/usr/include/trilinos/Intrepid_RealSpaceTools.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 | // @HEADER
// ************************************************************************
//
// Intrepid Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev (pbboche@sandia.gov) or
// Denis Ridzal (dridzal@sandia.gov).
//
// ************************************************************************
// @HEADER
/** \file Intrepid_RealSpaceTools.hpp
\brief Header file for classes providing basic linear algebra functionality in 1D, 2D and 3D.
\author Created by P. Bochev and D. Ridzal.
*/
#ifndef INTREPID_REALSPACETOOLS_HPP
#define INTREPID_REALSPACETOOLS_HPP
#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_Types.hpp"
#include "Teuchos_oblackholestream.hpp"
#include "Teuchos_TestForException.hpp"
namespace Intrepid {
/** \class Intrepid::RealSpaceTools
\brief Implementation of basic linear algebra functionality in Euclidean space.
*/
template<class Scalar>
class RealSpaceTools {
public:
/** \brief Computes absolute value of contiguous input data <b><var>inArray</var></b>
of size <b><var>size</var></b>.
\param absArray [out] - output data
\param inArray [in] - input data
\param size [in] - size
*/
static void absval(Scalar* absArray, const Scalar* inArray, const int size);
/** \brief Computes absolute value of contiguous data <b><var>inoutAbsArray</var></b>
of size <b><var>size</var></b> in place.
\param inoutAbsArray [in/out] - input/output data
\param size [in] - size
*/
static void absval(Scalar* inoutArray, const int size);
/** \brief Computes absolute value of an array.
\param outArray [out] - output array
\param inArray [in] - input array
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>absArray</var></b>) == rank(<b><var>inArray</var></b>)
\li dimensions(<b><var>absArray</var></b>) == dimensions(<b><var>inArray</var></b>)
*/
template<class ArrayAbs, class ArrayIn>
static void absval(ArrayAbs & absArray, const ArrayIn & inArray);
/** \brief Computes, in place, absolute value of an array.
\param inoutAbsArray [in/out] - input/output array
*/
template<class ArrayInOut>
static void absval(ArrayInOut & inoutAbsArray);
/** \brief Computes norm (1, 2, infinity) of the vector <b><var>inVec</var></b>
of size <b><var>dim</var></b>.
\param inVec [in] - vector
\param dim [in] - vector dimension
\param normType [in] - norm type
*/
static Scalar vectorNorm(const Scalar* inVec, const int dim, const ENorm normType);
/** \brief Computes norm (1, 2, infinity) of a single vector stored in
an array of rank 1.
\param inVec [in] - array representing a single vector
\param normType [in] - norm type
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inVec</var></b>) == 1
*/
template<class ArrayIn>
static Scalar vectorNorm(const ArrayIn & inVec, const ENorm normType);
/** \brief Computes norms (1, 2, infinity) of vectors stored in a
array of total rank 2 (array of vectors), indexed by (i0, D),
or 3 (array of arrays of vectors), indexed by (i0, i1, D).
\param normArray [out] - norm array indexed by (i0) or (i0, i1)
\param inVecs [in] - array of vectors indexed by (i0, D) or (i0, i1, D)
\param normType [in] - norm type
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>normArray</var></b>) == rank(<b><var>inVecs</var></b>) - 1
\li rank(<b><var>inVecs</var></b>) == 2 or 3
\li dimensions i0, i1 of <b><var>normArray</var></b> and <b><var>inVecs</var></b> must agree
*/
template<class ArrayNorm, class ArrayIn>
static void vectorNorm(ArrayNorm & normArray, const ArrayIn & inVecs, const ENorm normType);
/** \brief Computes transpose of the square matrix <b><var>inMat</var></b>
of size <b><var>dim</var></b> by <b><var>dim</var></b>.
\param transposeMat [out] - matrix transpose
\param inMat [in] - matrix
\param dim [in] - matrix dimension
*/
static void transpose(Scalar* transposeMat, const Scalar* inMat, const int dim);
/** \brief Computes transposes of square matrices stored in
an array of total rank 2 (single matrix), indexed by (D, D),
3 (array of matrices), indexed by (i0, D, D),
or 4 (array of arrays of matrices), indexed by (i0, i1, D, D).
\param transposeMats [out] - array of transposes indexed by (D, D), (i0, D, D) or (i0, i1, D, D)
\param inMats [in] - array of matrices indexed by (D, D), (i0, D, D) or (i0, i1, D, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>transposeMats</var></b>) == rank(<b><var>inMats</var></b>)
\li rank(<b><var>inMats</var></b>) == 3 or 4
\li dimensions(<b><var>transposeMats</var></b>) == dimensions(<b><var>inMats</var></b>)
\li matrices must be square
*/
template<class ArrayTranspose, class ArrayIn>
static void transpose(ArrayTranspose & transposeMats, const ArrayIn & inMats);
/** \brief Computes inverse of the square matrix <b><var>inMat</var></b>
of size <b><var>dim</var></b> by <b><var>dim</var></b>.
\param inverseMat [out] - matrix inverse
\param inMat [in] - matrix
\param dim [in] - matrix dimension
*/
static void inverse(Scalar* inverseMat, const Scalar* inMat, const int dim);
/** \brief Computes inverses of nonsingular matrices stored in
an array of total rank 2 (single matrix), indexed by (D, D),
3 (array of matrices), indexed by (i0, D, D),
or 4 (array of arrays of matrices), indexed by (i0, i1, D, D).
\param inverseMats [out] - array of inverses indexed by (D, D), (i0, D, D) or (i0, i1, D, D)
\param inMats [in] - array of matrices indexed by (D, D), (i0, D, D) or (i0, i1, D, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inverseMats</var></b>) == rank(<b><var>inMats</var></b>)
\li rank(<b><var>inMats</var></b>) == 3 or 4
\li dimensions(<b><var>inverseMats</var></b>) == dimensions(<b><var>inMats</var></b>)
\li matrices must be square
\li matrix dimensions are limited to 1, 2, and 3
*/
template<class ArrayInverse, class ArrayIn>
static void inverse(ArrayInverse & inverseMats, const ArrayIn & inMats);
/** \brief Computes determinant of the square matrix <b><var>inMat</var></b>
of size <b><var>dim</var></b> by <b><var>dim</var></b>.
\param inMat [in] - matrix
\param dim [in] - matrix dimension
*/
static Scalar det(const Scalar* inMat, const int dim);
/** \brief Computes determinant of a single square matrix stored in
an array of rank 2.
\param inMat [in] - array representing a single matrix, indexed by (D, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inMats</var></b>) == 2
\li matrix dimension is limited to 1, 2, and 3
*/
template<class ArrayIn>
static Scalar det(const ArrayIn & inMat);
/** \brief Computes determinants of matrices stored in
an array of total rank 3 (array of matrices),
indexed by (i0, D, D), or 4 (array of arrays of matrices),
indexed by (i0, i1, D, D).
\param detArray [out] - array of determinants indexed by (i0) or (i0, i1)
\param inMats [in] - array of matrices indexed by (i0, D, D) or (i0, i1, D, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>detArray</var></b>) == rank(<b><var>inMats</var></b>) - 2
\li rank(<b><var>inMats</var></b>) == 3 or 4
\li dimensions i0, i1 of <b><var>detArray</var></b> and <b><var>inMats</var></b> must agree
\li matrix dimensions are limited to 1, 2, and 3
*/
template<class ArrayDet, class ArrayIn>
static void det(ArrayDet & detArray, const ArrayIn & inMats);
/** \brief Adds contiguous data <b><var>inArray1</var></b> and <b><var>inArray2</var></b>
of size <b><var>size</var></b>:\n
<b><var>sumArray</var></b> = <b><var>inArray1</var></b> + <b><var>inArray2</var></b>.
\param sumArray [out] - sum
\param inArray1 [in] - first summand
\param inArray2 [in] - second summand
\param size [in] - size of input/output data
*/
static void add(Scalar* sumArray, const Scalar* inArray1, const Scalar* inArray2, const int size);
/** \brief Adds, in place, contiguous data <b><var>inArray</var></b> into
<b><var>inoutSumArray</var></b> of size <b><var>size</var></b>:\n
<b><var>inoutSumArray</var></b> = <b><var>inoutSumArray</var></b> + <b><var>inArray</var></b>.
\param inoutSumArray [in/out] - sum / first summand
\param inArray [in] - second summand
\param size [in] - size of input/output data
*/
static void add(Scalar* inoutSumArray, const Scalar* inArray, const int size);
/** \brief Adds arrays <b><var>inArray1</var></b> and <b><var>inArray2</var></b>:\n
<b><var>sumArray</var></b> = <b><var>inArray1</var></b> + <b><var>inArray2</var></b>.
\param sumArray [out] - sum
\param inArray1 [in] - first summand
\param inArray2 [in] - second summand
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>sumArray</var></b>) == rank(<b><var>inArray1</var></b>) == rank(<b><var>inArray2</var></b>)
\li dimensions(<b><var>sumArray</var></b>) == dimensions(<b><var>inArray1</var></b>) == dimensions(<b><var>inArray2</var></b>)
*/
template<class ArraySum, class ArrayIn1, class ArrayIn2>
static void add(ArraySum & sumArray, const ArrayIn1 & inArray1, const ArrayIn2 & inArray2);
/** \brief Adds, in place, <b><var>inArray</var></b> into <b><var>inoutSumArray</var></b>:\n
<b><var>inoutSumArray</var></b> = <b><var>inoutSumArray</var></b> + <b><var>inArray</var></b>.
\param inoutSumArray [in/out] - sum/first summand
\param inArray [in] - second summand
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inoutSumArray</var></b>) == rank(<b><var>inArray</var></b>)
\li dimensions(<b><var>inoutSumArray</var></b>) == dimensions(<b><var>inArray</var></b>)
*/
template<class ArraySum, class ArrayIn>
static void add(ArraySum & inoutSumArray, const ArrayIn & inArray);
/** \brief Subtracts contiguous data <b><var>inArray2</var></b> from <b><var>inArray1</var></b>
of size <b><var>size</var></b>:\n
<b><var>diffArray</var></b> = <b><var>inArray1</var></b> - <b><var>inArray2</var></b>.
\param diffArray [out] - difference
\param inArray1 [in] - minuend
\param inArray2 [in] - subtrahend
\param size [in] - size of input/output data
*/
static void subtract(Scalar* diffArray, const Scalar* inArray1, const Scalar* inArray2, const int size);
/** \brief Subtracts, in place, contiguous data <b><var>inArray</var></b> from
<b><var>inoutDiffArray</var></b> of size <b><var>size</var></b>:\n
<b><var>inoutDiffArray</var></b> = <b><var>inoutDiffArray</var></b> - <b><var>inArray</var></b>.
\param inoutDiffArray [in/out] - difference/minuend
\param inArray [in] - subtrahend
\param size [in] - size of input/output data
*/
static void subtract(Scalar* inoutDiffArray, const Scalar* inArray, const int size);
/** \brief Subtracts <b><var>inArray2</var></b> from <b><var>inArray1</var></b>:\n
<b><var>diffArray</var></b> = <b><var>inArray1</var></b> - <b><var>inArray2</var></b>.
\param diffArray [out] - difference
\param inArray1 [in] - minuend
\param inArray2 [in] - subtrahend
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>sumArray</var></b>) == rank(<b><var>inArray1</var></b>) == rank(<b><var>inArray2</var></b>)
\li dimensions(<b><var>sumArray</var></b>) == dimensions(<b><var>inArray1</var></b>) == dimensions(<b><var>inArray2</var></b>)
*/
template<class ArrayDiff, class ArrayIn1, class ArrayIn2>
static void subtract(ArrayDiff & diffArray, const ArrayIn1 & inArray1, const ArrayIn2 & inArray2);
/** \brief Subtracts, in place, <b><var>inArray</var></b> from <b><var>inoutDiffArray</var></b>:\n
<b><var>inoutDiffArray</var></b> = <b><var>inoutDiffArray</var></b> - <b><var>inArray</var></b>.
\param inoutDiffArray [in/out] - difference/minuend
\param inArray [in] - subtrahend
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inoutDiffArray</var></b>) == rank(<b><var>inArray</var></b>)
\li dimensions(<b><var>inoutDiffArray</var></b>) == dimensions(<b><var>inArray</var></b>)
*/
template<class ArrayDiff, class ArrayIn>
static void subtract(ArrayDiff & inoutDiffArray, const ArrayIn & inArray);
/** \brief Multiplies contiguous data <b><var>inArray</var></b> of size
<b><var>size</var></b> by a scalar (componentwise):\n
<b><var>scaledArray</var></b> = <b><var>scalar</var></b> * <b><var>inArray</var></b>.
\param scaledArray [out] - scaled array
\param inArray [in] - input array
\param size [in] - size of the input array
\param scalar [in] - multiplier
*/
static void scale(Scalar* scaledArray, const Scalar* inArray, const int size, const Scalar scalar);
/** \brief Multiplies, in place, contiguous data <b><var>inoutScaledArray</var></b> of size
<b><var>size</var></b> by a scalar (componentwise):\n
<b><var>inoutScaledArray</var></b> = <b><var>scalar</var></b> * <b><var>inoutScaledArray</var></b>.
\param inoutScaledArray [in/out] - input/scaled array
\param size [in] - size of array
\param scalar [in] - multiplier
*/
static void scale(Scalar* inoutScaledArray, const int size, const Scalar scalar);
/** \brief Multiplies array <b><var>inArray</var></b> by the scalar <b><var>scalar</var></b> (componentwise):\n
<b><var>scaledArray</var></b> = <b><var>scalar</var></b> * <b><var>inArray</var></b>.
\param scaledArray [out] - scaled array
\param inArray [in] - input array
\param scalar [in] - multiplier
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>scaledArray</var></b>) == rank(<b><var>inArray</var></b>)
\li dimensions(<b><var>scaledArray</var></b>) == dimensions(<b><var>inArray</var></b>)
*/
template<class ArrayScaled, class ArrayIn>
static void scale(ArrayScaled & scaledArray, const ArrayIn & inArray, const Scalar scalar);
/** \brief Multiplies, in place, array <b><var>inoutScaledArray</var></b> by the scalar <b><var>scalar</var></b> (componentwise):\n
<b><var>inoutScaledArray</var></b> = <b><var>scalar</var></b> * <b><var>inoutScaledArray</var></b>.
\param inoutScaledArray [in/out] - input/output array
\param scalar [in] - multiplier
*/
template<class ArrayScaled>
static void scale(ArrayScaled & inoutScaledArray, const Scalar scalar);
/** \brief Computes dot product of contiguous data <b><var>inArray1</var></b> and <b><var>inArray2</var></b>
of size <b><var>size</var></b>.
\param inArray1 [in] - first array
\param inArray2 [in] - second array
\param size [in] - size of input arrays
*/
static Scalar dot(const Scalar* inArray1, const Scalar* inArray2, const int size);
/** \brief Computes dot product of two vectors stored in
arrays of rank 1.
\param inVec1 [in] - first vector
\param inVec2 [in] - second vector
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>inVec1</var></b>) == rank(<b><var>inVec2</var></b>) == 1
\li <b><var>inVec1</var></b> and <b><var>inVec2</var></b> have same dimension
*/
template<class ArrayVec1, class ArrayVec2>
static Scalar dot(const ArrayVec1 & inVec1, const ArrayVec2 & inVec2);
/** \brief Computes dot product of vectors stored in an
array of total rank 2 (array of vectors), indexed by (i0, D),
or 3 (array of arrays of vectors), indexed by (i0, i1, D).
\param dotArray [out] - dot product array indexed by (i0) or (i0, i1)
\param inVecs1 [in] - first array of vectors indexed by (i0, D) or (i0, i1, D)
\param inVecs2 [in] - second array of vectors indexed by (i0, D) or (i0, i1, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>dotArray</var></b>) == rank(<b><var>inVecs1</var></b>) - 1 == rank(<b><var>inVecs2</var></b>) - 1
\li rank(<b><var>inVecs1</var></b>) == 2 or 3
\li dimensions i0, i1 of <b><var>dotArray</var></b> and <b><var>inVecs1</var></b> / <b><var>inVecs2</var></b> must agree
*/
template<class ArrayDot, class ArrayVec1, class ArrayVec2>
static void dot(ArrayDot & dotArray, const ArrayVec1 & inVecs1, const ArrayVec2 & inVecs2);
/** \brief Matrix-vector left multiply using contiguous data:\n
<b><var>matVec</var></b> = <b><var>inMat</var></b> * <b><var>inVec</var></b>.
A single "column" vector <b><var>inVec</var></b> of size <b><var>dim</var></b> is
multiplied on the left by a square matrix <b><var>inMat</var></b> of size
<b><var>dim</var></b> by <b><var>dim</var></b>.
\param matVec [out] - matrix-vector product
\param inMat [in] - the matrix argument
\param inVec [in] - the vector argument
\param dim [in] - matrix/vector dimension
*/
static void matvec(Scalar* matVec, const Scalar* inMat, const Scalar* inVec, const int dim);
/** \brief Matrix-vector left multiply using multidimensional arrays:\n
<b><var>matVec</var></b> = <b><var>inMat</var></b> * <b><var>inVec</var></b>.
An array (rank 1, 2 or 3) of "column" vectors, indexed by
(D), (i0, D) or (i0, i1, D), is multiplied on the left by an
array (rank 2, 3 or 4) of square matrices, indexed by (D, D),
(i0, D, D) or (i0, i1, D, D).
\param matVec [out] - matrix-vector product indexed by (D), (i0, D) or (i0, i1, D)
\param inMat [in] - the matrix argument indexed by (D, D), (i0, D, D) or (i0, i1, D, D)
\param inVec [in] - the vector argument indexed by (D), (i0, D) or (i0, i1, D)
\note Requirements (checked at runtime, in debug mode): \n
\li rank(<b><var>matVec</var></b>) == rank(<b><var>inVec</var></b>) == rank(<b><var>inMat</var></b>) - 1
\li dimensions(<b><var>matVec</var></b>) == dimensions(<b><var>inVec</var></b>)
\li matrix and vector dimensions D, i0 and i1 must agree
\li matrices are square
*/
template<class ArrayMatVec, class ArrayMat, class ArrayVec>
static void matvec(ArrayMatVec & matVecs, const ArrayMat & inMats, const ArrayVec & inVecs);
/** \brief Vector product using multidimensional arrays:\n
<b><var>vecProd</var></b> = <b><var>inVecLeft</var></b> x <b><var>inVecRight</var></b>
Vector multiplication of two "column" vectors stored in arrays (rank 1, 2, or 3)
indexed by (D), (i0, D) or (i0, i1, D).
\param vecProd [in] - vector product indexed by (D), (i0, D) or (i0, i1, D)
\param inLeft [in] - left vector argument indexed by (D), (i0, D) or (i0, i1, D)
\param inRight [in] - right vector argument indexed by (D), (i0, D) or (i0, i1, D)
\todo Need to decide on how to handle vecprod in 2D: is the result a vector, i.e.,
there's dimension D or a scalar?
*/
template<class ArrayVecProd, class ArrayIn1, class ArrayIn2>
static void vecprod(ArrayVecProd & vecProd, const ArrayIn1 & inLeft, const ArrayIn2 & inRight);
}; // class RealSpaceTools
} // end namespace Intrepid
// include templated definitions
#include <Intrepid_RealSpaceToolsDef.hpp>
#endif
|