This file is indexed.

/usr/include/trilinos/Kokkos_DefaultSparseMultiplyKernelOps.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//@HEADER
// ************************************************************************
// 
//          Kokkos: Node API and Parallel Node Kernels
//              Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ************************************************************************
//@HEADER

#ifndef KOKKOS_DEFAULTSPARSEMULTIPLY_KERNELOPS_HPP
#define KOKKOS_DEFAULTSPARSEMULTIPLY_KERNELOPS_HPP

#ifndef KERNEL_PREFIX
#define KERNEL_PREFIX
#endif

#ifdef __CUDACC__
#include <Teuchos_ScalarTraitsCUDA.hpp>
#else
#include <Teuchos_ScalarTraits.hpp>
#endif

namespace Kokkos {

  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
  struct DefaultSparseMultiplyOp1 {
    // mat data
    const size_t  *offsets;
    const Ordinal *inds;
    const Scalar  *vals;
    // matvec params
    RangeScalar        alpha, beta;
    size_t numRows;
    // mv data
    const DomainScalar  *x;
    RangeScalar         *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      const size_t row = i % numRows;
      const size_t rhs = (i - row) / numRows;
      RangeScalar tmp = Teuchos::ScalarTraits<RangeScalar>::zero();
      const DomainScalar *xj = x + rhs * xstride;
      RangeScalar        *yj = y + rhs * ystride;
      for (size_t c=offsets[row]; c != offsets[row+1]; ++c) {
        tmp += (RangeScalar)vals[c] * (RangeScalar)xj[inds[c]];
      }
      if (NO_BETA_AND_OVERWRITE) {
        yj[row] = (RangeScalar)alpha * tmp;
      }
      else {
        RangeScalar tmp2 = beta * yj[row];
        yj[row] = (RangeScalar)(alpha * tmp + tmp2);
      }
    }
  };

  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
  struct DefaultSparseTransposeMultiplyOp1 {
    // mat data
    const size_t  *offsets;
    const Ordinal *inds;
    const Scalar  *vals;
    // matvec params
    RangeScalar        alpha, beta;
    size_t numRows, numCols;
    // mv data
    const DomainScalar  *x;
    RangeScalar         *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // multiply entire matrix for rhs i
      const size_t rhs = i;
      const DomainScalar *xj = x + rhs * xstride;
      const RangeScalar RANGE_ZERO = Teuchos::ScalarTraits<RangeScalar>::zero();
      RangeScalar        *yj = y + rhs * ystride;
      for (size_t row=0; row < numCols; ++row) {
        if (NO_BETA_AND_OVERWRITE) {
          yj[row] = RANGE_ZERO;
        }
        else {
          yj[row] = (RangeScalar)(yj[row] * beta);
        }
      }
      for (size_t row=0; row < numRows; ++row) {
        for (size_t c=offsets[row]; c != offsets[row+1]; ++c) {
          yj[inds[c]] += (RangeScalar)(alpha * Teuchos::ScalarTraits<RangeScalar>::conjugate(vals[c]) * (RangeScalar)xj[row]);
        }
      }
    }
  };


  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
  struct DefaultSparseMultiplyOp2 {
    // mat data
    const Ordinal * const * inds_beg;
    const Scalar  * const * vals_beg;
    const size_t  *         numEntries;
    // matvec params
    RangeScalar        alpha, beta;
    size_t numRows;
    // mv data
    const DomainScalar  *x;
    RangeScalar         *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      const size_t row = i % numRows;
      const size_t rhs = (i - row) / numRows;
      RangeScalar tmp = Teuchos::ScalarTraits<RangeScalar>::zero();
      const DomainScalar *xj = x + rhs * xstride;
      RangeScalar        *yj = y + rhs * ystride;
      const Scalar  *curval = vals_beg[row];
      const Ordinal *curind = inds_beg[row];
      for (size_t j=0; j != numEntries[row]; ++j) {
        tmp += (RangeScalar)curval[j] * (RangeScalar)xj[curind[j]];
      }
      if (NO_BETA_AND_OVERWRITE) {
        yj[row] = (RangeScalar)alpha * tmp;
      }
      else {
        RangeScalar tmp2 = beta * yj[row];
        yj[row] = (RangeScalar)(alpha * tmp + tmp2);
      }
    }
  };


  template <class Scalar, class Ordinal, class DomainScalar, class RangeScalar, int NO_BETA_AND_OVERWRITE>
  struct DefaultSparseTransposeMultiplyOp2 {
    // mat data
    const Ordinal * const * inds_beg;
    const Scalar  * const * vals_beg;
    const size_t  *         numEntries;
    // matvec params
    RangeScalar        alpha, beta;
    size_t numRows, numCols;
    // mv data
    const DomainScalar  *x;
    RangeScalar         *y;
    size_t xstride, ystride;

    inline KERNEL_PREFIX void execute(size_t i) {
      // multiply entire matrix for rhs i
      const size_t rhs = i;
      const RangeScalar RANGE_ZERO = Teuchos::ScalarTraits<RangeScalar>::zero();
      const DomainScalar *xj = x + rhs * xstride;
      RangeScalar        *yj = y + rhs * ystride;
      for (size_t row=0; row < numCols; ++row) {
        if (NO_BETA_AND_OVERWRITE) {
          yj[row] = RANGE_ZERO;
        }
        else {
          yj[row] = (RangeScalar)(yj[row] * beta);
        }
      }
      for (size_t row=0; row < numRows; ++row) {
        const Scalar  *rowval = vals_beg[row];
        const Ordinal *rowind = inds_beg[row];
        for (size_t j=0; j != numEntries[row]; ++j) {
          yj[rowind[j]] += (RangeScalar)(alpha * Teuchos::ScalarTraits<RangeScalar>::conjugate(rowval[j]) * (RangeScalar)xj[row]);
        }
      }
    }
  };

} // namespace Kokkos

#endif