f - A(level) * x_f;
// restrict to coarse
r_c = R(level) * r_f;
// solve coarse problem
SolveMultiLevelSA(r_c,z_c,level + 1);
// prolongate back and add to solution
x_f = x_f + P(level) * z_c;
// apply post-smoother
S(level).Apply(b_f,x_f);
UpdateFlops(2.0 * S(level).GetFlops());
UpdateFlops(A(level).GetFlops());
UpdateFlops(R(level).GetFlops());
UpdateFlops(P(level).GetFlops());
UpdateFlops(2.0 * x_f.GetGlobalLength());
return(0);
}
// @}
// @{ \name Miscellaneous methods
//! Prints basic information about \c this preconditioner.
std::ostream& Print(std::ostream& os,
const bool verbose = true) const
{
if (GetMyPID() == 0) {
os << endl;
os << "*** MLAPI::MultiLevelSA, label = `" << GetLabel() << "'" << endl;
os << endl;
os << "Number of levels = " << GetMaxLevels() << endl;
os << "Flop count = " << GetFlops() << endl;
os << "Cumulative time = " << GetTime() << endl;
if (GetTime() != 0.0)
os << "MFlops rate = " << 1.0e-6 * GetFlops() / GetTime() << endl;
else
os << "MFlops rate = 0.0" << endl;
os << endl;
}
return(os);
}
// @}
private:
//! Maximum number of levels.
int MaxLevels_;
//! Fine-level matrix.
Operator FineMatrix_;
//! Contains the hierarchy of operators.
std::vector<Operator> A_;
//! Contains the hierarchy of restriction operators.
std::vector<Operator> R_;
//! Contains the hierarchy of prolongator operators.
std::vector<Operator> P_;
//! Contains the hierarchy of inverse operators.
std::vector<InverseOperator> S_;
//! Contains a copy of the input list.
Teuchos::ParameterList List_;
//! \c true if the hierarchy has been successfully computed, \c false otherwise.
bool IsComputed_;
};
} // namespace MLAPI
#endif
|