This file is indexed.

/usr/include/trilinos/Intrepid_OrthogonalBasesDef.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
namespace Intrepid {
  
  template<class Scalar>
  void OrthogonalBases::jrc(const Scalar &alpha , const Scalar &beta , 
                            const int &n ,
                            Scalar &an , Scalar &bn, Scalar &cn )
  {
    an = (2.0 * n + 1.0 + alpha + beta) * ( 2.0 * n + 2.0 + alpha + beta ) 
      / ( 2.0 * ( n + 1 ) * ( n + 1 + alpha + beta ) );
    bn = (alpha*alpha-beta*beta)*(2.0*n+1.0+alpha+beta) 
      / ( 2.0*(n+1.0)*(2.0*n+alpha+beta)*(n+1.0+alpha+beta) );
    cn = (n+alpha)*(n+beta)*(2.0*n+2.0+alpha+beta) 
      / ( (n+1.0)*(n+1.0+alpha+beta)*(2.0*n+alpha+beta) );
    
    return;
  }
  
  
  template<class Scalar, class ScalarArray1, class ScalarArray2>
  void OrthogonalBases::tabulateTriangle( const ScalarArray1& z ,
                                          const int n ,
                                          ScalarArray2 & poly_val )
  {
    const int np = z.dimension( 0 );

    // each point needs to be transformed from Pavel's element
    // z(i,0) --> (2.0 * z(i,0) - 1.0)
    // z(i,1) --> (2.0 * z(i,1) - 1.0)

    // set up constant term
    int idx_cur = OrthogonalBases::idxtri(0,0);
    int idx_curp1,idx_curm1;

    // set D^{0,0} = 1.0
    for (int i=0;i<np;i++) {
      poly_val(idx_cur,i) = 1.0;
    }

    Teuchos::Array<Scalar> f1(np),f2(np),f3(np);
    
    for (int i=0;i<np;i++) {
      f1[i] = 0.5 * (1.0+2.0*(2.0*z(i,0)-1.0)+(2.0*z(i,1)-1.0));
      f2[i] = 0.5 * (1.0-(2.0*z(i,1)-1.0));
      f3[i] = f2[i] * f2[i];
    }

    // set D^{1,0} = f1
    idx_cur = OrthogonalBases::idxtri(1,0);
    for (int i=0;i<np;i++) {
      poly_val(idx_cur,i) = f1[i];
    }

    // recurrence in p
    for (int p=1;p<n;p++) {
      idx_cur = OrthogonalBases::idxtri(p,0);
      idx_curp1 = OrthogonalBases::idxtri(p+1,0);
      idx_curm1 = OrthogonalBases::idxtri(p-1,0);
      Scalar a = (2.0*p+1.0)/(1.0+p);
      Scalar b = p / (p+1.0);

      for (int i=0;i<np;i++) {
        poly_val(idx_curp1,i) = a * f1[i] * poly_val(idx_cur,i)
          - b * f3[i] * poly_val(idx_curm1,i);
      }
    }
    
    // D^{p,1}
    for (int p=0;p<n;p++) {
      int idxp0 = OrthogonalBases::idxtri(p,0);
      int idxp1 = OrthogonalBases::idxtri(p,1);
      for (int i=0;i<np;i++) {
        poly_val(idxp1,i) = poly_val(idxp0,i)
          *0.5*(1.0+2.0*p+(3.0+2.0*p)*(2.0*z(i,1)-1.0));
      }
    }

    // recurrence in q
    for (int p=0;p<n-1;p++) {
      for (int q=1;q<n-p;q++) {
        int idxpqp1=OrthogonalBases::idxtri(p,q+1);
        int idxpq=OrthogonalBases::idxtri(p,q);
        int idxpqm1=OrthogonalBases::idxtri(p,q-1);
        Scalar a,b,c;
        jrc((Scalar)(2*p+1),(Scalar)0,q,a,b,c);
        for (int i=0;i<np;i++) {
          poly_val(idxpqp1,i)
            = (a*(2.0*z(i,1)-1.0)+b)*poly_val(idxpq,i)
            - c*poly_val(idxpqm1,i);
        }
      }
    }
    
    return;
  }

  template<class Scalar, class ScalarArray1, class ScalarArray2>
  void OrthogonalBases::tabulateTetrahedron(const ScalarArray1 &z , 
                                            const int n ,
                                            ScalarArray2 &poly_val )
  {
    const int np = z.dimension( 0 );
    int idxcur;

    // each point needs to be transformed from Pavel's element
    // z(i,0) --> (2.0 * z(i,0) - 1.0)
    // z(i,1) --> (2.0 * z(i,1) - 1.0)
    // z(i,2) --> (2.0 * z(i,2) - 1.0)
    
    Teuchos::Array<Scalar> f1(np),f2(np),f3(np),f4(np),f5(np);

    for (int i=0;i<np;i++) {
      f1[i] = 0.5 * ( 2.0 + 2.0*(2.0*z(i,0)-1.0) + (2.0*z(i,1)-1.0) + (2.0*z(i,2)-1.0) );
      f2[i] = pow( 0.5 * ( (2.0*z(i,1)-1.0) + (2.0*z(i,2)-1.0) ) , 2 );
      f3[i] = 0.5 * ( 1.0 + 2.0 * (2.0*z(i,1)-1.0) + (2.0*z(i,2)-1.0) );
      f4[i] = 0.5 * ( 1.0 - (2.0*z(i,2)-1.0) );
      f5[i] = f4[i] * f4[i];
    }
    
    // constant term
    idxcur = idxtet(0,0,0);
    for (int i=0;i<np;i++) {
      poly_val(idxcur,i) = 1.0;
    }

    // D^{1,0,0}
    idxcur = idxtet(1,0,0);
    for (int i=0;i<np;i++) {
      poly_val(idxcur,i) = f1[i];
    }

    // p recurrence
    for (int p=1;p<n;p++) {
      Scalar a1 = (2.0 * p + 1.0) / ( p + 1.0);
      Scalar a2 = p / ( p + 1.0 );
      int idxp = idxtet(p,0,0);
      int idxpp1 = idxtet(p+1,0,0);
      int idxpm1 = idxtet(p-1,0,0);
      //cout << idxpm1 << " " << idxp << " " << idxpp1 << endl;
      for (int i=0;i<np;i++) {
        poly_val(idxpp1,i) = a1 * f1[i] * poly_val(idxp,i) - a2 * f2[i] * poly_val(idxpm1,i);
      }
    }
    // q = 1
    for (int p=0;p<n;p++) {
      int idx0 = idxtet(p,0,0);
      int idx1 = idxtet(p,1,0);
      for (int i=0;i<np;i++) {
        poly_val(idx1,i) = poly_val(idx0,i) * ( p * ( 1.0 + (2.0*z(i,1)-1.0) ) + 0.5 * ( 2.0 + 3.0 * (2.0*z(i,1)-1.0) + (2.0*z(i,2)-1.0) ) );
      }
    }

    // q recurrence
    for (int p=0;p<n-1;p++) {
      for (int q=1;q<n-p;q++) {
        Scalar aq,bq,cq;
        jrc((Scalar)(2.0*p+1.0),(Scalar)(0),q,aq,bq,cq);
        int idxpqp1 = idxtet(p,q+1,0);
        int idxpq = idxtet(p,q,0);
        int idxpqm1 = idxtet(p,q-1,0);
        for (int i=0;i<np;i++) {
          poly_val(idxpqp1,i) = ( aq * f3[i] + bq * f4[i] ) * poly_val(idxpq,i) 
            - ( cq * f5[i] ) * poly_val(idxpqm1,i);
        }
      }
    }
    
    // r = 1
    for (int p=0;p<n;p++) {
      for (int q=0;q<n-p;q++) {
        int idxpq1 = idxtet(p,q,1);
        int idxpq0 = idxtet(p,q,0);
        for (int i=0;i<np;i++) {
          poly_val(idxpq1,i) = poly_val(idxpq0,i) * ( 1.0 + p + q + ( 2.0 + q + p ) * (2.0*z(i,2)-1.0) );
        }
      }
    }
    
    // general r recurrence
    for (int p=0;p<n-1;p++) {
      for (int q=0;q<n-p-1;q++) {
        for (int r=1;r<n-p-q;r++) {
          Scalar ar,br,cr;
          int idxpqrp1 = idxtet(p,q,r+1);
          int idxpqr = idxtet(p,q,r);
          int idxpqrm1 = idxtet(p,q,r-1);
          jrc(2.0*p+2.0*q+2.0,0.0,r,ar,br,cr);
          for (int i=0;i<np;i++) {
            poly_val(idxpqrp1,i) = (ar * (2.0*z(i,2)-1.0) + br) * poly_val( idxpqr , i ) - cr * poly_val(idxpqrm1,i);
          }
        }
      }
    }
    
    return;
    
  }

} // namespace Intrepid;