/usr/include/trilinos/Kokkos_DefaultSparseSolveKernelOps.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef KOKKOS_DEFAULTSPARSESOLVE_KERNELOPS_HPP
#define KOKKOS_DEFAULTSPARSESOLVE_KERNELOPS_HPP
#ifndef KERNEL_PREFIX
#define KERNEL_PREFIX
#endif
#ifdef __CUDACC__
#include <Teuchos_ScalarTraitsCUDA.hpp>
#else
#include <Teuchos_ScalarTraits.hpp>
#endif
namespace Kokkos {
//
// Matrix formatting and mat-vec options
// Applies to all four operations below
//
// unitDiag indicates whether we neglect the diagonal row entry and scale by it
// or utilize all row entries and implicitly scale by a unit diagonal (i.e., don't need to scale)
// upper (versus lower) will determine the ordering of the solve and the location of the diagonal
//
// upper -> diagonal is first entry on row
// lower -> diagonal is last entry on row
//
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
struct DefaultSparseSolveOp1 {
// mat data
const size_t *offsets;
const Ordinal *inds;
const Scalar *vals;
size_t numRows;
// matvec params
bool unitDiag, upper;
// mv data
DomainScalar *x;
const RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// solve rhs i for lhs i
const size_t rhs = i;
DomainScalar *xj = x + rhs * xstride;
const RangeScalar *yj = y + rhs * ystride;
//
// upper triangular requires backwards substition, solving in reverse order
// must unroll the last iteration, because decrement results in wrap-around
//
if (upper && unitDiag) {
// upper + unit
xj[numRows-1] = (DomainScalar)yj[numRows-1];
for (size_t r=2; r < numRows+1; ++r) {
const size_t row = numRows - r; // for row=numRows-2 to 0 step -1
const size_t begin = offsets[row], end = offsets[row+1];
xj[row] = (DomainScalar)yj[row];
for (size_t c=begin; c != end; ++c) {
xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
}
}
}
else if (upper && !unitDiag) {
// upper + non-unit
xj[numRows-1] = (DomainScalar)( yj[numRows-1] / (RangeScalar)vals[offsets[numRows-1]] );
for (size_t r=2; r < numRows+1; ++r) {
const size_t row = numRows - r; // for row=numRows-2 to 0 step -1
const size_t diag = offsets[row], end = offsets[row+1];
const DomainScalar dval = (DomainScalar)vals[diag];
xj[row] = (DomainScalar)yj[row];
for (size_t c=diag+1; c != end; ++c) {
xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
}
xj[row] /= dval;
}
}
else if (!upper && unitDiag) {
// lower + unit
xj[0] = (DomainScalar)yj[0];
for (size_t row=1; row < numRows; ++row) {
const size_t begin = offsets[row], end = offsets[row+1];
xj[row] = (DomainScalar)yj[row];
for (size_t c=begin; c != end; ++c) {
xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
}
}
}
else if (!upper && !unitDiag) {
// lower + non-unit
xj[0] = (DomainScalar)( yj[0] / (RangeScalar)vals[0] );
for (size_t row=1; row < numRows; ++row) {
const size_t begin = offsets[row], diag = offsets[row+1]-1;
const DomainScalar dval = vals[diag];
xj[row] = (DomainScalar)yj[row];
for (size_t c=begin; c != diag; ++c) {
xj[row] -= (DomainScalar)vals[c] * xj[inds[c]];
}
xj[row] /= dval;
}
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
struct DefaultSparseSolveOp2 {
// mat data
const Ordinal * const * inds_beg;
const Scalar * const * vals_beg;
const size_t * numEntries;
size_t numRows;
// matvec params
bool unitDiag, upper;
// mv data
DomainScalar *x;
const RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// solve rhs i for lhs i
const size_t rhs = i;
DomainScalar *xj = x + rhs * xstride;
const RangeScalar *yj = y + rhs * ystride;
const Scalar *rowvals;
const Ordinal *rowinds;
DomainScalar dval;
size_t nE;
//
// upper triangular requires backwards substition, solving in reverse order
// must unroll the last iteration, because decrement results in wrap-around
//
if (upper && unitDiag) {
// upper + unit
xj[numRows-1] = (DomainScalar)yj[numRows-1];
for (size_t row=numRows-2; row != 0; --row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
xj[row] = yj[row];
for (size_t j=0; j != nE; ++j) {
xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
}
nE = numEntries[0];
rowvals = vals_beg[0];
rowinds = inds_beg[0];
xj[0] = (DomainScalar)yj[0];
for (size_t j=0; j != nE; ++j) {
xj[0] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
}
else if (upper && !unitDiag) {
// upper + non-unit: diagonal is first entry
dval = (DomainScalar)vals_beg[numRows-1][0];
xj[numRows-1] = (DomainScalar)yj[numRows-1] / dval;
for (size_t row=numRows-2; row != 0; --row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
xj[row] = (DomainScalar)yj[row];
Scalar dval_inner = rowvals[0];
for (size_t j=1; j < nE; ++j) {
xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
xj[row] /= dval_inner;
}
nE = numEntries[0];
rowvals = vals_beg[0];
rowinds = inds_beg[0];
xj[0] = (DomainScalar)yj[0];
DomainScalar dval_inner = (DomainScalar)rowvals[0];
for (size_t j=1; j < nE; ++j) {
xj[0] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
xj[0] /= dval_inner;
}
else if (!upper && unitDiag) {
// lower + unit
xj[0] = (DomainScalar)yj[0];
for (size_t row=1; row < numRows; ++row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
xj[row] = (DomainScalar)yj[row];
for (size_t j=0; j < nE; ++j) {
xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
}
}
else if (!upper && !unitDiag) {
// lower + non-unit; diagonal is last entry
nE = numEntries[0];
rowvals = vals_beg[0];
dval = (DomainScalar)rowvals[0];
xj[0] = yj[0];
for (size_t row=1; row < numRows; ++row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
dval = (DomainScalar)rowvals[nE-1];
xj[row] = (DomainScalar)yj[row];
if (nE > 1) {
for (size_t j=0; j < nE-1; ++j) {
xj[row] -= (DomainScalar)rowvals[j] * xj[rowinds[j]];
}
}
xj[row] /= dval;
}
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
struct DefaultSparseTransposeSolveOp1 {
// mat data
const size_t *offsets;
const Ordinal *inds;
const Scalar *vals;
size_t numRows;
// matvec params
bool unitDiag, upper;
// mv data
DomainScalar *x;
const RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// solve rhs i for lhs i
const size_t rhs = i;
DomainScalar *xj = x + rhs * xstride;
const RangeScalar *yj = y + rhs * ystride;
//
// put y into x and solve system in-situ
// this is copy-safe, in the scenario that x and y point to the same location.
//
for (size_t row=0; row < numRows; ++row) {
xj[row] = yj[row];
}
//
if (upper && unitDiag) {
// upper + unit
size_t beg, endplusone;
for (size_t row=0; row < numRows-1; ++row) {
beg = offsets[row];
endplusone = offsets[row+1];
for (size_t j=beg; j < endplusone; ++j) {
xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
}
}
}
else if (upper && !unitDiag) {
// upper + non-unit; diag is first element in row
size_t diag, endplusone;
DomainScalar dval;
for (size_t row=0; row < numRows-1; ++row) {
diag = offsets[row];
endplusone = offsets[row+1];
dval = (DomainScalar)vals[diag];
xj[row] /= dval;
for (size_t j=diag+1; j < endplusone; ++j) {
xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
}
}
diag = offsets[numRows-1];
dval = (DomainScalar)vals[diag];
xj[numRows-1] /= dval;
}
else if (!upper && unitDiag) {
// lower + unit
for (size_t row=numRows-1; row > 0; --row) {
size_t beg = offsets[row], endplusone = offsets[row+1];
for (size_t j=beg; j < endplusone; ++j) {
xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
}
}
}
else if (!upper && !unitDiag) {
// lower + non-unit; diag is last element in row
DomainScalar dval;
for (size_t row=numRows-1; row > 0; --row) {
size_t beg = offsets[row], diag = offsets[row+1]-1;
dval = (DomainScalar)vals[diag];
xj[row] /= dval;
for (size_t j=beg; j < diag; ++j) {
xj[inds[j]] -= (DomainScalar)vals[j] * xj[row];
}
}
// last row
dval = (DomainScalar)vals[0];
xj[0] /= dval;
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar>
struct DefaultSparseTransposeSolveOp2 {
// mat data
const Ordinal * const * inds_beg;
const Scalar * const * vals_beg;
const size_t * numEntries;
size_t numRows;
// matvec params
bool unitDiag, upper;
// mv data
DomainScalar *x;
const RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// solve rhs i for lhs i
const size_t rhs = i;
DomainScalar *xj = x + rhs * xstride;
const RangeScalar *yj = y + rhs * ystride;
const Scalar *rowvals;
const Ordinal *rowinds;
DomainScalar dval;
size_t nE;
//
// put y into x and solve system in-situ
// this is copy-safe, in the scenario that x and y point to the same location.
//
for (size_t row=0; row < numRows; ++row) {
xj[row] = (DomainScalar)yj[row];
}
//
if (upper && unitDiag) {
// upper + unit
for (size_t row=0; row < numRows-1; ++row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
for (size_t j=0; j < nE; ++j) {
xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
}
}
}
else if (upper && !unitDiag) {
// upper + non-unit; diag is first element in row
for (size_t row=0; row < numRows-1; ++row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
dval = (DomainScalar)rowvals[0];
xj[row] /= dval;
for (size_t j=1; j < nE; ++j) {
xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
}
}
rowvals = vals_beg[numRows-1];
dval = (DomainScalar)rowvals[0];
xj[numRows-1] /= dval;
}
else if (!upper && unitDiag) {
// lower + unit
for (size_t row=numRows-1; row > 0; --row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
for (size_t j=0; j < nE; ++j) {
xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
}
}
}
else if (!upper && !unitDiag) {
// lower + non-unit; diag is last element in row
for (size_t row=numRows-1; row > 0; --row) {
nE = numEntries[row];
rowvals = vals_beg[row];
rowinds = inds_beg[row];
dval = (DomainScalar)rowvals[nE-1];
xj[row] /= dval;
for (size_t j=0; j < nE-1; ++j) {
xj[rowinds[j]] -= (DomainScalar)rowvals[j] * xj[row];
}
}
rowvals = vals_beg[0];
dval = (DomainScalar)rowvals[0];
xj[0] /= dval;
}
}
};
} // namespace Kokkos
#endif
|