/usr/include/trilinos/Intrepid_Polylib.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 | ///////////////////////////////////////////////////////////////////////////////
//
// File: Intrepid_Polylib.hpp
//
// For more information, please see: http://www.nektar.info
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description:
// This file is redistributed with the Intrepid package. It should be used
// in accordance with the above MIT license, at the request of the authors.
// This file is NOT covered by the usual Intrepid/Trilinos LGPL license.
//
// Origin: Nektar++ library, http://www.nektar.info, downloaded on
// March 10, 2009.
//
///////////////////////////////////////////////////////////////////////////////
/** \file Intrepid_Polylib.hpp
\brief Header file for a set of functions providing orthogonal polynomial
polynomial calculus and interpolation.
\author Created by Spencer Sherwin, Aeronautics, Imperial College London,
modified and redistributed by D. Ridzal.
*/
#ifndef INTREPID_POLYLIB_HPP
#define INTREPID_POLYLIB_HPP
#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_Types.hpp"
#include "Teuchos_TestForException.hpp"
namespace Intrepid {
/**
\page pagePolylib The Polylib library
\section sectionPolyLib Routines For Orthogonal Polynomial Calculus and Interpolation
Spencer Sherwin,
Aeronautics, Imperial College London
Based on codes by Einar Ronquist and Ron Henderson
Abbreviations
- z - Set of collocation/quadrature points
- w - Set of quadrature weights
- D - Derivative matrix
- h - Lagrange Interpolant
- I - Interpolation matrix
- g - Gauss
- gr - Gauss-Radau
- gl - Gauss-Lobatto
- j - Jacobi
- m - point at minus 1 in Radau rules
- p - point at plus 1 in Radau rules
-----------------------------------------------------------------------\n
MAIN ROUTINES\n
-----------------------------------------------------------------------\n
Points and Weights:
- zwgj Compute Gauss-Jacobi points and weights
- zwgrjm Compute Gauss-Radau-Jacobi points and weights (z=-1)
- zwgrjp Compute Gauss-Radau-Jacobi points and weights (z= 1)
- zwglj Compute Gauss-Lobatto-Jacobi points and weights
Derivative Matrices:
- Dgj Compute Gauss-Jacobi derivative matrix
- Dgrjm Compute Gauss-Radau-Jacobi derivative matrix (z=-1)
- Dgrjp Compute Gauss-Radau-Jacobi derivative matrix (z= 1)
- Dglj Compute Gauss-Lobatto-Jacobi derivative matrix
Lagrange Interpolants:
- hgj Compute Gauss-Jacobi Lagrange interpolants
- hgrjm Compute Gauss-Radau-Jacobi Lagrange interpolants (z=-1)
- hgrjp Compute Gauss-Radau-Jacobi Lagrange interpolants (z= 1)
- hglj Compute Gauss-Lobatto-Jacobi Lagrange interpolants
Interpolation Operators:
- Imgj Compute interpolation operator gj->m
- Imgrjm Compute interpolation operator grj->m (z=-1)
- Imgrjp Compute interpolation operator grj->m (z= 1)
- Imglj Compute interpolation operator glj->m
Polynomial Evaluation:
- jacobfd Returns value and derivative of Jacobi poly. at point z
- jacobd Returns derivative of Jacobi poly. at point z (valid at z=-1,1)
-----------------------------------------------------------------------\n
LOCAL ROUTINES\n
-----------------------------------------------------------------------\n
- jacobz Returns Jacobi polynomial zeros
- gammaf Gamma function for integer values and halves
------------------------------------------------------------------------\n
Useful references:
- [1] Gabor Szego: Orthogonal Polynomials, American Mathematical Society,
Providence, Rhode Island, 1939.
- [2] Abramowitz \& Stegun: Handbook of Mathematical Functions,
Dover, New York, 1972.
- [3] Canuto, Hussaini, Quarteroni \& Zang: Spectral Methods in Fluid
Dynamics, Springer-Verlag, 1988.
- [4] Ghizzetti \& Ossicini: Quadrature Formulae, Academic Press, 1970.
- [5] Karniadakis \& Sherwin: Spectral/hp element methods for CFD, 1999
NOTES
-# Legendre polynomial \f$ \alpha = \beta = 0 \f$
-# Chebychev polynomial \f$ \alpha = \beta = -0.5 \f$
-# All array subscripts start from zero, i.e. vector[0..N-1]
*/
/** \enum Intrepid::EIntrepidPLPoly
\brief Enumeration of coordinate frames (reference/ambient) for geometrical entities (cells, points).
*/
enum EIntrepidPLPoly {
PL_GAUSS=0,
PL_GAUSS_RADAU_LEFT,
PL_GAUSS_RADAU_RIGHT,
PL_GAUSS_LOBATTO,
PL_MAX
};
inline EIntrepidPLPoly & operator++(EIntrepidPLPoly &type) {
return type = static_cast<EIntrepidPLPoly>(type+1);
}
inline EIntrepidPLPoly operator++(EIntrepidPLPoly &type, int) {
EIntrepidPLPoly oldval = type;
++type;
return oldval;
}
/** \class Intrepid::IntrepidPolylib
\brief Providing orthogonal polynomial calculus and interpolation,
created by Spencer Sherwin, Aeronautics, Imperial College London,
modified and redistributed by D. Ridzal.
See \ref pagePolylib "original Polylib documentation".
*/
class IntrepidPolylib {
public:
/* Points and weights */
/** \brief Gauss-Jacobi zeros and weights.
\li Generate \a np Gauss Jacobi zeros, \a z, and weights,\a w,
associated with the Jacobi polynomial \f$ P^{\alpha,\beta}_{np}(z)\f$,
\li Exact for polynomials of order \a 2np-1 or less
*/
template<class Scalar>
static void zwgj (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);
/** \brief Gauss-Radau-Jacobi zeros and weights with end point at \a z=-1.
\li Generate \a np Gauss-Radau-Jacobi zeros, \a z, and weights,\a w,
associated with the polynomial \f$(1+z) P^{\alpha,\beta+1}_{np-1}(z)\f$.
\li Exact for polynomials of order \a 2np-2 or less
*/
template<class Scalar>
static void zwgrjm (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);
/** \brief Gauss-Radau-Jacobi zeros and weights with end point at \a z=1
\li Generate \a np Gauss-Radau-Jacobi zeros, \a z, and weights,\a w,
associated with the polynomial \f$(1-z) P^{\alpha+1,\beta}_{np-1}(z)\f$.
\li Exact for polynomials of order \a 2np-2 or less
*/
template<class Scalar>
static void zwgrjp (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);
/** \brief Gauss-Lobatto-Jacobi zeros and weights with end point at \a z=-1,\a 1
\li Generate \a np Gauss-Lobatto-Jacobi points, \a z, and weights, \a w,
associated with polynomial \f$ (1-z)(1+z) P^{\alpha+1,\beta+1}_{np-2}(z) \f$
\li Exact for polynomials of order \a 2np-3 or less
*/
template<class Scalar>
static void zwglj (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);
/* Derivative operators */
/** \brief Compute the Derivative Matrix and its transpose associated
with the Gauss-Jacobi zeros.
\li Compute the derivative matrix \a D associated with the n_th order Lagrangian
interpolants through the \a np Gauss-Jacobi points \a z such that \n
\f$ \frac{du}{dz}(z[i]) = \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
*/
template<class Scalar>
static void Dgj (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the Derivative Matrix and its transpose associated
with the Gauss-Radau-Jacobi zeros with a zero at \a z=-1.
\li Compute the derivative matrix \a D associated with the n_th
order Lagrangian interpolants through the \a np Gauss-Radau-Jacobi
points \a z such that \n \f$ \frac{du}{dz}(z[i]) =
\sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
*/
template<class Scalar>
static void Dgrjm (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the Derivative Matrix associated with the
Gauss-Radau-Jacobi zeros with a zero at \a z=1.
\li Compute the derivative matrix \a D associated with the n_th
order Lagrangian interpolants through the \a np Gauss-Radau-Jacobi
points \a z such that \n \f$ \frac{du}{dz}(z[i]) =
\sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
*/
template<class Scalar>
static void Dgrjp (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the Derivative Matrix associated with the
Gauss-Lobatto-Jacobi zeros.
\li Compute the derivative matrix \a D associated with the n_th
order Lagrange interpolants through the \a np
Gauss-Lobatto-Jacobi points \a z such that \n \f$
\frac{du}{dz}(z[i]) = \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
*/
template<class Scalar>
static void Dglj (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);
/* Lagrangian interpolants */
/** \brief Compute the value of the \a i th Lagrangian interpolant through
the \a np Gauss-Jacobi points \a zgj at the arbitrary location \a z.
\li \f$ -1 \leq z \leq 1 \f$
\li Uses the defintion of the Lagrangian interpolant:\n
\f$
\begin{array}{rcl}
h_j(z) = \left\{ \begin{array}{ll}
\displaystyle \frac{P_{np}^{\alpha,\beta}(z)}
{[P_{np}^{\alpha,\beta}(z_j)]^\prime
(z-z_j)} & \mbox{if $z \ne z_j$}\\
& \\
1 & \mbox{if $z=z_j$}
\end{array}
\right.
\end{array}
\f$
*/
template<class Scalar>
static Scalar hgj (const int i, const Scalar z, const Scalar *zgj,
const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the value of the \a i th Lagrangian interpolant through the
\a np Gauss-Radau-Jacobi points \a zgrj at the arbitrary location
\a z. This routine assumes \a zgrj includes the point \a -1.
\li \f$ -1 \leq z \leq 1 \f$
\li Uses the defintion of the Lagrangian interpolant:\n
%
\f$ \begin{array}{rcl}
h_j(z) = \left\{ \begin{array}{ll}
\displaystyle \frac{(1+z) P_{np-1}^{\alpha,\beta+1}(z)}
{((1+z_j) [P_{np-1}^{\alpha,\beta+1}(z_j)]^\prime +
P_{np-1}^{\alpha,\beta+1}(z_j) ) (z-z_j)} & \mbox{if $z \ne z_j$}\\
& \\
1 & \mbox{if $z=z_j$}
\end{array}
\right.
\end{array} \f$
*/
template<class Scalar>
static Scalar hgrjm (const int i, const Scalar z, const Scalar *zgrj,
const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the value of the \a i th Lagrangian interpolant through the
\a np Gauss-Radau-Jacobi points \a zgrj at the arbitrary location
\a z. This routine assumes \a zgrj includes the point \a +1.
\li \f$ -1 \leq z \leq 1 \f$
\li Uses the defintion of the Lagrangian interpolant:\n
%
\f$ \begin{array}{rcl}
h_j(z) = \left\{ \begin{array}{ll}
\displaystyle \frac{(1-z) P_{np-1}^{\alpha+1,\beta}(z)}
{((1-z_j) [P_{np-1}^{\alpha+1,\beta}(z_j)]^\prime -
P_{np-1}^{\alpha+1,\beta}(z_j) ) (z-z_j)} & \mbox{if $z \ne z_j$}\\
& \\
1 & \mbox{if $z=z_j$}
\end{array}
\right.
\end{array} \f$
*/
template<class Scalar>
static Scalar hgrjp (const int i, const Scalar z, const Scalar *zgrj,
const int np, const Scalar alpha, const Scalar beta);
/** \brief Compute the value of the \a i th Lagrangian interpolant through the
\a np Gauss-Lobatto-Jacobi points \a zglj at the arbitrary location
\a z.
\li \f$ -1 \leq z \leq 1 \f$
\li Uses the defintion of the Lagrangian interpolant:\n
%
\f$ \begin{array}{rcl}
h_j(z) = \left\{ \begin{array}{ll}
\displaystyle \frac{(1-z^2) P_{np-2}^{\alpha+1,\beta+1}(z)}
{((1-z^2_j) [P_{np-2}^{\alpha+1,\beta+1}(z_j)]^\prime -
2 z_j P_{np-2}^{\alpha+1,\beta+1}(z_j) ) (z-z_j)}&\mbox{if $z \ne z_j$}\\
& \\
1 & \mbox{if $z=z_j$}
\end{array}
\right.
\end{array} \f$
*/
template<class Scalar>
static Scalar hglj (const int i, const Scalar z, const Scalar *zglj,
const int np, const Scalar alpha, const Scalar beta);
/* Interpolation operators */
/** \brief Interpolation Operator from Gauss-Jacobi points to an
arbitrary distribution at points \a zm
\li Computes the one-dimensional interpolation matrix, \a im, to
interpolate a function from at Gauss-Jacobi distribution of \a nz
zeros \a zgj to an arbitrary distribution of \a mz points \a zm, i.e.\n
\f$
u(zm[i]) = \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgj[j])
\f$
*/
template<class Scalar>
static void Imgj (Scalar *im, const Scalar *zgj, const Scalar *zm, const int nz,
const int mz, const Scalar alpha, const Scalar beta);
/** \brief Interpolation Operator from Gauss-Radau-Jacobi points
(including \a z=-1) to an arbitrary distrubtion at points \a zm
\li Computes the one-dimensional interpolation matrix, \a im, to
interpolate a function from at Gauss-Radau-Jacobi distribution of
\a nz zeros \a zgrj (where \a zgrj[0]=-1) to an arbitrary
distribution of \a mz points \a zm, i.e.
\n
\f$ u(zm[i]) = \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgrj[j]) \f$
*/
template<class Scalar>
static void Imgrjm(Scalar *im, const Scalar *zgrj, const Scalar *zm, const int nz,
const int mz, const Scalar alpha, const Scalar beta);
/** \brief Interpolation Operator from Gauss-Radau-Jacobi points
(including \a z=1) to an arbitrary distrubtion at points \a zm
\li Computes the one-dimensional interpolation matrix, \a im, to
interpolate a function from at Gauss-Radau-Jacobi distribution of
\a nz zeros \a zgrj (where \a zgrj[nz-1]=1) to an arbitrary
distribution of \a mz points \a zm, i.e.
\n
\f$ u(zm[i]) = \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgrj[j]) \f$
*/
template<class Scalar>
static void Imgrjp(Scalar *im, const Scalar *zgrj, const Scalar *zm, const int nz,
const int mz, const Scalar alpha, const Scalar beta);
/** \brief Interpolation Operator from Gauss-Lobatto-Jacobi points
to an arbitrary distrubtion at points \a zm
\li Computes the one-dimensional interpolation matrix, \a im, to
interpolate a function from at Gauss-Lobatto-Jacobi distribution of
\a nz zeros \a zglj (where \a zglj[0]=-1 , \a zglj[nz-1]=1) to an arbitrary
distribution of \a mz points \a zm, i.e.
\n
\f$ u(zm[i]) = \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zglj[j]) \f$
*/
template<class Scalar>
static void Imglj (Scalar *im, const Scalar *zglj, const Scalar *zm, const int nz,
const int mz, const Scalar alpha, const Scalar beta);
/* Polynomial functions */
/** \brief Routine to calculate Jacobi polynomials, \f$
P^{\alpha,\beta}_n(z) \f$, and their first derivative, \f$
\frac{d}{dz} P^{\alpha,\beta}_n(z) \f$.
\li This function returns the vectors \a poly_in and \a poly_d
containing the value of the \a n-th order Jacobi polynomial
\f$ P^{\alpha,\beta}_n(z) \alpha > -1, \beta > -1 \f$ and its
derivative at the \a np points in \a z[i]
- If \a poly_in = NULL then only calculate derivative
- If \a polyd = NULL then only calculate polynomial
- To calculate the polynomial this routine uses the recursion
relationship (see appendix A ref [4]) :
\f$ \begin{array}{rcl}
P^{\alpha,\beta}_0(z) &=& 1 \\
P^{\alpha,\beta}_1(z) &=& \frac{1}{2} [ \alpha-\beta+(\alpha+\beta+2)z] \\
a^1_n P^{\alpha,\beta}_{n+1}(z) &=& (a^2_n + a^3_n z)
P^{\alpha,\beta}_n(z) - a^4_n P^{\alpha,\beta}_{n-1}(z) \\
a^1_n &=& 2(n+1)(n+\alpha + \beta + 1)(2n + \alpha + \beta) \\
a^2_n &=& (2n + \alpha + \beta + 1)(\alpha^2 - \beta^2) \\
a^3_n &=& (2n + \alpha + \beta)(2n + \alpha + \beta + 1)
(2n + \alpha + \beta + 2) \\
a^4_n &=& 2(n+\alpha)(n+\beta)(2n + \alpha + \beta + 2)
\end{array} \f$
- To calculate the derivative of the polynomial this routine uses
the relationship (see appendix A ref [4]) :
\f$ \begin{array}{rcl}
b^1_n(z)\frac{d}{dz} P^{\alpha,\beta}_n(z)&=&b^2_n(z)P^{\alpha,\beta}_n(z)
+ b^3_n(z) P^{\alpha,\beta}_{n-1}(z) \hspace{2.2cm} \\
b^1_n(z) &=& (2n+\alpha + \beta)(1-z^2) \\
b^2_n(z) &=& n[\alpha - \beta - (2n+\alpha + \beta)z]\\
b^3_n(z) &=& 2(n+\alpha)(n+\beta)
\end{array} \f$
- Note the derivative from this routine is only valid for -1 < \a z < 1.
*/
template<class Scalar>
static void jacobfd (const int np, const Scalar *z, Scalar *poly_in, Scalar *polyd,
const int n, const Scalar alpha, const Scalar beta);
/** \brief Calculate the derivative of Jacobi polynomials
\li Generates a vector \a poly of values of the derivative of the
\a n-th order Jacobi polynomial \f$ P^(\alpha,\beta)_n(z)\f$ at the
\a np points \a z.
\li To do this we have used the relation
\n
\f$ \frac{d}{dz} P^{\alpha,\beta}_n(z)
= \frac{1}{2} (\alpha + \beta + n + 1) P^{\alpha,\beta}_n(z) \f$
\li This formulation is valid for \f$ -1 \leq z \leq 1 \f$
*/
template<class Scalar>
static void jacobd (const int np, const Scalar *z, Scalar *polyd, const int n,
const Scalar alpha, const Scalar beta);
/* Helper functions. */
/** \brief Calculate the \a n zeros, \a z, of the Jacobi polynomial, i.e.
\f$ P_n^{\alpha,\beta}(z) = 0 \f$
This routine is only valid for \f$( \alpha > -1, \beta > -1)\f$
and uses polynomial deflation in a Newton iteration
*/
template<class Scalar>
static void Jacobz (const int n, Scalar *z, const Scalar alpha, const Scalar beta);
/** \brief Zero determination through the eigenvalues of a tridiagonal
matrix from the three term recursion relationship.
Set up a symmetric tridiagonal matrix
\f$ \left [ \begin{array}{ccccc}
a[0] & b[0] & & & \\
b[0] & a[1] & b[1] & & \\
0 & \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & b[n-2] \\
& & & b[n-2] & a[n-1] \end{array} \right ] \f$
Where the coefficients a[n], b[n] come from the recurrence relation
\f$ b_j p_j(z) = (z - a_j ) p_{j-1}(z) - b_{j-1} p_{j-2}(z) \f$
where \f$ j=n+1\f$ and \f$p_j(z)\f$ are the Jacobi (normalized)
orthogonal polynomials \f$ \alpha,\beta > -1\f$( integer values and
halves). Since the polynomials are orthonormalized, the tridiagonal
matrix is guaranteed to be symmetric. The eigenvalues of this
matrix are the zeros of the Jacobi polynomial.
*/
template<class Scalar>
static void JacZeros (const int n, Scalar *a, const Scalar alpha, const Scalar beta);
/** \brief QL algorithm for symmetric tridiagonal matrix
This subroutine is a translation of an algol procedure,
num. math. \b 12, 377-383(1968) by martin and wilkinson, as modified
in num. math. \b 15, 450(1970) by dubrulle. Handbook for
auto. comp., vol.ii-linear algebra, 241-248(1971). This is a
modified version from numerical recipes.
This subroutine finds the eigenvalues and first components of the
eigenvectors of a symmetric tridiagonal matrix by the implicit QL
method.
on input:
- n is the order of the matrix;
- d contains the diagonal elements of the input matrix;
- e contains the subdiagonal elements of the input matrix
in its first n-1 positions. e(n) is arbitrary;
on output:
- d contains the eigenvalues in ascending order.
- e has been destroyed;
*/
template<class Scalar>
static void TriQL (const int n, Scalar *d, Scalar *e);
/** \brief Calculate the Gamma function , \f$ \Gamma(x)\f$, for integer
values \a x and halves.
Determine the value of \f$\Gamma(x)\f$ using:
\f$ \Gamma(x) = (x-1)! \mbox{ or } \Gamma(x+1/2) = (x-1/2)\Gamma(x-1/2)\f$
where \f$ \Gamma(1/2) = \sqrt{\pi}\f$
*/
template<class Scalar>
static Scalar gammaF (const Scalar x);
}; // class IntrepidPolylib
} // end of Intrepid namespace
// include templated definitions
#include <Intrepid_PolylibDef.hpp>
#endif
|