/usr/include/trilinos/Intrepid_Utils.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 | // @HEADER
// ************************************************************************
//
// Intrepid Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev (pbboche@sandia.gov) or
// Denis Ridzal (dridzal@sandia.gov).
//
// ************************************************************************
// @HEADER
/** \file Intrepid_Utils.hpp
\brief Intrepid utilities.
\author Created by P. Bochev and D. Ridzal.
*/
#ifndef INTREPID_UTILS_HPP
#define INTREPID_UTILS_HPP
#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_Types.hpp"
#include "Teuchos_Array.hpp"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_RCP.hpp"
namespace Intrepid {
/***************************************************************************************************
***************************************************************************************************
** **
** Declarations of non-templated utility functions for order and cardinality of operators **
** **
***************************************************************************************************
***************************************************************************************************/
/** \brief Returns the rank of fields in a function space of the specified type.
Field rank is defined as the number of indices needed to specify function value and
equals 0, 1,or 2 for scalars, vectors and tensors, respectively. The scalar field
spaces in Intrepid are FUNCTION_SPACE_HGRAD and FUNCTION_SPACE_HVOL. The vector field
spaces are FUNCTION_SPACE_HCURL, FUNCTION_SPACE_HDIV and FUNCTION_SPACE_VECTOR_HGRAD.
FUNCTION_SPACE_TENSOR_HGRAD contains rank-2 tensors.
\param spaceType [in] - function space type
\return rank of the fields in the specified function space
*/
int getFieldRank(const EFunctionSpace spaceType);
/** \brief Returns rank of an operator.
When an operator acts on a field of a certain rank, the result can be a field with the
same or a different rank. Operator rank is defined the difference between the ranks of
the output field and the input field:
\verbatim
Rank(OPERATOR) = Rank(OPERATOR(FIELD)) - Rank(FIELD)
\endverbatim
Therefore, operator rank allows us to figure out the rank of the result:
\verbatim
Rank(OPERATOR(FIELD)) = Rank(FIELD) + Rank(OPERATOR)
\endverbatim
and provides means to size properly arrays for output results. The following table
summarizes operator ranks (~ denotes undefined, below slash means 3D).
By default, in 1D any operator other than VALUE has rank 1, i.e., GRAD, CURL and DIV
reduce to d/dx and Dk are the higher-order derivatives d^k/dx^k. Only scalar functions
are allowed in 1D.
\verbatim
|========|======|============================|=========|==========|==========|==========|
| field | rank | FUNCTION_SPACE_[type] | VALUE | GRAD, Dk | CURL | DIV |
|--------|------|----------------------------|---------|----------|----------|----------|
| scalar | 0 | HGRAD, HVOL | 0 | 1 | 3-dim/~ | ~ |
| vector | 1 | HCURL, HDIV, VECTOR_HGRAD | 0 | 1 | dim - 3 | -1 |
| tensor | 2 | TENSOR_HGRAD | 0 | 1 | dim - 3 | -1 |
|--------|------|----------------------------|---------|----------|----------|----------|
| 1D | 0 | HGRAD, HVOL only | 0 | 1 | 1 | 1 |
|=======================================================================================|
\endverbatim
\param spaceType [in] - function space type
\param operatorType [in] - the operator acting on the specified function space
\param spaceDim [in] - spatial dimension
\return rank of the operator as defined in the table
*/
int getOperatorRank(const EFunctionSpace spaceType,
const EOperator operatorType,
const int spaceDim);
/** \brief Returns order of an operator.
\param operatorType [in] - type of the operator whose order we want to know
\return result ranges from 0 (for OPERATOR_VALUE) to 10 (OPERATOR_D10)
*/
int getOperatorOrder(const EOperator operatorType);
/** \brief Returns the ordinal of a partial derivative of order k based on the multiplicities of
the partials dx, dy, and dz.
By default, any implementation of Intrepid::Basis method returns partials of order k
(specified by OPERATOR_Dk) as a multiset ordered by the lexicographical order of the
partial derivatives multiplicities. For example, the 10 derivatives of order 3 in 3D
are enumerated as:
\verbatim
D3={(3,0,0),(2,1,0),(2,0,1),(1,2,0),(1,1,1),(1,0,2),(0,3,0),(0,2,1),(0,1,2),(0,0,3)}
\endverbatim
The enumeration formula for this lexicographical order is
<table>
<tr> <td>\f$i(xMult) = 0\f$ </td> <td>in 1D (only 1 derivative)</td> </tr>
<tr> <td>\f$i(xMult,yMult) =yMult\f$ </td> <td>in 2D</td> </tr>
<tr> <td>\f$i(xMult,yMult,zMult)=zMult+\sum_{r = 0}^{k-xMult} r\f$</td> <td>in 3D</td> </tr>
</table>
where the order k of Dk is implicitly defined by xMult + yMult + zMult. Space dimension is
implicitly defined by the default values of the multiplicities of y and z derivatives.
\param xMult [in] - multiplicity of dx
\param yMult [in] - multiplicity of dy (default = -1)
\param zMult [in] - multiplicity of dz (default = -1)
\return the ordinal of partial derivative of order k as function of dx, dy, dz multiplicities
*/
int getDkEnumeration(const int xMult,
const int yMult = -1,
const int zMult = -1);
/** \brief Returns multiplicities of dx, dy, and dz based on the enumeration of the partial
derivative, its order and the space dimension. Inverse of the getDkEnumeration() method.
\param partialMult [out] - array with the multiplicities f dx, dy and dz
\param derivativeEnum [in] - enumeration of the partial derivative
\param operatorType [in] - k-th partial derivative Dk
\param spaceDim [in] - space dimension
*/
void getDkMultiplicities(Teuchos::Array<int>& partialMult,
const int derivativeEnum,
const EOperator operatorType,
const int spaceDim);
/** \brief Returns cardinality of Dk, i.e., the number of all derivatives of order k.
The set of all partial derivatives of order k is isomorphic to the set of all multisets
of cardinality k with elements taken from the sets {x}, {x,y}, and {x,y,z} in 1D, 2D,
and 3D respectively. For example, the partial derivative
\f$\displaystyle D\{1,2,1\}f = \frac{d^4 f}{dx dy^2 dz}\f$ maps to the multiset
\f$\{x, y, z\}\f$ with multiplicities \f$\{1,2,1\}\f$. The number of all such multisets
is given by the binomial coefficient
\f[ \begin{pmatrix} spaceDim + k - 1 \\ spaceDim - 1 \end{pmatrix} \f]
Therefore:
\li in 1D: cardinality = 1\n
\li in 2D: cardinality = k + 1\n
\li in 3D: cardinality = (k + 1)*(k + 2)/2
\param operatorType [in] - k-th derivative operator Dk
\param spaceDim [in] - space dimension
\return the number of all partial derivatives of order k
*/
int getDkCardinality(const EOperator operatorType,
const int spaceDim);
/***************************************************************************************************
***************************************************************************************************
** **
** Declarations of helper functions for the basis class **
** **
***************************************************************************************************
***************************************************************************************************/
/** \brief Fills <var>ordinalToTag_</var> and <var>tagToOrdinal_</var> by basis-specific tag data
\param tagToOrdinal [out] - Lookup table for the DoF's ordinal by its tag
\param ordinalToTag [out] - Lookup table for the DoF's tag by its ordinal
\param tags [in] - a set of basis-dependent tags in flat (rank-1) array format.
\param basisCard [in] - cardinality of the basis
\param tagSize [in] - number of fields in a DoF tag
\param posScDim [in] - position in the tag, counting from 0, of the subcell dim
\param posScOrd [in] - position in the tag, counting from 0, of the subcell ordinal
\param posDfOrd [in] - position in the tag, counting from 0, of DoF ordinal relative to the subcell
*/
void setOrdinalTagData(std::vector<std::vector<std::vector<int> > > &tagToOrdinal,
std::vector<std::vector<int> > &ordinalToTag,
const int *tags,
const int basisCard,
const int tagSize,
const int posScDim,
const int posScOrd,
const int posDfOrd);
/***************************************************************************************************
***************************************************************************************************
** **
** Declarations of templated utility functions **
** **
***************************************************************************************************
***************************************************************************************************/
enum TypeOfExactData{
INTREPID_UTILS_FRACTION=0,
INTREPID_UTILS_SCALAR
};
/***************************************************************************************************
* *
* Utility functions for handling external data in tests *
* *
***************************************************************************************************/
/** \brief Compares the values in the test matrix <var><b>testMat</b></var> to precomputed
analytic values stored in a file, where the input matrix is an array of arrays.
\param testMat [in] - test matrix
\param inputFile [in] - input file
\param reltol [in] - relative tolerance for equality comparisons
\param iprint [in] - if 0, no output; if 1, details are printed
\param analyticDataType [in] - type of analytic data for comparison:
\li if INTREPID_UTILS_FRACTION, analytic fractions are parsed and computed
\li if INTREPID_UTILS_SCALAR, high-precision scalar data is read
\return 0 if pass; error code otherwise
*/
template<class Scalar>
int compareToAnalytic(const Teuchos::Array< Teuchos::Array<Scalar> > testMat,
std::ifstream & inputFile,
Scalar reltol,
int iprint,
TypeOfExactData analyticDataType = INTREPID_UTILS_FRACTION);
/** \brief Compares the values in the test matrix <var><b>testMat</b></var> to precomputed
analytic values stored in a file, where the input matrix is a single contiguous
array.
\param testMat [in] - test matrix
\param inputFile [in] - input file
\param reltol [in] - relative tolerance for equality comparisons
\param iprint [in] - if 0, no output; if 1, details are printed
\param analyticDataType [in] - type of analytic data for comparison:
\li if INTREPID_UTILS_FRACTION, analytic fractions are parsed and computed
\li if INTREPID_UTILS_SCALAR, high-precision scalar data is read
\return 0 if pass; error code otherwise
*/
template<class Scalar>
int compareToAnalytic(const Scalar * testMat,
std::ifstream & inputFile,
Scalar reltol,
int iprint,
TypeOfExactData analyticDataType = INTREPID_UTILS_FRACTION);
/** \brief Loads analytic values stored in a file into the matrix <var><b>testMat</b></var>,
where the output matrix is an array of arrays.
\param testMat [in] - test matrix
\param inputFile [in] - input file
\param analyticDataType [in] - type of analytic data for comparison:
\li if INTREPID_UTILS_FRACTION, analytic fractions are parsed and computed
\li if INTREPID_UTILS_SCALAR, high-precision scalar data is read
*/
template<class Scalar>
void getAnalytic(Teuchos::Array< Teuchos::Array<Scalar> > & testMat,
std::ifstream & inputFile,
TypeOfExactData analyticDataType = INTREPID_UTILS_FRACTION);
/** \brief Loads analytic values stored in a file into the matrix <var><b>testMat</b></var>,
where the output matrix is a single contiguous array.
\param testMat [in] - test matrix
\param inputFile [in] - input file
\param analyticDataType [in] - type of analytic data for comparison:
\li if INTREPID_UTILS_FRACTION, analytic fractions are parsed and computed
\li if INTREPID_UTILS_SCALAR, high-precision scalar data is read
*/
template<class Scalar>
void getAnalytic(Scalar * testMat,
std::ifstream & inputFile,
TypeOfExactData analyticDataType = INTREPID_UTILS_FRACTION);
/***************************************************************************************************
* *
* Utility functions for checking requirements on ranks and dimensions of array arguments *
* *
***************************************************************************************************/
/** \brief Checks if the rank of the array argument is in the required range.
\param errmsg [out] - error message
\param array [in] - array argument
\param lowerBound [in] - lower bound for the rank of the array
\param upperBound [in] - upper bound for the rank of the array
\return true if lowerBound <= array.rank() <= rankR, false otherwise
*/
template<class Array>
bool requireRankRange(std::string& errmsg,
const Array& array,
const int lowerBound,
const int upperBound);
/** \brief Checks if two arrays have matching ranks.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param array2 [in] - second array argument
\return true if array.rank1() == array2.rank(), false otherwise
*/
template<class Array1, class Array2>
bool requireRankMatch(std::string& errmsg,
const Array1& array1,
const Array2& array2);
/** \brief Checks if the specified array dimension is in the required range.
\param errmsg [out] - error message
\param array [in] - array argument
\param dim [in] - dimension ordinal, 0 <= dim < array
\param lowerBound [in] - lower bound for dimension <var>dim</var>
\param upperBound [in] - upper bound for dimension <var>dim</var>
\return true if lowerBound <= array.dimension(dim) <= upperBound, false otherwise
*/
template<class Array>
bool requireDimensionRange(std::string& errmsg,
const Array& array,
const int dim,
const int lowerBound,
const int upperBound);
/** \brief Checks arrays for a single matching dimension.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param a1_dim0 [in] - dimension ordinal for first array
\param array2 [in] - second array argument
\param a2_dim0 [in] - dimension ordinal for second array
\return true if array1.dimension(a1_dim0) == array2.dimension(a2_dim0), false otherwise
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0,
const Array2& array2,
const int a2_dim0);
/** \brief Checks arrays for two matching dimensions.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param a1_dim0 [in] - 1st dimension ordinal for first array
\param a1_dim1 [in] - 2nd dimension ordinal for first array
\param array2 [in] - second array argument
\param a2_dim0 [in] - 1st dimension ordinal for second array
\param a2_dim1 [in] - 2nd dimension ordinal for second array
\return true if array1.dimension(a1_dim*) == array2.dimension(a2_dim*) for *={0,1}, false otherwise
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1,
const Array2& array2,
const int a2_dim0, const int a2_dim1);
/** \brief Checks arrays for three matching dimensions.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param a1_dim0 [in] - 1st dimension ordinal for first array
\param a1_dim1 [in] - 2nd dimension ordinal for first array
\param a1_dim2 [in] - 3rd dimension ordinal for first array
\param array2 [in] - second array argument
\param a2_dim0 [in] - 1st dimension ordinal for second array
\param a2_dim1 [in] - 2nd dimension ordinal for second array
\param a2_dim2 [in] - 3rd dimension ordinal for second array
\return true if array1.dimension(a1_dim*) == array2.dimension(a2_dim*) for *={0,1,2}, false otherwise
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1, const int a1_dim2,
const Array2& array2,
const int a2_dim0, const int a2_dim1, const int a2_dim2);
/** \brief Checks arrays for four matching dimensions.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param a1_dim0 [in] - 1st dimension ordinal for first array
\param a1_dim1 [in] - 2nd dimension ordinal for first array
\param a1_dim2 [in] - 3rd dimension ordinal for first array
\param a1_dim3 [in] - 4th dimension ordinal for first array
\param array2 [in] - second array argument
\param a2_dim0 [in] - 1st dimension ordinal for second array
\param a2_dim1 [in] - 2nd dimension ordinal for second array
\param a2_dim2 [in] - 3rd dimension ordinal for second array
\param a2_dim3 [in] - 4th dimension ordinal for second array
\return true if array1.dimension(a1_dim*) == array2.dimension(a2_dim*) for *={0,1,2,3}, false otherwise
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1, const int a1_dim2, const int a1_dim3,
const Array2& array2,
const int a2_dim0, const int a2_dim1, const int a2_dim2, const int a2_dim3);
/** \brief Checks arrays for five matching dimensions.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param a1_dim0 [in] - 1st dimension ordinal for first array
\param a1_dim1 [in] - 2nd dimension ordinal for first array
\param a1_dim2 [in] - 3rd dimension ordinal for first array
\param a1_dim3 [in] - 4th dimension ordinal for first array
\param a1_dim4 [in] - 5th dimension ordinal for first array
\param array2 [in] - second array argument
\param a2_dim0 [in] - 1st dimension ordinal for second array
\param a2_dim1 [in] - 2nd dimension ordinal for second array
\param a2_dim2 [in] - 3rd dimension ordinal for second array
\param a2_dim3 [in] - 4th dimension ordinal for second array
\param a2_dim4 [in] - 5th dimension ordinal for second array
\return true if array1.dimension(a1_dim*) == array2.dimension(a2_dim*) for *={0,1,2,3,4}, false otherwise
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1,
const int a1_dim2, const int a1_dim3, const int a1_dim4,
const Array2& array2,
const int a2_dim0, const int a2_dim1,
const int a2_dim2, const int a2_dim3, const int a2_dim4);
/** \brief Checks arrays for all their dimensions match. Arrays with equal ranks required.
\param errmsg [out] - error message
\param array1 [in] - first array argument
\param array2 [in] - second array argument
\return true if array1.dimension(i) == array2.dimension(i), 0 <= i < rank, false otherwise.
*/
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const Array2& array2);
/***************************************************************************************************
***************************************************************************************************
** **
** Definitions of templated functions **
** **
***************************************************************************************************
***************************************************************************************************/
/***************************************************************************************************
* *
* Utility functions for handling external data in tests *
* *
***************************************************************************************************/
template<class Scalar>
int compareToAnalytic(const Teuchos::Array< Teuchos::Array<Scalar> > testMat,
std::ifstream & inputFile,
Scalar reltol,
int iprint,
TypeOfExactData analyticDataType ) {
// This little trick lets us print to std::cout only if
// iprint > 0.
Teuchos::RCP<std::ostream> outStream;
Teuchos::oblackholestream bhs; // outputs nothing
if (iprint > 0)
outStream = Teuchos::rcp(&std::cout, false);
else
outStream = Teuchos::rcp(&bhs, false);
// Save the format state of the original std::cout.
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
std::string line;
std::string chunk;
Scalar testentry;
Scalar abstol;
Scalar absdiff;
int i=0, j=0;
int err = 0;
while (! inputFile.eof() )
{
std::getline (inputFile,line);
std::istringstream linestream(line);
std::string chunk;
j = 0;
while( linestream >> chunk ) {
int num1;
int num2;
std::string::size_type loc = chunk.find( "/", 0);
if( loc != std::string::npos ) {
chunk.replace( loc, 1, " ");
std::istringstream chunkstream(chunk);
chunkstream >> num1;
chunkstream >> num2;
testentry = (Scalar)(num1)/(Scalar)(num2);
abstol = ( std::fabs(testentry) < reltol ? reltol : std::fabs(reltol*testentry) );
absdiff = std::fabs(testentry - testMat[i][j]);
if (absdiff > abstol) {
err++;
*outStream << "FAILURE --> ";
}
*outStream << "entry[" << i << "," << j << "]:" << " "
<< testMat[i][j] << " " << num1 << "/" << num2 << " "
<< absdiff << " " << "<?" << " " << abstol << "\n";
}
else {
std::istringstream chunkstream(chunk);
if (analyticDataType == INTREPID_UTILS_FRACTION) {
chunkstream >> num1;
testentry = (Scalar)(num1);
}
else if (analyticDataType == INTREPID_UTILS_SCALAR)
chunkstream >> testentry;
abstol = ( std::fabs(testentry) < reltol ?reltol : std::fabs(reltol*testentry) );
absdiff = std::fabs(testentry - testMat[i][j]);
if (absdiff > abstol) {
err++;
*outStream << "FAILURE --> ";
}
*outStream << "entry[" << i << "," << j << "]:" << " "
<< testMat[i][j] << " " << testentry << " "
<< absdiff << " " << "<?" << " " << abstol << "\n";
}
j++;
}
i++;
}
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
return err;
} // end compareToAnalytic
template<class Scalar>
int compareToAnalytic(const Scalar * testMat,
std::ifstream & inputFile,
Scalar reltol,
int iprint,
TypeOfExactData analyticDataType ) {
// This little trick lets us print to std::cout only if
// iprint > 0.
Teuchos::RCP<std::ostream> outStream;
Teuchos::oblackholestream bhs; // outputs nothing
if (iprint > 0)
outStream = Teuchos::rcp(&std::cout, false);
else
outStream = Teuchos::rcp(&bhs, false);
// Save the format state of the original std::cout.
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
std::string line;
std::string chunk;
Scalar testentry;
Scalar abstol;
Scalar absdiff;
int i=0, j=0, offset=0;
int err = 0;
while (! inputFile.eof() )
{
std::getline (inputFile,line);
std::istringstream linestream(line);
std::string chunk;
j = 0;
while( linestream >> chunk ) {
int num1;
int num2;
std::string::size_type loc = chunk.find( "/", 0);
if( loc != std::string::npos ) {
chunk.replace( loc, 1, " ");
std::istringstream chunkstream(chunk);
chunkstream >> num1;
chunkstream >> num2;
testentry = (Scalar)(num1)/(Scalar)(num2);
abstol = ( std::fabs(testentry) < reltol ? reltol : std::fabs(reltol*testentry) );
absdiff = std::fabs(testentry - testMat[i*offset+j]);
if (absdiff > abstol) {
err++;
*outStream << "FAILURE --> ";
}
*outStream << "entry[" << i << "," << j << "]:" << " "
<< testMat[i*offset+j] << " " << num1 << "/" << num2 << " "
<< absdiff << " " << "<?" << " " << abstol << "\n";
}
else {
std::istringstream chunkstream(chunk);
if (analyticDataType == INTREPID_UTILS_FRACTION) {
chunkstream >> num1;
testentry = (Scalar)(num1);
}
else if (analyticDataType == INTREPID_UTILS_SCALAR)
chunkstream >> testentry;
abstol = ( std::fabs(testentry) < reltol ?reltol : std::fabs(reltol*testentry) );
absdiff = std::fabs(testentry - testMat[i*offset+j]);
if (absdiff > abstol) {
err++;
*outStream << "FAILURE --> ";
}
*outStream << "entry[" << i << "," << j << "]:" << " "
<< testMat[i*offset+j] << " " << testentry << " "
<< absdiff << " " << "<?" << " " << abstol << "\n";
}
j++;
}
i++;
offset = j;
}
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
return err;
} // end compareToAnalytic
template<class Scalar>
void getAnalytic(Teuchos::Array< Teuchos::Array<Scalar> > & testMat,
std::ifstream & inputFile,
TypeOfExactData analyticDataType ) {
// Save the format state of the original std::cout.
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
std::string line;
std::string chunk;
Scalar testentry;
int i=0, j=0;
while (! inputFile.eof() )
{
std::getline (inputFile,line);
std::istringstream linestream(line);
std::string chunk;
j = 0;
while( linestream >> chunk ) {
int num1;
int num2;
std::string::size_type loc = chunk.find( "/", 0);
if( loc != std::string::npos ) {
chunk.replace( loc, 1, " ");
std::istringstream chunkstream(chunk);
chunkstream >> num1;
chunkstream >> num2;
testentry = (Scalar)(num1)/(Scalar)(num2);
testMat[i][j] = testentry;
}
else {
std::istringstream chunkstream(chunk);
if (analyticDataType == INTREPID_UTILS_FRACTION) {
chunkstream >> num1;
testentry = (Scalar)(num1);
}
else if (analyticDataType == INTREPID_UTILS_SCALAR)
chunkstream >> testentry;
testMat[i][j] = testentry;
}
j++;
}
i++;
}
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
} // end getAnalytic
template<class Scalar>
void getAnalytic(Scalar * testMat,
std::ifstream & inputFile,
TypeOfExactData analyticDataType) {
// Save the format state of the original std::cout.
Teuchos::oblackholestream oldFormatState;
oldFormatState.copyfmt(std::cout);
std::string line;
std::string chunk;
Scalar testentry;
int i=0, j=0, offset=0;
while (! inputFile.eof() )
{
std::getline (inputFile,line);
std::istringstream linestream(line);
std::string chunk;
j = 0;
while( linestream >> chunk ) {
int num1;
int num2;
std::string::size_type loc = chunk.find( "/", 0);
if( loc != std::string::npos ) {
chunk.replace( loc, 1, " ");
std::istringstream chunkstream(chunk);
chunkstream >> num1;
chunkstream >> num2;
testentry = (Scalar)(num1)/(Scalar)(num2);
testMat[i*offset+j] = testentry;
}
else {
std::istringstream chunkstream(chunk);
if (analyticDataType == INTREPID_UTILS_FRACTION) {
chunkstream >> num1;
testentry = (Scalar)(num1);
}
else if (analyticDataType == INTREPID_UTILS_SCALAR)
chunkstream >> testentry;
testMat[i*offset+j] = testentry;
}
j++;
}
i++;
offset = j;
}
// reset format state of std::cout
std::cout.copyfmt(oldFormatState);
} // end getAnalytic
/***************************************************************************************************
* *
* Utility functions for checking requirements on ranks and dimensions of array arguments *
* *
***************************************************************************************************/
template<class Array>
bool requireRankRange(std::string& errmsg,
const Array& array,
const int lowerBound,
const int upperBound){
TEST_FOR_EXCEPTION( (lowerBound > upperBound) , std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireRankRange): lowerBound <= upperBound required!");
bool OK = true;
if( (lowerBound == upperBound) && !(array.rank() == lowerBound) ) {
errmsg += "\n>>> Array rank = ";
errmsg += (char)(48 + array.rank() );
errmsg += " while rank-";
errmsg += (char) (48 + lowerBound);
errmsg += " array required.";
OK = false;
}
else if ( (lowerBound < upperBound) && !( (lowerBound <= array.rank() ) && (array.rank() <= upperBound) ) ){
errmsg += "\n>>> Array rank = ";
errmsg += (char)(48 + array.rank() );
errmsg += " while a rank between ";
errmsg += (char) (48 + lowerBound);
errmsg += " and ";
errmsg += (char) (48 + upperBound);
errmsg += " is required.";
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireRankMatch(std::string& errmsg,
const Array1& array1,
const Array2& array2){
bool OK = true;
if(array1.rank() != array2.rank() ) {
errmsg += "\n>>> Array ranks are required to match.";
OK = false;
}
return OK;
}
template<class Array>
bool requireDimensionRange(std::string& errmsg,
const Array& array,
const int dim,
const int lowerBound,
const int upperBound){
TEST_FOR_EXCEPTION( (lowerBound > upperBound) , std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionRange): lowerBound <= upperBound required!");
TEST_FOR_EXCEPTION( !( (0 <= dim) && (dim < array.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionRange): 0 <= dim < array.rank() required!");
bool OK = true;
if( (lowerBound > upperBound) || ( dim >= array.rank() ) ) {
errmsg += "\n>>> Unexpected error: ";
OK = false;
}
if( (lowerBound == upperBound) && !(array.dimension(dim) == lowerBound) ) {
errmsg += "\n>>> dimension(";
errmsg += (char)(48 + dim);
errmsg += ") = ";
errmsg += (char)(48 + array.dimension(dim) );
errmsg += " while dimension(";
errmsg += (char)(48 + dim);
errmsg += ") = ";
errmsg += (char)(48 + lowerBound);
errmsg += " required.";
OK = false;
}
else if( (lowerBound < upperBound) &&
!( (lowerBound <= array.dimension(dim) ) && (array.dimension(dim) <= upperBound) ) ){
errmsg += "\n>>> dimension(";
errmsg += (char)(48 + dim);
errmsg += ") = ";
errmsg += (char)(48 + array.dimension(dim) );
errmsg += " while ";
errmsg += (char)(48 + lowerBound);
errmsg += " <= dimension(";
errmsg += (char)(48 + dim);
errmsg += ") <= ";
errmsg +=(char)(48 + upperBound);
errmsg +=" required.";
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0,
const Array2& array2,
const int a2_dim0){
TEST_FOR_EXCEPTION( !( (0 <= a1_dim0) && (a1_dim0 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim0 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim0) && (a2_dim0 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim0 < array2.rank() required!");
bool OK = true;
if(array1.dimension(a1_dim0) != array2.dimension(a2_dim0) ){
errmsg += "\n>>> dimension(";
errmsg += (char)(48 + a1_dim0);
errmsg += ") of 1st array and dimension(";
errmsg += (char)(48 + a2_dim0);
errmsg += ") of 2nd array are required to match.";
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1,
const Array2& array2,
const int a2_dim0, const int a2_dim1){
TEST_FOR_EXCEPTION( !( (0 <= a1_dim0) && (a1_dim0 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim0 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim1) && (a1_dim1 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim1 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim0) && (a2_dim0 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim0 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim1) && (a2_dim1 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim1 < array2.rank() required!");
bool OK = true;
if( !requireDimensionMatch(errmsg, array1, a1_dim0, array2, a2_dim0) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim1, array2, a2_dim1) ){
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1, const int a1_dim2,
const Array2& array2,
const int a2_dim0, const int a2_dim1, const int a2_dim2){
TEST_FOR_EXCEPTION( !( (0 <= a1_dim0) && (a1_dim0 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim0 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim1) && (a1_dim1 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim1 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim2) && (a1_dim2 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim2 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim0) && (a2_dim0 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim0 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim1) && (a2_dim1 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim1 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim2) && (a2_dim2 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim2 < array2.rank() required!");
bool OK = true;
if( !requireDimensionMatch(errmsg, array1, a1_dim0, array2, a2_dim0) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim1, array2, a2_dim1) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim2, array2, a2_dim2) ){
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1, const int a1_dim2, const int a1_dim3,
const Array2& array2,
const int a2_dim0, const int a2_dim1, const int a2_dim2, const int a2_dim3){
TEST_FOR_EXCEPTION( !( (0 <= a1_dim0) && (a1_dim0 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim0 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim1) && (a1_dim1 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim1 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim2) && (a1_dim2 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim2 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim3) && (a1_dim3 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim3 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim0) && (a2_dim0 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim0 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim1) && (a2_dim1 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim1 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim2) && (a2_dim2 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim2 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim3) && (a2_dim3 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim3 < array2.rank() required!");
bool OK = true;
if( !requireDimensionMatch(errmsg, array1, a1_dim0, array2, a2_dim0) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim1, array2, a2_dim1) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim2, array2, a2_dim2) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim3, array2, a2_dim3) ){
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const int a1_dim0, const int a1_dim1, const int a1_dim2,
const int a1_dim3, const int a1_dim4,
const Array2& array2,
const int a2_dim0, const int a2_dim1, const int a2_dim2,
const int a2_dim3, const int a2_dim4){
TEST_FOR_EXCEPTION( !( (0 <= a1_dim0) && (a1_dim0 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim0 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim1) && (a1_dim1 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim1 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim2) && (a1_dim2 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim2 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim3) && (a1_dim3 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim3 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a1_dim4) && (a1_dim4 < array1.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a1_dim4 < array1.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim0) && (a2_dim0 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim0 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim1) && (a2_dim1 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim1 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim2) && (a2_dim2 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim2 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim3) && (a2_dim3 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim3 < array2.rank() required!");
TEST_FOR_EXCEPTION( !( (0 <= a2_dim4) && (a2_dim4 < array2.rank() ) ),
std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): 0 <= a2_dim4 < array2.rank() required!");
bool OK = true;
if( !requireDimensionMatch(errmsg, array1, a1_dim0, array2, a2_dim0) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim1, array2, a2_dim1) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim2, array2, a2_dim2) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim3, array2, a2_dim3) ){
OK = false;
}
if( !requireDimensionMatch(errmsg, array1, a1_dim4, array2, a2_dim4) ){
OK = false;
}
return OK;
}
template<class Array1, class Array2>
bool requireDimensionMatch(std::string& errmsg,
const Array1& array1,
const Array2& array2){
TEST_FOR_EXCEPTION( !requireRankMatch(errmsg, array1, array2 ), std::invalid_argument,
">>> ERROR (Intrepid_Utils::requireDimensionMatch): Arrays with equal ranks are required to test for all dimensions match." )
bool OK = true;
for(int dim = 0; dim < array1.rank(); dim++){
if( !requireDimensionMatch(errmsg, array1, dim, array2, dim) ){
OK = false;
break;
}
}
return OK;
}
} // end namespace Intrepid
#endif
|