/usr/include/trilinos/Kokkos_DefaultSparseMultiplyKernelOps.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | //@HEADER
// ************************************************************************
//
// Kokkos: Node API and Parallel Node Kernels
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
//@HEADER
#ifndef KOKKOS_DEFAULTSPARSEMULTIPLY_KERNELOPS_HPP
#define KOKKOS_DEFAULTSPARSEMULTIPLY_KERNELOPS_HPP
#ifndef KERNEL_PREFIX
#define KERNEL_PREFIX
#endif
#ifdef __CUDACC__
#include <Teuchos_ScalarTraitsCUDA.hpp>
#else
#include <Teuchos_ScalarTraits.hpp>
#endif
namespace Kokkos {
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
struct DefaultSparseMultiplyOp1 {
// mat data
const size_t *offsets;
const Ordinal *inds;
const Scalar *vals;
// matvec params
RangeScalar alpha, beta;
size_t numRows;
// mv data
const DomainScalar *x;
RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
const size_t row = i % numRows;
const size_t rhs = (i - row) / numRows;
RangeScalar tmp = Teuchos::ScalarTraits<RangeScalar>::zero();
const DomainScalar *xj = x + rhs * xstride;
RangeScalar *yj = y + rhs * ystride;
for (size_t c=offsets[row]; c != offsets[row+1]; ++c) {
tmp += (RangeScalar)vals[c] * (RangeScalar)xj[inds[c]];
}
if (NO_BETA_AND_OVERWRITE) {
yj[row] = (RangeScalar)alpha * tmp;
}
else {
RangeScalar tmp2 = beta * yj[row];
yj[row] = (RangeScalar)(alpha * tmp + tmp2);
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
struct DefaultSparseTransposeMultiplyOp1 {
// mat data
const size_t *offsets;
const Ordinal *inds;
const Scalar *vals;
// matvec params
RangeScalar alpha, beta;
size_t numRows, numCols;
// mv data
const DomainScalar *x;
RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// multiply entire matrix for rhs i
const size_t rhs = i;
const DomainScalar *xj = x + rhs * xstride;
const RangeScalar RANGE_ZERO = Teuchos::ScalarTraits<RangeScalar>::zero();
RangeScalar *yj = y + rhs * ystride;
for (size_t row=0; row < numCols; ++row) {
if (NO_BETA_AND_OVERWRITE) {
yj[row] = RANGE_ZERO;
}
else {
yj[row] = (RangeScalar)(yj[row] * beta);
}
}
for (size_t row=0; row < numRows; ++row) {
for (size_t c=offsets[row]; c != offsets[row+1]; ++c) {
yj[inds[c]] += (RangeScalar)(alpha * Teuchos::ScalarTraits<RangeScalar>::conjugate(vals[c]) * (RangeScalar)xj[row]);
}
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
struct DefaultSparseMultiplyOp2 {
// mat data
const Ordinal * const * inds_beg;
const Scalar * const * vals_beg;
const size_t * numEntries;
// matvec params
RangeScalar alpha, beta;
size_t numRows;
// mv data
const DomainScalar *x;
RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
const size_t row = i % numRows;
const size_t rhs = (i - row) / numRows;
RangeScalar tmp = Teuchos::ScalarTraits<RangeScalar>::zero();
const DomainScalar *xj = x + rhs * xstride;
RangeScalar *yj = y + rhs * ystride;
const Scalar *curval = vals_beg[row];
const Ordinal *curind = inds_beg[row];
for (size_t j=0; j != numEntries[row]; ++j) {
tmp += (RangeScalar)curval[j] * (RangeScalar)xj[curind[j]];
}
if (NO_BETA_AND_OVERWRITE) {
yj[row] = (RangeScalar)alpha * tmp;
}
else {
RangeScalar tmp2 = beta * yj[row];
yj[row] = (RangeScalar)(alpha * tmp + tmp2);
}
}
};
template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
struct DefaultSparseTransposeMultiplyOp2 {
// mat data
const Ordinal * const * inds_beg;
const Scalar * const * vals_beg;
const size_t * numEntries;
// matvec params
RangeScalar alpha, beta;
size_t numRows, numCols;
// mv data
const DomainScalar *x;
RangeScalar *y;
size_t xstride, ystride;
inline KERNEL_PREFIX void execute(size_t i) {
// multiply entire matrix for rhs i
const size_t rhs = i;
const RangeScalar RANGE_ZERO = Teuchos::ScalarTraits<RangeScalar>::zero();
const DomainScalar *xj = x + rhs * xstride;
RangeScalar *yj = y + rhs * ystride;
for (size_t row=0; row < numCols; ++row) {
if (NO_BETA_AND_OVERWRITE) {
yj[row] = RANGE_ZERO;
}
else {
yj[row] = (RangeScalar)(yj[row] * beta);
}
}
for (size_t row=0; row < numRows; ++row) {
const Scalar *rowval = vals_beg[row];
const Ordinal *rowind = inds_beg[row];
for (size_t j=0; j != numEntries[row]; ++j) {
yj[rowind[j]] += (RangeScalar)(alpha * Teuchos::ScalarTraits<RangeScalar>::conjugate(rowval[j]) * (RangeScalar)xj[row]);
}
}
}
};
} // namespace Kokkos
#endif
|