This file is indexed.

/usr/include/trilinos/Intrepid_Polylib.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
///////////////////////////////////////////////////////////////////////////////
//
// File: Intrepid_Polylib.hpp
//
// For more information, please see: http://www.nektar.info
//
// The MIT License
//
// Copyright (c) 2006 Division of Applied Mathematics, Brown University (USA),
// Department of Aeronautics, Imperial College London (UK), and Scientific
// Computing and Imaging Institute, University of Utah (USA).
//
// License for the specific language governing rights and limitations under
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
//
// Description:
// This file is redistributed with the Intrepid package. It should be used
// in accordance with the above MIT license, at the request of the authors.
// This file is NOT covered by the usual Intrepid/Trilinos LGPL license.
//
// Origin: Nektar++ library, http://www.nektar.info, downloaded on
//         March 10, 2009.
//
///////////////////////////////////////////////////////////////////////////////


/** \file   Intrepid_Polylib.hpp
    \brief  Header file for a set of functions providing orthogonal polynomial
            polynomial calculus and interpolation.
    \author Created by Spencer Sherwin, Aeronautics, Imperial College London,
            modified and redistributed by D. Ridzal.
*/

#ifndef INTREPID_POLYLIB_HPP
#define INTREPID_POLYLIB_HPP

#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_Types.hpp"
#include "Teuchos_TestForException.hpp"

namespace Intrepid {

    /**
       \page pagePolylib The Polylib library
       \section sectionPolyLib Routines For Orthogonal Polynomial Calculus and Interpolation

       Spencer Sherwin, 
       Aeronautics, Imperial College London

       Based on codes by Einar Ronquist and Ron Henderson

       Abbreviations
       - z    -   Set of collocation/quadrature points
       - w    -   Set of quadrature weights
       - D    -   Derivative matrix
       - h    -   Lagrange Interpolant
       - I    -   Interpolation matrix
       - g    -   Gauss
       - gr   -   Gauss-Radau
       - gl   -   Gauss-Lobatto
       - j    -   Jacobi
       - m    -   point at minus 1 in Radau rules
       - p    -   point at plus  1 in Radau rules

       -----------------------------------------------------------------------\n
       MAIN     ROUTINES\n
       -----------------------------------------------------------------------\n

       Points and Weights:

       - zwgj        Compute Gauss-Jacobi         points and weights
       - zwgrjm      Compute Gauss-Radau-Jacobi   points and weights (z=-1)
       - zwgrjp      Compute Gauss-Radau-Jacobi   points and weights (z= 1)
       - zwglj       Compute Gauss-Lobatto-Jacobi points and weights

       Derivative Matrices:

       - Dgj         Compute Gauss-Jacobi         derivative matrix
       - Dgrjm       Compute Gauss-Radau-Jacobi   derivative matrix (z=-1)
       - Dgrjp       Compute Gauss-Radau-Jacobi   derivative matrix (z= 1)
       - Dglj        Compute Gauss-Lobatto-Jacobi derivative matrix

       Lagrange Interpolants:

       - hgj         Compute Gauss-Jacobi         Lagrange interpolants
       - hgrjm       Compute Gauss-Radau-Jacobi   Lagrange interpolants (z=-1)
       - hgrjp       Compute Gauss-Radau-Jacobi   Lagrange interpolants (z= 1)
       - hglj        Compute Gauss-Lobatto-Jacobi Lagrange interpolants

       Interpolation Operators:

       - Imgj        Compute interpolation operator gj->m
       - Imgrjm      Compute interpolation operator grj->m (z=-1)
       - Imgrjp      Compute interpolation operator grj->m (z= 1)
       - Imglj       Compute interpolation operator glj->m

       Polynomial Evaluation:

       - jacobfd     Returns value and derivative of Jacobi poly. at point z
       - jacobd      Returns derivative of Jacobi poly. at point z (valid at z=-1,1)

       -----------------------------------------------------------------------\n
       LOCAL      ROUTINES\n
       -----------------------------------------------------------------------\n

       - jacobz      Returns Jacobi polynomial zeros
       - gammaf      Gamma function for integer values and halves



       ------------------------------------------------------------------------\n

       Useful references:

       - [1] Gabor Szego: Orthogonal Polynomials, American Mathematical Society,
       Providence, Rhode Island, 1939.
       - [2] Abramowitz \& Stegun: Handbook of Mathematical Functions,
       Dover, New York, 1972.
       - [3] Canuto, Hussaini, Quarteroni \& Zang: Spectral Methods in Fluid
       Dynamics, Springer-Verlag, 1988.
       - [4] Ghizzetti \& Ossicini: Quadrature Formulae, Academic Press, 1970.
       - [5] Karniadakis \& Sherwin: Spectral/hp element methods for CFD, 1999


       NOTES

       -# Legendre  polynomial \f$ \alpha = \beta = 0 \f$ 
       -# Chebychev polynomial \f$ \alpha = \beta = -0.5 \f$
       -# All array subscripts start from zero, i.e. vector[0..N-1] 
    */


  /** \enum  Intrepid::EIntrepidPLPoly
      \brief Enumeration of coordinate frames (reference/ambient) for geometrical entities (cells, points).
  */
  enum EIntrepidPLPoly {
    PL_GAUSS=0,
    PL_GAUSS_RADAU_LEFT,
    PL_GAUSS_RADAU_RIGHT,
    PL_GAUSS_LOBATTO,
    PL_MAX
  };

  inline EIntrepidPLPoly & operator++(EIntrepidPLPoly &type) {
    return type = static_cast<EIntrepidPLPoly>(type+1);
  }

  inline EIntrepidPLPoly operator++(EIntrepidPLPoly &type, int) {
    EIntrepidPLPoly oldval = type;
    ++type;
    return oldval;
  }


  /** \class Intrepid::IntrepidPolylib
      \brief Providing orthogonal polynomial calculus and interpolation,
             created by Spencer Sherwin, Aeronautics, Imperial College London,
             modified and redistributed by D. Ridzal.

             See \ref pagePolylib "original Polylib documentation".
  */
  class IntrepidPolylib {

    public:

    /* Points and weights */

    /** \brief  Gauss-Jacobi zeros and weights.

    \li Generate \a np Gauss Jacobi zeros, \a z, and weights,\a w,
    associated with the Jacobi polynomial \f$ P^{\alpha,\beta}_{np}(z)\f$,

    \li Exact for polynomials of order \a 2np-1 or less
    */
    template<class Scalar>
    static void   zwgj   (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);


    /** \brief  Gauss-Radau-Jacobi zeros and weights with end point at \a z=-1.

    \li Generate \a np Gauss-Radau-Jacobi zeros, \a z, and weights,\a w,
    associated with the polynomial \f$(1+z) P^{\alpha,\beta+1}_{np-1}(z)\f$.

    \li  Exact for polynomials of order \a 2np-2 or less
    */
    template<class Scalar>
    static void   zwgrjm (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);


    /** \brief  Gauss-Radau-Jacobi zeros and weights with end point at \a z=1

    \li Generate \a np Gauss-Radau-Jacobi zeros, \a z, and weights,\a w,
    associated with the  polynomial \f$(1-z) P^{\alpha+1,\beta}_{np-1}(z)\f$.

    \li Exact for polynomials of order \a 2np-2 or less
    */
    template<class Scalar>
    static void   zwgrjp (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);


    /** \brief  Gauss-Lobatto-Jacobi zeros and weights with end point at \a z=-1,\a 1

    \li Generate \a np Gauss-Lobatto-Jacobi points, \a z, and weights, \a w,
    associated with polynomial \f$ (1-z)(1+z) P^{\alpha+1,\beta+1}_{np-2}(z) \f$

    \li Exact for polynomials of order \a 2np-3 or less
    */
    template<class Scalar>
    static void   zwglj  (Scalar *z, Scalar *w, const int np, const Scalar alpha, const Scalar beta);



    /* Derivative operators */

    /** \brief Compute the Derivative Matrix and its transpose associated
               with the Gauss-Jacobi zeros.

    \li Compute the derivative matrix \a D associated with the n_th order Lagrangian
        interpolants through the \a np Gauss-Jacobi points \a z such that \n
        \f$  \frac{du}{dz}(z[i]) =  \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$

    */
    template<class Scalar>
    static void   Dgj    (Scalar *D,  const Scalar *z, const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the Derivative Matrix and its transpose associated
               with the Gauss-Radau-Jacobi zeros with a zero at \a z=-1.

    \li Compute the derivative matrix \a D associated with the n_th
        order Lagrangian interpolants through the \a np Gauss-Radau-Jacobi
        points \a z such that \n \f$ \frac{du}{dz}(z[i]) =
        \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
    */
    template<class Scalar>
    static void   Dgrjm  (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the Derivative Matrix  associated with the
               Gauss-Radau-Jacobi zeros with a zero at \a z=1.

    \li Compute the derivative matrix \a D associated with the n_th
        order Lagrangian interpolants through the \a np Gauss-Radau-Jacobi
        points \a z such that \n \f$ \frac{du}{dz}(z[i]) =
        \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
    */
    template<class Scalar>
    static void   Dgrjp  (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the Derivative Matrix associated with the
               Gauss-Lobatto-Jacobi zeros.

    \li Compute the derivative matrix \a D associated with the n_th
        order Lagrange interpolants through the \a np
        Gauss-Lobatto-Jacobi points \a z such that \n \f$
        \frac{du}{dz}(z[i]) = \sum_{j=0}^{np-1} D[i*np+j] u(z[j]) \f$
    */
    template<class Scalar>
    static void   Dglj   (Scalar *D, const Scalar *z, const int np, const Scalar alpha, const Scalar beta);



    /* Lagrangian interpolants */

    /** \brief Compute the value of the \a i th Lagrangian interpolant through
               the \a np Gauss-Jacobi points \a zgj at the arbitrary location \a z.

    \li \f$ -1 \leq z \leq 1 \f$

    \li Uses the defintion of the Lagrangian interpolant:\n
        \f$
        \begin{array}{rcl}
        h_j(z) =  \left\{ \begin{array}{ll}
        \displaystyle \frac{P_{np}^{\alpha,\beta}(z)}
        {[P_{np}^{\alpha,\beta}(z_j)]^\prime
        (z-z_j)} & \mbox{if $z \ne z_j$}\\
        & \\
        1 & \mbox{if $z=z_j$}
        \end{array}
        \right.
        \end{array}
        \f$
    */
    template<class Scalar>
    static Scalar hgj     (const int i, const Scalar z, const Scalar *zgj,
                           const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the value of the \a i th Lagrangian interpolant through the
               \a np Gauss-Radau-Jacobi points \a zgrj at the arbitrary location
               \a z. This routine assumes \a zgrj includes the point \a -1.

    \li \f$ -1 \leq z \leq 1 \f$

    \li Uses the defintion of the Lagrangian interpolant:\n
    %
    \f$ \begin{array}{rcl}
    h_j(z) = \left\{ \begin{array}{ll}
    \displaystyle \frac{(1+z) P_{np-1}^{\alpha,\beta+1}(z)}
    {((1+z_j) [P_{np-1}^{\alpha,\beta+1}(z_j)]^\prime +
    P_{np-1}^{\alpha,\beta+1}(z_j) ) (z-z_j)} & \mbox{if $z \ne z_j$}\\
    & \\
    1 & \mbox{if $z=z_j$}
    \end{array}
    \right.
    \end{array}   \f$
    */
    template<class Scalar>
    static Scalar hgrjm   (const int i, const Scalar z, const Scalar *zgrj,
                           const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the value of the \a i th Lagrangian interpolant through the
               \a np Gauss-Radau-Jacobi points \a zgrj at the arbitrary location
               \a z. This routine assumes \a zgrj includes the point \a +1.

    \li \f$ -1 \leq z \leq 1 \f$

    \li Uses the defintion of the Lagrangian interpolant:\n
    %
    \f$ \begin{array}{rcl}
    h_j(z) = \left\{ \begin{array}{ll}
    \displaystyle \frac{(1-z) P_{np-1}^{\alpha+1,\beta}(z)}
    {((1-z_j) [P_{np-1}^{\alpha+1,\beta}(z_j)]^\prime -
    P_{np-1}^{\alpha+1,\beta}(z_j) ) (z-z_j)} & \mbox{if $z \ne z_j$}\\
    & \\
    1 & \mbox{if $z=z_j$}
    \end{array}
    \right.
    \end{array}   \f$
    */
    template<class Scalar>
    static Scalar hgrjp   (const int i, const Scalar z, const Scalar *zgrj,
                           const int np, const Scalar alpha, const Scalar beta);


    /** \brief Compute the value of the \a i th Lagrangian interpolant through the
               \a np Gauss-Lobatto-Jacobi points \a zglj at the arbitrary location
               \a z.

    \li \f$ -1 \leq z \leq 1 \f$

    \li Uses the defintion of the Lagrangian interpolant:\n
    %
    \f$ \begin{array}{rcl}
    h_j(z) = \left\{ \begin{array}{ll}
    \displaystyle \frac{(1-z^2) P_{np-2}^{\alpha+1,\beta+1}(z)}
    {((1-z^2_j) [P_{np-2}^{\alpha+1,\beta+1}(z_j)]^\prime -
    2 z_j P_{np-2}^{\alpha+1,\beta+1}(z_j) ) (z-z_j)}&\mbox{if $z \ne z_j$}\\
    & \\
    1 & \mbox{if $z=z_j$}
    \end{array}
    \right.
    \end{array}   \f$
    */
    template<class Scalar>
    static Scalar hglj    (const int i, const Scalar z, const Scalar *zglj,
                           const int np, const Scalar alpha, const Scalar beta);



    /* Interpolation operators */

    /** \brief Interpolation Operator from Gauss-Jacobi points to an
        arbitrary distribution at points \a zm

    \li Computes the one-dimensional interpolation matrix, \a im, to
    interpolate a function from at Gauss-Jacobi distribution of \a nz
    zeros \a zgj to an arbitrary distribution of \a mz points \a zm, i.e.\n
    \f$
    u(zm[i]) = \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgj[j])
    \f$
    */
    template<class Scalar>
    static void  Imgj  (Scalar *im, const Scalar *zgj, const Scalar *zm, const int nz,
                        const int mz, const Scalar alpha, const Scalar beta);


    /** \brief Interpolation Operator from Gauss-Radau-Jacobi points
               (including \a z=-1) to an arbitrary distrubtion at points \a zm

    \li Computes the one-dimensional interpolation matrix, \a im, to
    interpolate a function from at Gauss-Radau-Jacobi distribution of
    \a nz zeros \a zgrj (where \a zgrj[0]=-1) to an arbitrary
    distribution of \a mz points \a zm, i.e.
    \n
    \f$ u(zm[i]) =    \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgrj[j]) \f$
    */
    template<class Scalar>
    static void  Imgrjm(Scalar *im, const Scalar *zgrj, const Scalar *zm, const int nz,
                        const int mz, const Scalar alpha, const Scalar beta);


    /** \brief Interpolation Operator from Gauss-Radau-Jacobi points
               (including \a z=1) to an arbitrary distrubtion at points \a zm

    \li Computes the one-dimensional interpolation matrix, \a im, to
    interpolate a function from at Gauss-Radau-Jacobi distribution of
    \a nz zeros \a zgrj (where \a zgrj[nz-1]=1) to an arbitrary
    distribution of \a mz points \a zm, i.e.
    \n
    \f$ u(zm[i]) =    \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zgrj[j]) \f$
    */
    template<class Scalar>
    static void  Imgrjp(Scalar *im, const Scalar *zgrj, const Scalar *zm, const int nz,
                        const int mz, const Scalar alpha, const Scalar beta);


    /** \brief Interpolation Operator from Gauss-Lobatto-Jacobi points
               to an arbitrary distrubtion at points \a zm

    \li Computes the one-dimensional interpolation matrix, \a im, to
    interpolate a function from at Gauss-Lobatto-Jacobi distribution of
    \a nz zeros \a zglj (where \a zglj[0]=-1 , \a  zglj[nz-1]=1) to an arbitrary
    distribution of \a mz points \a zm, i.e.
    \n
    \f$ u(zm[i]) =    \sum_{j=0}^{nz-1} im[i*nz+j] \ u(zglj[j]) \f$
    */
    template<class Scalar>
    static void  Imglj (Scalar *im, const Scalar *zglj, const Scalar *zm, const int nz,
                        const int mz, const Scalar alpha, const Scalar beta);


    /* Polynomial functions */

    /** \brief Routine to calculate Jacobi polynomials, \f$
               P^{\alpha,\beta}_n(z) \f$, and their first derivative, \f$
               \frac{d}{dz} P^{\alpha,\beta}_n(z) \f$.

        \li This function returns the vectors \a poly_in and \a poly_d
        containing the value of the \a n-th order Jacobi polynomial
        \f$ P^{\alpha,\beta}_n(z) \alpha > -1, \beta > -1 \f$ and its
        derivative at the \a np points in \a z[i]

        - If \a poly_in = NULL then only calculate derivative

        - If \a polyd   = NULL then only calculate polynomial

        - To calculate the polynomial this routine uses the recursion
        relationship (see appendix A ref [4]) :
        \f$ \begin{array}{rcl}
        P^{\alpha,\beta}_0(z) &=& 1 \\
        P^{\alpha,\beta}_1(z) &=& \frac{1}{2} [ \alpha-\beta+(\alpha+\beta+2)z] \\
        a^1_n P^{\alpha,\beta}_{n+1}(z) &=& (a^2_n + a^3_n z)
        P^{\alpha,\beta}_n(z) - a^4_n P^{\alpha,\beta}_{n-1}(z) \\
        a^1_n &=& 2(n+1)(n+\alpha + \beta + 1)(2n + \alpha + \beta) \\
        a^2_n &=& (2n + \alpha + \beta + 1)(\alpha^2 - \beta^2)  \\
        a^3_n &=& (2n + \alpha + \beta)(2n + \alpha + \beta + 1)
        (2n + \alpha + \beta + 2)  \\
        a^4_n &=& 2(n+\alpha)(n+\beta)(2n + \alpha + \beta + 2)
        \end{array} \f$

        - To calculate the derivative of the polynomial this routine uses
        the relationship (see appendix A ref [4]) :
        \f$ \begin{array}{rcl}
        b^1_n(z)\frac{d}{dz} P^{\alpha,\beta}_n(z)&=&b^2_n(z)P^{\alpha,\beta}_n(z)
        + b^3_n(z) P^{\alpha,\beta}_{n-1}(z) \hspace{2.2cm} \\
        b^1_n(z) &=& (2n+\alpha + \beta)(1-z^2) \\
        b^2_n(z) &=& n[\alpha - \beta - (2n+\alpha + \beta)z]\\
        b^3_n(z) &=& 2(n+\alpha)(n+\beta)
        \end{array} \f$

        - Note the derivative from this routine is only valid for -1 < \a z < 1.
    */
    template<class Scalar>
    static void jacobfd (const int np, const Scalar *z, Scalar *poly_in, Scalar *polyd,
                         const int n, const Scalar alpha, const Scalar beta);


    /** \brief Calculate the  derivative of Jacobi polynomials

    \li Generates a vector \a poly of values of the derivative of the
    \a n-th order Jacobi polynomial \f$ P^(\alpha,\beta)_n(z)\f$ at the
    \a np points \a z.

    \li To do this we have used the relation
    \n
    \f$ \frac{d}{dz} P^{\alpha,\beta}_n(z)
    = \frac{1}{2} (\alpha + \beta + n + 1)  P^{\alpha,\beta}_n(z) \f$

    \li This formulation is valid for \f$ -1 \leq z \leq 1 \f$
    */
    template<class Scalar>
    static void jacobd  (const int np, const Scalar *z, Scalar *polyd, const int n,
                         const Scalar alpha, const Scalar beta);



    /* Helper functions. */

    /** \brief  Calculate the \a n zeros, \a z, of the Jacobi polynomial, i.e.
                \f$ P_n^{\alpha,\beta}(z) = 0 \f$

    This routine is only valid for \f$( \alpha > -1, \beta > -1)\f$
    and uses polynomial deflation in a Newton iteration
    */
    template<class Scalar>
    static void   Jacobz (const int n, Scalar *z, const Scalar alpha, const Scalar beta);


    /** \brief Zero determination through the eigenvalues of a tridiagonal
               matrix from the three term recursion relationship.

    Set up a symmetric tridiagonal matrix

    \f$ \left [  \begin{array}{ccccc}
    a[0] & b[0]   &        &        & \\
    b[0] & a[1]   & b[1]   &        & \\
    0   & \ddots & \ddots & \ddots &  \\
    &        & \ddots & \ddots & b[n-2] \\
    &        &        & b[n-2] & a[n-1] \end{array} \right ] \f$

    Where the coefficients a[n], b[n] come from the  recurrence relation

    \f$  b_j p_j(z) = (z - a_j ) p_{j-1}(z) - b_{j-1}   p_{j-2}(z) \f$

    where \f$ j=n+1\f$ and \f$p_j(z)\f$ are the Jacobi (normalized)
    orthogonal polynomials \f$ \alpha,\beta > -1\f$( integer values and
    halves). Since the polynomials are orthonormalized, the tridiagonal
    matrix is guaranteed to be symmetric. The eigenvalues of this
    matrix are the zeros of the Jacobi polynomial.
    */
    template<class Scalar>
    static void   JacZeros (const int n, Scalar *a, const Scalar alpha, const Scalar beta);


    /** \brief QL algorithm for symmetric tridiagonal matrix

    This subroutine is a translation of an algol procedure,
    num. math. \b 12, 377-383(1968) by martin and wilkinson, as modified
    in num. math. \b 15, 450(1970) by dubrulle.  Handbook for
    auto. comp., vol.ii-linear algebra, 241-248(1971).  This is a
    modified version from numerical recipes.

    This subroutine finds the eigenvalues and first components of the
    eigenvectors of a symmetric tridiagonal matrix by the implicit QL
    method.

    on input:
    - n is the order of the matrix;
    - d contains the diagonal elements of the input matrix;
    - e contains the subdiagonal elements of the input matrix
    in its first n-1 positions. e(n) is arbitrary;

    on output:

    - d contains the eigenvalues in ascending order.
    - e has been destroyed;
    */
    template<class Scalar>
    static void   TriQL    (const int n, Scalar *d, Scalar *e);


    /** \brief Calculate the Gamma function , \f$ \Gamma(x)\f$, for integer
               values \a x and halves.

    Determine the value of \f$\Gamma(x)\f$ using:

    \f$ \Gamma(x) = (x-1)!  \mbox{ or  }  \Gamma(x+1/2) = (x-1/2)\Gamma(x-1/2)\f$

    where \f$ \Gamma(1/2) = \sqrt{\pi}\f$
    */
    template<class Scalar>
    static Scalar gammaF (const Scalar x);


  }; // class IntrepidPolylib

} // end of Intrepid namespace

// include templated definitions
#include <Intrepid_PolylibDef.hpp>

#endif