This file is indexed.

/usr/include/trilinos/Kokkos_DefaultSparseSolveKernelOps.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
//@HEADER
// ************************************************************************
// 
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ************************************************************************
//@HEADER

#ifndef KOKKOS_DEFAULTSPARSESOLVE_KERNELOPS_HPP
#define KOKKOS_DEFAULTSPARSESOLVE_KERNELOPS_HPP

#ifndef KERNEL_PREFIX
#define KERNEL_PREFIX
#endif

#ifdef __CUDACC__
#include <Teuchos_ScalarTraitsCUDA.hpp>
#else
#include <Teuchos_ScalarTraits.hpp>
#endif


namespace Kokkos {

  // 
  // Matrix formatting and mat-vec options
  // Applies to all four operations below
  // 
  // unitDiag indicates whether we neglect the diagonal row entry and scale by it
  // or utilize all row entries and implicitly scale by a unit diagonal (i.e., don't need to scale)
  // upper (versus lower) will determine the ordering of the solve and the location of the diagonal
  // 
  // upper -> diagonal is first entry on row
  // lower -> diagonal is last entry on row
  // 

  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
  struct DefaultSparseSolveOp1 {
    // mat data
    const size_t  *offsets;
    const Ordinal *inds;
    const Scalar  *vals;
    size_t numRows;
    // matvec params
    bool unitDiag, upper;
    // mv data
    DomainScalar  *x;
    const RangeScalar *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // solve rhs i for lhs i
      const size_t rhs = i;
      DomainScalar      *xj = x + rhs * xstride;
      const RangeScalar *yj = y + rhs * ystride;
      // 
      // upper triangular requires backwards substition, solving in reverse order
      // must unroll the last iteration, because decrement results in wrap-around
      // 
      if (upper && unitDiag) {
        // upper + unit
        xj[numRows-1] = (DomainScalar)yj[numRows-1];
        for (size_t r=2; r < numRows+1; ++r) {
          const size_t row = numRows - r; // for row=numRows-2 to 0 step -1
          const size_t begin = offsets[row], end = offsets[row+1];
          xj[row] = (DomainScalar)yj[row];
          for (size_t c=begin; c != end; ++c) {
            xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
          }
        }
      }
      else if (upper && !unitDiag) {
        // upper + non-unit
        xj[numRows-1] = (DomainScalar)( yj[numRows-1] / (RangeScalar)vals[offsets[numRows-1]] );
        for (size_t r=2; r < numRows+1; ++r) {
          const size_t row = numRows - r; // for row=numRows-2 to 0 step -1
          const size_t diag = offsets[row], end = offsets[row+1];
          const DomainScalar dval = (DomainScalar)vals[diag];
          xj[row] = (DomainScalar)yj[row];
          for (size_t c=diag+1; c != end; ++c) {
            xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
          }
          xj[row] /= dval;
        }
      }
      else if (!upper && unitDiag) {
        // lower + unit
        xj[0] = (DomainScalar)yj[0];
        for (size_t row=1; row < numRows; ++row) {
          const size_t begin = offsets[row], end = offsets[row+1];
          xj[row] = (DomainScalar)yj[row];
          for (size_t c=begin; c != end; ++c) {
            xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
          }
        }
      }
      else if (!upper && !unitDiag) {
        // lower + non-unit
        xj[0] = (DomainScalar)( yj[0] / (RangeScalar)vals[0] );
        for (size_t row=1; row < numRows; ++row) {
          const size_t begin = offsets[row], diag = offsets[row+1]-1;
          const DomainScalar dval = vals[diag];
          xj[row] = (DomainScalar)yj[row];
          for (size_t c=begin; c != diag; ++c) {
            xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
          }
          xj[row] /= dval;
        }
      }
    }
  };


  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
  struct DefaultSparseSolveOp2 {
    // mat data
    const Ordinal * const * inds_beg;
    const Scalar  * const * vals_beg;
    const size_t  *         numEntries;
    size_t numRows;
    // matvec params
    bool unitDiag, upper;
    // mv data
    DomainScalar      *x;
    const RangeScalar *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // solve rhs i for lhs i
      const size_t rhs = i;
      DomainScalar      *xj = x + rhs * xstride;
      const RangeScalar *yj = y + rhs * ystride;
      const Scalar  *rowvals;
      const Ordinal *rowinds;
      DomainScalar dval;
      size_t nE;
      // 
      // upper triangular requires backwards substition, solving in reverse order
      // must unroll the last iteration, because decrement results in wrap-around
      // 
      if (upper && unitDiag) {
        // upper + unit
        xj[numRows-1] = (DomainScalar)yj[numRows-1];
        for (size_t row=numRows-2; row != 0; --row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          xj[row] = yj[row];
          for (size_t j=0; j != nE; ++j) {
            xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
          }
        }
        nE = numEntries[0];
        rowvals = vals_beg[0];
        rowinds = inds_beg[0];
        xj[0] = (DomainScalar)yj[0];
        for (size_t j=0; j != nE; ++j) {
          xj[0] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
        }
      }
      else if (upper && !unitDiag) {
        // upper + non-unit: diagonal is first entry
        dval = (DomainScalar)vals_beg[numRows-1][0];
        xj[numRows-1] = (DomainScalar)yj[numRows-1] / dval;
        for (size_t row=numRows-2; row != 0; --row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          xj[row] = (DomainScalar)yj[row];
          Scalar dval_inner = rowvals[0];
          for (size_t j=1; j < nE; ++j) {
            xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
          }
          xj[row] /= dval_inner;
        }
        nE = numEntries[0];
        rowvals = vals_beg[0];
        rowinds = inds_beg[0];
        xj[0] = (DomainScalar)yj[0];
        DomainScalar dval_inner = (DomainScalar)rowvals[0];
        for (size_t j=1; j < nE; ++j) {
          xj[0] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
        }
        xj[0] /= dval_inner;
      }
      else if (!upper && unitDiag) {
        // lower + unit
        xj[0] = (DomainScalar)yj[0];
        for (size_t row=1; row < numRows; ++row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          xj[row] = (DomainScalar)yj[row];
          for (size_t j=0; j < nE; ++j) {
            xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
          }
        }
      }
      else if (!upper && !unitDiag) {
        // lower + non-unit; diagonal is last entry
        nE = numEntries[0];
        rowvals = vals_beg[0];
        dval = (DomainScalar)rowvals[0];
        xj[0] = yj[0];
        for (size_t row=1; row < numRows; ++row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          dval = (DomainScalar)rowvals[nE-1];
          xj[row] = (DomainScalar)yj[row];
          if (nE > 1) {
            for (size_t j=0; j < nE-1; ++j) {
              xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
            }
          }
          xj[row] /= dval;
        }
      }
    }
  };


  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
  struct DefaultSparseTransposeSolveOp1 {
    // mat data
    const size_t  *offsets;
    const Ordinal *inds;
    const Scalar  *vals;
    size_t numRows;
    // matvec params
    bool unitDiag, upper;
    // mv data
    DomainScalar  *x;
    const RangeScalar *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // solve rhs i for lhs i
      const size_t rhs = i;
      DomainScalar      *xj = x + rhs * xstride;
      const RangeScalar *yj = y + rhs * ystride;
      // 
      // put y into x and solve system in-situ
      // this is copy-safe, in the scenario that x and y point to the same location.
      //
      for (size_t row=0; row < numRows; ++row) {
        xj[row] = yj[row];
      }
      // 
      if (upper && unitDiag) {
        // upper + unit
        size_t beg, endplusone;
        for (size_t row=0; row < numRows-1; ++row) {
          beg = offsets[row]; 
          endplusone = offsets[row+1];
          for (size_t j=beg; j < endplusone; ++j) {
            xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
          }
        }
      }
      else if (upper && !unitDiag) {
        // upper + non-unit; diag is first element in row
        size_t diag, endplusone;
        DomainScalar dval;
        for (size_t row=0; row < numRows-1; ++row) {
          diag = offsets[row]; 
          endplusone = offsets[row+1];
          dval = (DomainScalar)vals[diag];
          xj[row] /= dval;
          for (size_t j=diag+1; j < endplusone; ++j) {
            xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
          }
        }
        diag = offsets[numRows-1];
        dval = (DomainScalar)vals[diag];
        xj[numRows-1] /= dval;
      }
      else if (!upper && unitDiag) {
        // lower + unit
        for (size_t row=numRows-1; row > 0; --row) {
          size_t beg = offsets[row], endplusone = offsets[row+1];
          for (size_t j=beg; j < endplusone; ++j) {
            xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
          }
        }
      }
      else if (!upper && !unitDiag) {
        // lower + non-unit; diag is last element in row
        DomainScalar dval;
        for (size_t row=numRows-1; row > 0; --row) {
          size_t beg = offsets[row], diag = offsets[row+1]-1;
          dval = (DomainScalar)vals[diag];
          xj[row] /= dval;
          for (size_t j=beg; j < diag; ++j) {
            xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
          }
        }
        // last row
        dval = (DomainScalar)vals[0];
        xj[0] /= dval;
      }
    }
  };


  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
  struct DefaultSparseTransposeSolveOp2 {
    // mat data
    const Ordinal * const * inds_beg;
    const Scalar  * const * vals_beg;
    const size_t  *         numEntries;
    size_t numRows;
    // matvec params
    bool unitDiag, upper;
    // mv data
    DomainScalar      *x;
    const RangeScalar *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // solve rhs i for lhs i
      const size_t rhs = i;
      DomainScalar      *xj = x + rhs * xstride;
      const RangeScalar *yj = y + rhs * ystride;
      const Scalar  *rowvals;
      const Ordinal *rowinds;
      DomainScalar dval;
      size_t nE;
      // 
      // put y into x and solve system in-situ
      // this is copy-safe, in the scenario that x and y point to the same location.
      //
      for (size_t row=0; row < numRows; ++row) {
        xj[row] = (DomainScalar)yj[row];
      }
      // 
      if (upper && unitDiag) {
        // upper + unit
        for (size_t row=0; row < numRows-1; ++row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          for (size_t j=0; j < nE; ++j) {
            xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
          }
        }
      }
      else if (upper && !unitDiag) {
        // upper + non-unit; diag is first element in row
        for (size_t row=0; row < numRows-1; ++row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          dval = (DomainScalar)rowvals[0];
          xj[row] /= dval;
          for (size_t j=1; j < nE; ++j) {
            xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
          }
        }
        rowvals = vals_beg[numRows-1];
        dval = (DomainScalar)rowvals[0];
        xj[numRows-1] /= dval;
      }
      else if (!upper && unitDiag) {
        // lower + unit
        for (size_t row=numRows-1; row > 0; --row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          for (size_t j=0; j < nE; ++j) {
            xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
          }
        }
      }
      else if (!upper && !unitDiag) {
        // lower + non-unit; diag is last element in row
        for (size_t row=numRows-1; row > 0; --row) {
          nE = numEntries[row];
          rowvals = vals_beg[row];
          rowinds = inds_beg[row];
          dval = (DomainScalar)rowvals[nE-1];
          xj[row] /= dval;
          for (size_t j=0; j < nE-1; ++j) {
            xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
          }
        }
        rowvals = vals_beg[0];
        dval = (DomainScalar)rowvals[0];
        xj[0] /= dval;
      }
    }
  };

} // namespace Kokkos

#endif