/usr/include/trilinos/Intrepid_PointTools.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 | // @HEADER
// ************************************************************************
//
// Intrepid Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev (pbboche@sandia.gov) or
// Denis Ridzal (dridzal@sandia.gov) or
// Robert Kirby (robert.c.kirby@ttu.edu
//
// ************************************************************************
// @HEADER
/** \file Intrepid_PointTools.hpp
\brief Header file for utility class to provide point tools,
such as barycentric coordinates, equispaced lattices, and
warp-blend point distrubtions.
\author Created by R. Kirby
*/
#ifndef INTREPID_POINTTOOLS_HPP
#define INTREPID_POINTTOOLS_HPP
#include "Shards_CellTopology.hpp"
#include "Teuchos_TestForException.hpp"
#include "Intrepid_Polylib.hpp"
#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_CellTools.hpp"
#include <stdexcept>
namespace Intrepid {
/** \class Intrepid::PointTools
\brief Utility class that provides methods for calculating
distributions of points on different cells
Simplicial lattices in PointTools are sets
of points with certain ordering properties.
They are used for defining degrees of freedom
for higher order finite elements.
Each lattice has an "order". In
general, this is the same as the cardinality
of the polynomial space of degree "order".
In terms of binomial coefficients, this is
binomial(order+d,order) for the simplex in
d dimensions. On the line,
the size is order+1. On the triangle
and tetrahedron, there are
(order+1)(order+2)/2 and (order+1)(order+2)(order+3)/6,
respectively.
The points are ordered lexicographically from low to
high in increasing spatial dimension. For example,
the line lattice of order 3 looks like:
\verbatim
x--x--x--x
\endverbatim
where "x" denotes a point location.
These are ordered from left to right, so that
the points are labeled:
\verbatim
0--1--2--3
\endverbatim
The triangular lattice of order 3 is
\verbatim
x
|\
| \
x x
| \
| \
x x x
| \
| \
x--x--x--x
\endverbatim
The ordering starts in the bottom left and
increases first from left to right. The ordering
is
\verbatim
9
|\
| \
8 7
| \
| \
4 5 6
| \
| \
0--1--2--3
\endverbatim
Tetrahedral lattices are similar but difficult to
draw with ASCII art.
Each lattice also has an "offset", which indicates
a number of layers of points on the bounary taken away.
All of the lattices above have a 0 offest. In Intrepid,
typically only offset = 0 or 1 will be used. The offset=1
case is used to generate sets of points properly inside
a given simplex. These are used, for example, to construct
points internal to an edge or face for H(curl) and H(div)
finite elements.
For example, for a line lattice with order = 3 and
offset = 1, the points will look like
\verbatim
---x--x---
\endverbatim
and a triangle with order=3 and offset=1 will
contain a single point
\verbatim
.
|\
| \
| \
| \
| \
| x \
| \
| \
|--------\
\endverbatim
When points on lattices with nonzero offset are numbered,
the are numbered contiguously from 0, so that the line and
triangle above are respectively
\verbatim
---0--1---
\endverbatim
\verbatim
.
|\
| \
| \
| \
| \
| 0 \
| \
| \
|--------\
\endverbatim
Additionally, two types of point distributions are currently support.
The points may be on an equispaced lattice, which is easy to compute
but can lead to numerical ill-conditioning in finite element bases
and stiffness matrices. Alternatively, the warp-blend points of
Warburton are provided on each lattice (which are just the
Gauss-Lobatto points on the line).
*/
class PointTools {
public:
/** \brief Computes the number of pointsin a lattice of a given order
on a simplex (currently disabled for
other cell types).
If offset == 0,
the lattice will include only include the vertex points if order == 1,
and will include edge midpoints if order == 2, and so on.
In particular, this is the dimension of polynomials of degree "order"
on the given simplex.
The offset argument is used to indicate that the layer of points on the
boundary is omitted (if offset == 1). For greater offsets, more layers
are omitteed.
\param cellType [in] - type of reference cell (currently only supports the simplex)
\param order [in] - order of the lattice
\param offset [in] - the number of boundary layers to omit
*/
static int getLatticeSize( const shards::CellTopology& cellType ,
const int order ,
const int offset = 0 );
/** \brief Computes a lattice of points of a given
order on a reference simplex (currently disabled for
other cell types). The output array is
(P,D), where
\code
P - number of points per cell
D - is the spatial dimension
\endcode
\param pts [out] - Output array of point coords
\param cellType [in] - type of reference cell (currently only supports the simplex)
\param order [in] - number of points per side, plus 1
\param pointType [in] - flag for point distribution. Currently equispaced and
warp/blend points are supported
\param offset [in] - Number of points on boundary to skip
*/
template<class Scalar, class ArrayType>
static void getLattice( ArrayType &pts ,
const shards::CellTopology& cellType ,
const int order ,
const int offset = 0 ,
const EPointType pointType = POINTTYPE_EQUISPACED );
/** Retrieves the Gauss-Legendre points from PolyLib, but lets us
do it in an arbitrary ArrayType.
\param pts [out] - Output array of point coords (P,)
\param order [out] - number of Gauss points - 1
*/
template<class Scalar, class ArrayType>
static void getGaussPoints( ArrayType &pts ,
const int order );
private:
/** \brief Converts Cartesian coordinates to barycentric coordinates
on a batch of triangles.
The input array cartValues is (C,P,2)
The output array baryValues is (C,P,3).
The input array vertices is (C,3,2), where
\code
C - num. integration domains
P - number of points per cell
\endcode
\param baryValues [out] - Output array of barycentric coords
\param cartValues [in] - Input array of Cartesian coords
\param vertices [out] - Vertices of each cell.
*/
template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
static void cartToBaryTriangle( ArrayTypeOut & baryValues ,
const ArrayTypeIn1 & cartValues ,
const ArrayTypeIn2 & vertices );
/** \brief Converts barycentric coordinates to Cartesian coordinates
on a batch of triangles.
The input array baryValues is (C,P,3)
The output array cartValues is (C,P,2).
The input array vertices is (C,3,2), where
\code
C - num. integration domains
P - number of points per cell
D - is the spatial dimension
\endcode
\param baryValues [out] - Output array of barycentric coords
\param cartValues [in] - Input array of Cartesian coords
\param vertices [out] - Vertices of each cell.
*/
template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
static void baryToCartTriangle( ArrayTypeOut & cartValues ,
const ArrayTypeIn1 & baryValues ,
const ArrayTypeIn2 & vertices );
/** \brief Converts Cartesian coordinates to barycentric coordinates
on a batch of tetrahedra.
The input array cartValues is (C,P,3)
The output array baryValues is (C,P,4).
The input array vertices is (C,4,3), where
\code
C - num. integration domains
P - number of points per cell
D - is the spatial dimension
\endcode
\param baryValues [out] - Output array of barycentric coords
\param cartValues [in] - Input array of Cartesian coords
\param vertices [out] - Vertices of each cell.
*/
template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
static void cartToBaryTetrahedron( ArrayTypeOut & baryValues ,
const ArrayTypeIn1 & cartValues ,
const ArrayTypeIn2 & vertices );
/** \brief Converts barycentric coordinates to Cartesian coordinates
on a batch of tetrahedra.
The input array baryValues is (C,P,4)
The output array cartValues is (C,P,3).
The input array vertices is (C,4,3), where
\code
C - num. integration domains
P - number of points per cell
D - is the spatial dimension
\endcode
\param baryValues [out] - Output array of barycentric coords
\param cartValues [in] - Input array of Cartesian coords
\param vertices [out] - Vertices of each cell.
*/
template<class Scalar, class ArrayTypeOut, class ArrayTypeIn1, class ArrayTypeIn2>
static void baryToCartTetrahedron( ArrayTypeOut & cartValues ,
const ArrayTypeIn1 & baryValues ,
const ArrayTypeIn2 & vertices );
/** \brief Computes an equispaced lattice of a given
order on a reference simplex (currently disabled for
other cell types). The output array is
(P,D), where
\code
P - number of points per cell
D - is the spatial dimension
\endcode
\param points [out] - Output array of point coords
\param order [in] - number of points per side, plus 1
\param offset [in] - Number of points on boundary to skip
\param cellType [in] - type of reference cell (currently only supports the simplex)
*/
template<class Scalar, class ArrayType>
static void getEquispacedLattice( const shards::CellTopology& cellType ,
ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief Computes a warped lattice (ala Warburton's warp-blend points of a given
order on a reference simplex (currently disabled for
other cell types). The output array is
(P,D), where
\code
P - number of points per cell
D - is the spatial dimension
\endcode
\param points [out] - Output array of point coords
\param order [in] - number of points per side, plus 1
\param offset [in] - Number of points on boundary to skip
\param cellType [in] - type of reference cell (currently only supports the simplex)
*/
template<class Scalar, class ArrayType>
static void getWarpBlendLattice( const shards::CellTopology& cellType ,
ArrayType &points ,
const int order ,
const int offset = 0);
/** \brief Computes an equispaced lattice of a given
order on the reference line [-1,1]. The output array is
(P,1), where
\code
P - number of points per cell
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in per boundary
*/
template<class Scalar, class ArrayType>
static void getEquispacedLatticeLine( ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief Computes an equispaced lattice of a given
order on the reference triangle. The output array is
(P,2), where
\code
P - number of points, which is
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in from boundary
*/
template<class Scalar, class ArrayType>
static void getEquispacedLatticeTriangle( ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief Computes an equispaced lattice of a given
order on the reference tetrahedron. The output array is
(P,3), where
\code
P - number of points, which is
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in from boundary
*/
template<class Scalar, class ArrayType>
static void getEquispacedLatticeTetrahedron( ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief Returns the Gauss-Lobatto points of a given
order on the reference line [-1,1]. The output array is
(P,1), where
\code
P - number of points
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in per boundary
*/
template<class Scalar, class ArrayType>
static void getWarpBlendLatticeLine( ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief interpolates Warburton's warp function on the line
\param order [in] - The polynomial order
\param xnodes [in] - vector of node locations to interpolate
\param xout [in] - warpfunction at xout, +/- 1 roots deflated
\param warp [out] - the amount to warp each point
*/
template<class Scalar, class ArrayType>
static void warpFactor( const int order ,
const ArrayType &xnodes ,
const ArrayType &xout ,
ArrayType &warp );
/** \brief Returns Warburton's warp-blend points of a given
order on the reference triangle. The output array is
(P,2), where
\code
P - number of points
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in per boundary
*/
template<class Scalar, class ArrayType>
static void getWarpBlendLatticeTriangle(ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief Returns Warburton's warp-blend points of a given
order on the reference tetrahedron. The output array is
(P,3), where
\code
P - number of points
\endcode
\param points [out] - Output array of point coords
\param order [in] - The lattice has order + 1 points,
minus any skipped by offset
\param offset [in] - Number of points on boundary to skip coming
in per boundary
*/
template<class Scalar, class ArrayType>
static void getWarpBlendLatticeTetrahedron( ArrayType &points ,
const int order ,
const int offset = 0 );
/** \brief This is used internally to compute the tetrahedral warp-blend points one each face
\param order [in] - the order of lattice
\param pval [in] - the "alpha" term in the warping function
\param L1 [in] - the first barycentric coordinate of the input points
\param L2 [in] - the second barycentric coordinate of the input points
\param L3 [in] - the third barycentric coordinate of the input points
\param L4 [in] - the fourth barycentric coordinate of the input points
\param dxy [out] - contains the amount to shift each point in the x and y direction
*/
template<class Scalar, class ArrayType>
static void warpShiftFace3D( const int order ,
const Scalar pval ,
const ArrayType &L1,
const ArrayType &L2,
const ArrayType &L3,
const ArrayType &L4,
ArrayType &dxy);
/** \brief Used internally to evaluate the point shift for warp-blend points on faces of tets
\param order [in] - the order of lattice
\param pval [in] - the "alpha" term in the warping function
\param L1 [in] - the first barycentric coordinate of the input points
\param L2 [in] - the second barycentric coordinate of the input points
\param L3 [in] - the third barycentric coordinate of the input points
\param dxy [out] - contains the amount to shift each point in the x and y direction
*/
template<class Scalar, class ArrayType>
static void evalshift( const int order ,
const Scalar pval ,
const ArrayType &L1 ,
const ArrayType &L2 ,
const ArrayType &L3 ,
ArrayType &dxy );
/** \brief Used internally to compute the warp on edges of a triangle in warp-blend points
\param warp [out] - a 1d array containing the amount to move each point
\param order [in] - the order of the lattice
\param xnodes [in] - the points to warp to, typically the Gauss-Lobatto points
\param xout [in] - the equispaced points on the edge
*/
template<class Scalar, class ArrayType>
static void evalwarp( ArrayType &warp ,
const int order ,
const ArrayType &xnodes ,
const ArrayType &xout );
}; // end class PointTools
} // end namespace Intrepid
// include templated definitions
#include <Intrepid_PointToolsDef.hpp>
#endif
|