This file is indexed.

/usr/include/trilinos/Intrepid_CellToolsDef.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov) 
//
// ************************************************************************
// @HEADER


/** \file   Intrepid_CellToolsDef.hpp
    \brief  Definition file for the Intrepid::CellTools class.
    \author Created by P. Bochev and D. Ridzal.
*/
#ifndef INTREPID_CELLTOOLSDEF_HPP
#define INTREPID_CELLTOOLSDEF_HPP


namespace Intrepid {

  template<class Scalar>
  const FieldContainer<double>& CellTools<Scalar>::getSubcellParametrization(const int subcellDim,
                                                                             const shards::CellTopology& parentCell){
    
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): the specified cell topology does not have a reference cell.");

    TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
                           ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): parametrization defined only for 1 and 2-dimensional subcells.");    
#endif
    
    // Coefficients of the coordinate functions defining the parametrization maps are stored in 
    // rank-3 arrays with dimensions (SC, PCD, COEF) where:
    //  - SC    is the subcell count of subcells with the specified dimension in the parent cell
    //  - PCD   is Parent Cell Dimension, which gives the number of coordinate functions in the map:
    //          PCD = 2 for standard 2D cells and non-standard 2D cells: shell line and beam
    //          PCD = 3 for standard 3D cells and non-standard 3D cells: shell Tri and Quad
    //  - COEF  is number of coefficients needed to specify a coordinate function:
    //          COEFF = 2 for edge parametrizations
    //          COEFF = 3 for both Quad and Tri face parametrizations. Because all Quad reference faces
    //          are affine, the coefficient of the bilinear term u*v is zero and is not stored, i.e.,
    //          3 coefficients are sufficient to store Quad face parameterization maps.
    //
    // Arrays are sized and filled only when parametrization of a particular subcell is requested
    // by setSubcellParametrization.
    
    // Edge maps for 2D non-standard cells: ShellLine and Beam
    static FieldContainer<double> lineEdges;        static int lineEdgesSet = 0;
    
    // Edge maps for 2D standard cells: Triangle and Quadrilateral
    static FieldContainer<double> triEdges;         static int triEdgesSet  = 0;
    static FieldContainer<double> quadEdges;        static int quadEdgesSet = 0;

    // Edge maps for 3D non-standard cells: Shell Tri and Quad
    static FieldContainer<double> shellTriEdges;    static int shellTriEdgesSet  = 0;
    static FieldContainer<double> shellQuadEdges;   static int shellQuadEdgesSet = 0;
    
    // Edge maps for 3D standard cells:
    static FieldContainer<double> tetEdges;         static int tetEdgesSet = 0;
    static FieldContainer<double> hexEdges;         static int hexEdgesSet = 0;
    static FieldContainer<double> pyrEdges;         static int pyrEdgesSet = 0;
    static FieldContainer<double> wedgeEdges;       static int wedgeEdgesSet = 0;


    // Face maps for 3D non-standard cells: Shell Triangle and Quadrilateral
    static FieldContainer<double> shellTriFaces;    static int shellTriFacesSet  = 0;
    static FieldContainer<double> shellQuadFaces;   static int shellQuadFacesSet = 0;

    // Face maps for 3D standard cells:
    static FieldContainer<double> tetFaces;         static int tetFacesSet = 0;
    static FieldContainer<double> hexFaces;         static int hexFacesSet = 0;
    static FieldContainer<double> pyrFaces;         static int pyrFacesSet = 0;
    static FieldContainer<double> wedgeFaces;       static int wedgeFacesSet = 0;

    // Select subcell parametrization according to its parent cell type
    switch(parentCell.getKey() ) {
      
      // Tet cells
      case shards::Tetrahedron<4>::key:
      case shards::Tetrahedron<8>::key:
      case shards::Tetrahedron<10>::key:
        if(subcellDim == 2) {
          if(!tetFacesSet){
            setSubcellParametrization(tetFaces, subcellDim, parentCell);
            tetFacesSet = 1;
          }
          return tetFaces;
        }
        else if(subcellDim == 1) {
          if(!tetEdgesSet){
            setSubcellParametrization(tetEdges, subcellDim, parentCell);
            tetEdgesSet = 1;
          }
          return tetEdges;
        }
        else{
          TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Tet parametrizations defined for 1 and 2-subcells only");
        }
        break;
        
      // Hex cells
      case shards::Hexahedron<8>::key:
      case shards::Hexahedron<20>::key:
      case shards::Hexahedron<27>::key:
        if(subcellDim == 2) {
          if(!hexFacesSet){
            setSubcellParametrization(hexFaces, subcellDim, parentCell);
            hexFacesSet = 1;
          }
          return hexFaces;
        }
        else if(subcellDim == 1) {
          if(!hexEdgesSet){
            setSubcellParametrization(hexEdges, subcellDim, parentCell);
            hexEdgesSet = 1;
          }
          return hexEdges;
        }
        else{
          TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Hex parametrizations defined for 1 and 2-subcells only");
        }
        break;
        
      // Pyramid cells
      case shards::Pyramid<5>::key:
      case shards::Pyramid<13>::key:
      case shards::Pyramid<14>::key:
        if(subcellDim == 2) {
          if(!pyrFacesSet){
            setSubcellParametrization(pyrFaces, subcellDim, parentCell);
            pyrFacesSet = 1;
          }
          return pyrFaces;
        }
        else if(subcellDim == 1) {
          if(!pyrEdgesSet){
            setSubcellParametrization(pyrEdges, subcellDim, parentCell);
            pyrEdgesSet = 1;
          }
          return pyrEdges;
        }
        else {
          TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Pyramid parametrizations defined for 1 and 2-subcells only");
        }
        break;
        
      // Wedge cells
      case shards::Wedge<6>::key:
      case shards::Wedge<15>::key:
      case shards::Wedge<18>::key:
        if(subcellDim == 2) {
          if(!wedgeFacesSet){
            setSubcellParametrization(wedgeFaces, subcellDim, parentCell);
            wedgeFacesSet = 1;
          }
          return wedgeFaces;
        }
        else if(subcellDim == 1) {
          if(!wedgeEdgesSet){
            setSubcellParametrization(wedgeEdges, subcellDim, parentCell);
            wedgeEdgesSet = 1;
          }
          return wedgeEdges;
        }
        else {
          TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Wedge parametrization defined for 1 and 2-subcells only");
        }
        break;
      //
      // Standard 2D cells have only 1-subcells
      //
      case shards::Triangle<3>::key:
      case shards::Triangle<4>::key:
      case shards::Triangle<6>::key:
        if(subcellDim == 1) {
          if(!triEdgesSet){
            setSubcellParametrization(triEdges, subcellDim, parentCell);
            triEdgesSet = 1;
          }
          return triEdges;
        }
        else{
          TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Triangle parametrizations defined for 1-subcells only");
        }
        break;
                  
      case shards::Quadrilateral<4>::key:
      case shards::Quadrilateral<8>::key:
      case shards::Quadrilateral<9>::key:
        if(subcellDim == 1) {
          if(!quadEdgesSet){
            setSubcellParametrization(quadEdges, subcellDim, parentCell);
            quadEdgesSet = 1;
          }
          return quadEdges;
        }
        else{
          TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Quad parametrizations defined for 1-subcells only");
        }
        break;        
      //
      // Non-standard 3D Shell Tri and Quad cells have 1 and 2-subcells. Because they are 3D cells
      // can't reuse edge parametrization arrays for 2D Triangle and Quadrilateral.
      //
      case shards::ShellTriangle<3>::key:
      case shards::ShellTriangle<6>::key:
        if(subcellDim == 2) {
          if(!shellTriFacesSet){
            setSubcellParametrization(shellTriFaces, subcellDim, parentCell);
            shellTriFacesSet = 1;
          }
          return shellTriFaces;
        }
        else if(subcellDim == 1) {
          if(!shellTriEdgesSet){
            setSubcellParametrization(shellTriEdges, subcellDim, parentCell);
            shellTriEdgesSet = 1;
          }
          return shellTriEdges;
        }
        else if( subcellDim != 1 || subcellDim != 2){
          TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Shell Triangle parametrizations defined for 1 and 2-subcells only");
        }
        break;
        
      case shards::ShellQuadrilateral<4>::key:
      case shards::ShellQuadrilateral<8>::key:
      case shards::ShellQuadrilateral<9>::key:
        if(subcellDim == 2) {
          if(!shellQuadFacesSet){
            setSubcellParametrization(shellQuadFaces, subcellDim, parentCell);
            shellQuadFacesSet = 1;
          }
          return shellQuadFaces;
        }
        else if(subcellDim == 1) {
          if(!shellQuadEdgesSet){
            setSubcellParametrization(shellQuadEdges, subcellDim, parentCell);
            shellQuadEdgesSet = 1;
          }
          return shellQuadEdges;
        }
        else if( subcellDim != 1 || subcellDim != 2){
          TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Shell Quad parametrizations defined for 1 and 2-subcells only");
        }
        break;
        
      //
      // Non-standard 2D cells: Shell Lines and Beams have 1-subcells
      //
      case shards::ShellLine<2>::key:
      case shards::ShellLine<3>::key:
      case shards::Beam<2>::key:
      case shards::Beam<3>::key:
        if(subcellDim == 1) {
          if(!lineEdgesSet){
            setSubcellParametrization(lineEdges, subcellDim, parentCell);
            lineEdgesSet = 1;
          }
          return lineEdges;
        }
        else{
          TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                              ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): shell line/beam parametrizations defined for 1-subcells only");
        }
        break;        

      default:
        TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                            ">>> ERROR (Intrepid::CellTools::getSubcellParametrization): invalid cell topology.");
    }//cell key
    // To disable compiler warning, should never be reached
    return lineEdges;
  }
  
  
  
  template<class Scalar>
  void CellTools<Scalar>::setSubcellParametrization(FieldContainer<double>&     subcellParametrization,
                                                    const int                   subcellDim,
                                                    const shards::CellTopology& parentCell)
  {
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::setSubcellParametrization): the specified cell topology does not have a reference cell.");

    TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::setSubcellParametrization): parametrization defined only for 1 and 2-dimensional subcells.");    
#endif
                        // subcellParametrization is rank-3 FieldContainer with dimensions (SC, PCD, COEF) where:
    //  - SC    is the subcell count of subcells with the specified dimension in the parent cell
    //  - PCD   is Parent Cell Dimension, which gives the number of coordinate functions in the map
    //          PCD = 2 for standard 2D cells and non-standard 2D cells: shell line and beam
    //          PCD = 3 for standard 3D cells and non-standard 3D cells: shell Tri and Quad
    //  - COEF  is number of coefficients needed to specify a coordinate function:
    //          COEFF = 2 for edge parametrizations
    //          COEFF = 3 for both Quad and Tri face parametrizations. Because all Quad reference faces
    //          are affine, the coefficient of the bilinear term u*v is zero and is not stored, i.e.,
    //          3 coefficients are sufficient to store Quad face parameterization maps.
    //  
    // Edge parametrization maps [-1,1] to edge defined by (v0, v1)
    // Face parametrization maps [-1,1]^2 to quadrilateral face (v0, v1, v2, v3), or
    // standard 2-simplex  {(0,0),(1,0),(0,1)} to traingle face (v0, v1, v2).
    // This defines orientation-preserving parametrizations with respect to reference edge and
    // face orientations induced by their vertex order. 

    // get subcellParametrization dimensions: (sc, pcd, coeff)
    unsigned sc    = parentCell.getSubcellCount(subcellDim);
    unsigned pcd   = parentCell.getDimension();   
    unsigned coeff = (subcellDim == 1) ? 2 : 3;
    
    
    // Resize container
    subcellParametrization.resize(sc, pcd, coeff);
    
    // Edge parametrizations of 2D and 3D cells (shell lines and beams are 2D cells with edges)
    if(subcellDim == 1){      
      for(unsigned subcellOrd = 0; subcellOrd < sc; subcellOrd++){
        
        int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
        int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
        
        // vertexK[0] = x_k; vertexK[1] = y_k; vertexK[2] = z_k; z_k = 0 for 2D cells
        // Note that ShellLine and Beam are 2D cells!
        const double* v0 = getReferenceVertex(parentCell, v0ord);
        const double* v1 = getReferenceVertex(parentCell, v1ord);
        
        // x(t) = (x0 + x1)/2 + t*(x1 - x0)/2 
        subcellParametrization(subcellOrd, 0, 0) = (v0[0] + v1[0])/2.0;
        subcellParametrization(subcellOrd, 0, 1) = (v1[0] - v0[0])/2.0;
        
        // y(t) = (y0 + y1)/2 + t*(y1 - y0)/2 
        subcellParametrization(subcellOrd, 1, 0) = (v0[1] + v1[1])/2.0;
        subcellParametrization(subcellOrd, 1, 1) = (v1[1] - v0[1])/2.0;
        
        if( pcd == 3 ) {
          // z(t) = (z0 + z1)/2 + t*(z1 - z0)/2 
          subcellParametrization(subcellOrd, 2, 0) = (v0[2] + v1[2])/2.0;
          subcellParametrization(subcellOrd, 2, 1) = (v1[2] - v0[2])/2.0;
        }
      }// for loop over 1-subcells
    }
      
      // Face parametrizations of 3D cells: (shell Tri and Quad are 3D cells with faces)
      // A 3D cell can have both Tri and Quad faces, but because they are affine images of the
      // parametrization domain, 3 coefficients are enough to store them in both cases.
      else if(subcellDim == 2) {
        for(unsigned subcellOrd = 0; subcellOrd < sc; subcellOrd++){
          
          switch(parentCell.getKey(subcellDim,subcellOrd)){
            
            // Admissible triangular faces for 3D cells in Shards:
            case shards::Triangle<3>::key:
            case shards::Triangle<4>::key:
            case shards::Triangle<6>::key: 
              {
                int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
                int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
                int v2ord = parentCell.getNodeMap(subcellDim, subcellOrd, 2);
                const double* v0 = getReferenceVertex(parentCell, v0ord);
                const double* v1 = getReferenceVertex(parentCell, v1ord);
                const double* v2 = getReferenceVertex(parentCell, v2ord);
                
                // x(u,v) = x0 + (x1 - x0)*u + (x2 - x0)*v
                subcellParametrization(subcellOrd, 0, 0) = v0[0];
                subcellParametrization(subcellOrd, 0, 1) = v1[0] - v0[0];
                subcellParametrization(subcellOrd, 0, 2) = v2[0] - v0[0];
                  
                // y(u,v) = y0 + (y1 - y0)*u + (y2 - y0)*v
                subcellParametrization(subcellOrd, 1, 0) = v0[1];
                subcellParametrization(subcellOrd, 1, 1) = v1[1] - v0[1];
                subcellParametrization(subcellOrd, 1, 2) = v2[1] - v0[1];
                
                // z(u,v) = z0 + (z1 - z0)*u + (z2 - z0)*v
                subcellParametrization(subcellOrd, 2, 0) = v0[2];
                subcellParametrization(subcellOrd, 2, 1) = v1[2] - v0[2];
                subcellParametrization(subcellOrd, 2, 2) = v2[2] - v0[2];
              }
              break;
              
            // Admissible quadrilateral faces for 3D cells in Shards:
            case shards::Quadrilateral<4>::key:
            case shards::Quadrilateral<8>::key:
            case shards::Quadrilateral<9>::key:
              {
                int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
                int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
                int v2ord = parentCell.getNodeMap(subcellDim, subcellOrd, 2);
                int v3ord = parentCell.getNodeMap(subcellDim, subcellOrd, 3);
                const double* v0 = getReferenceVertex(parentCell, v0ord);
                const double* v1 = getReferenceVertex(parentCell, v1ord);
                const double* v2 = getReferenceVertex(parentCell, v2ord);
                const double* v3 = getReferenceVertex(parentCell, v3ord);
                
                // x(u,v) = (x0+x1+x2+x3)/4+u*(-x0+x1+x2-x3)/4+v*(-x0-x1+x2+x3)/4+uv*(0=x0-x1+x2-x3)/4 
                subcellParametrization(subcellOrd, 0, 0) = ( v0[0] + v1[0] + v2[0] + v3[0])/4.0;
                subcellParametrization(subcellOrd, 0, 1) = (-v0[0] + v1[0] + v2[0] - v3[0])/4.0;
                subcellParametrization(subcellOrd, 0, 2) = (-v0[0] - v1[0] + v2[0] + v3[0])/4.0;
                
                // y(u,v) = (y0+y1+y2+y3)/4+u*(-y0+y1+y2-y3)/4+v*(-y0-y1+y2+y3)/4+uv*(0=y0-y1+y2-y3)/4 
                subcellParametrization(subcellOrd, 1, 0) = ( v0[1] + v1[1] + v2[1] + v3[1])/4.0;
                subcellParametrization(subcellOrd, 1, 1) = (-v0[1] + v1[1] + v2[1] - v3[1])/4.0;
                subcellParametrization(subcellOrd, 1, 2) = (-v0[1] - v1[1] + v2[1] + v3[1])/4.0;
                
                // z(u,v) = (z0+z1+z2+z3)/4+u*(-z0+z1+z2-z3)/4+v*(-z0-z1+z2+z3)/4+uv*(0=z0-z1+z2-z3)/4 
                subcellParametrization(subcellOrd, 2, 0) = ( v0[2] + v1[2] + v2[2] + v3[2])/4.0;
                subcellParametrization(subcellOrd, 2, 1) = (-v0[2] + v1[2] + v2[2] - v3[2])/4.0;
                subcellParametrization(subcellOrd, 2, 2) = (-v0[2] - v1[2] + v2[2] + v3[2])/4.0;
              }                
              break;
            default:
              TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                                  ">>> ERROR (Intrepid::CellTools::setSubcellParametrization): parametrization not defined for the specified face topology.");
             
          }// switch face topology key
        }// for subcellOrd
      }
  }
  
  
  
  template<class Scalar>
  const double* CellTools<Scalar>::getReferenceVertex(const shards::CellTopology& cell,
                                                      const int                   vertexOrd){
    
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(cell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::getReferenceVertex): the specified cell topology does not have a reference cell.");
    
    TEST_FOR_EXCEPTION( !( (0 <= vertexOrd) && (vertexOrd < (int)cell.getVertexCount() ) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceVertex): invalid node ordinal for the specified cell topology. ");
#endif
    
    // Simply call getReferenceNode with the base topology of the cell
    return getReferenceNode(cell.getBaseTopology(), vertexOrd);
  }
    
  
  
  template<class Scalar>
  template<class ArraySubcellVert>
  void CellTools<Scalar>::getReferenceSubcellVertices(ArraySubcellVert &          subcellVertices,
                                                      const int                   subcellDim,
                                                      const int                   subcellOrd,
                                                      const shards::CellTopology& parentCell){
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): the specified cell topology does not have a reference cell.");

    // subcellDim can equal the cell dimension because the cell itself is a valid subcell! In this case
    // the method will return all cell cellWorkset.
    TEST_FOR_EXCEPTION( !( (0 <= subcellDim) && (subcellDim <= (int)parentCell.getDimension()) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): subcell dimension out of range.");
    
    TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): subcell ordinal out of range.");
        
    // Verify subcellVertices rank and dimensions
    {
      std::string errmsg = ">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices):";
      TEST_FOR_EXCEPTION( !( requireRankRange(errmsg, subcellVertices, 2, 2) ), std::invalid_argument, errmsg);
      
      int subcVertexCount = parentCell.getVertexCount(subcellDim, subcellOrd);
      int spaceDim = parentCell.getDimension();
        
      TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellVertices, 0,  subcVertexCount, subcVertexCount) ),
                          std::invalid_argument, errmsg);
      
      TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellVertices, 1,  spaceDim, spaceDim) ),
                          std::invalid_argument, errmsg);
    }
#endif 
    
    // Simply call getReferenceNodes with the base topology
    getReferenceSubcellNodes(subcellVertices, subcellDim, subcellOrd, parentCell.getBaseTopology() );
  }  

  
  
  template<class Scalar>
  const double* CellTools<Scalar>::getReferenceNode(const shards::CellTopology& cell,
                                                    const int                   nodeOrd){
    
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(cell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::getReferenceNode): the specified cell topology does not have a reference cell.");

    TEST_FOR_EXCEPTION( !( (0 <= nodeOrd) && (nodeOrd < (int)cell.getNodeCount() ) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceNode): invalid node ordinal for the specified cell topology. ");
#endif
    
    // Cartesian coordinates of supported reference cell cellWorkset, padded to three-dimensions.
    // Node order follows cell topology definition in Shards
    static const double line[2][3] ={
      {-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0} 
    };
    static const double line_3[3][3] = {
      {-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0},     
      // Extension node: edge midpoint
      { 0.0, 0.0, 0.0}
    };
    
    
    // Triangle topologies
    static const double triangle[3][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0} 
    };
    static const double triangle_4[4][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
      // Extension node: cell center
      { 1/3, 1/3, 0.0}
    };
    static const double triangle_6[6][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
      // Extension cellWorkset: 3 edge midpoints
      { 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}
    };
    
    
    // Quadrilateral topologies
    static const double quadrilateral[4][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}
    };
    static const double quadrilateral_8[8][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
      // Extension cellWorkset: 4 edge midpoints
      { 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}
    };
    static const double quadrilateral_9[9][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
      // Extension cellWorkset: 4 edge midpoints + 1 cell center
      { 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, { 0.0, 0.0, 0.0}
    };
    
    
    // Tetrahedron topologies
    static const double tetrahedron[4][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0}
    };
    static const double tetrahedron_8[8][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
      // Extension cellWorkset: 4 face centers (do not follow natural face order - see the cell topology!)
      { 1/3, 0.0, 1/3}, { 1/3, 1/3, 1/3}, { 1/3, 1/3, 0.0}, { 0.0, 1/3, 1/3} 
    };
    static const double tetrahedron_10[10][3] = {
      { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
      // Extension cellWorkset: 6 edge midpoints
      { 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}, { 0.0, 0.0, 0.5}, { 0.5, 0.0, 0.5}, { 0.0, 0.5, 0.5}
    };

    
    // Hexahedron topologies
    static const double hexahedron[8][3] = {
      {-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
      {-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0}
    };
    static const double hexahedron_20[20][3] = {
      {-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
      {-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0},
      // Extension cellWorkset: 12 edge midpoints (do not follow natural edge order - see cell topology!)
      { 0.0,-1.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, {-1.0, 0.0,-1.0}, 
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
      { 0.0,-1.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0}, {-1.0, 0.0, 1.0}
    };
    static const double hexahedron_27[27][3] = {
      {-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
      {-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0},
      // Extension cellWorkset: 12 edge midpoints + 1 cell center + 6 face centers  (do not follow natural subcell order!)
      { 0.0,-1.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, {-1.0, 0.0,-1.0}, 
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
      { 0.0,-1.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0}, {-1.0, 0.0, 1.0},
      { 0.0, 0.0, 0.0},
      { 0.0, 0.0,-1.0}, { 0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, {0.0,-1.0, 0.0}, {0.0, 1.0, 0.0} 
    };
    
    
    // Pyramid topologies
    static const double pyramid[5][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0}
    };
    static const double pyramid_13[13][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
      // Extension cellWorkset: 8 edge midpoints 
      { 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0},
      {-0.5,-0.5, 0.5}, { 0.5,-0.5, 0.5}, { 0.5, 0.5, 0.5}, {-0.5, 0.5, 0.5}   
    };
    static const double pyramid_14[14][3] = {
      {-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
      // Extension cellWorkset: 8 edge midpoints + quadrilateral face midpoint 
      { 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0},
      {-0.5,-0.5, 0.5}, { 0.5,-0.5, 0.5}, { 0.5, 0.5, 0.5}, {-0.5, 0.5, 0.5}, { 0.0, 0.0, 0.0}  
    };
    
    
    // Wedge topologies
    static const double wedge[6][3] = {
      { 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0} 
    };
    static const double wedge_15[15][3] = {
      { 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0},
      // Extension cellWorkset: 9 edge midpoints (do not follow natural edge order - see cell topology!)
      { 0.5, 0.0,-1.0}, { 0.5, 0.5,-1.0}, { 0.0, 0.5,-1.0}, { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
      { 0.5, 0.0, 1.0}, { 0.5, 0.5, 1.0}, { 0.0, 0.5, 1.0}
    };
    static const double wedge_18[18][3] = {
      { 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0},
      // Extension cellWorkset: 9 edge midpoints + 3 quad face centers (do not follow natural subcell order - see cell topology!)
      { 0.5, 0.0,-1.0}, { 0.5, 0.5,-1.0}, { 0.0, 0.5,-1.0}, { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
      { 0.5, 0.0, 1.0}, { 0.5, 0.5, 1.0}, { 0.0, 0.5, 1.0},
      { 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}
    };
    
    
    switch(cell.getKey() ) {
      
      // Base line topologies
      case shards::Line<2>::key:
      case shards::ShellLine<2>::key:
      case shards::Beam<2>::key:
        return line[nodeOrd];
        break;
        
      // Extended line topologies
      case shards::Line<3>::key:
      case shards::ShellLine<3>::key:
      case shards::Beam<3>::key:
        return line_3[nodeOrd];
        break;
        
        
      // Base triangle topologies
      case shards::Triangle<3>::key:
      case shards::ShellTriangle<3>::key:
        return triangle[nodeOrd];
        break;
        
      // Extened Triangle topologies
      case shards::Triangle<4>::key:
        return triangle_4[nodeOrd];
        break;
      case shards::Triangle<6>::key:
      case shards::ShellTriangle<6>::key:
        return triangle_6[nodeOrd];
        break;
        
        
      // Base Quadrilateral topologies  
      case shards::Quadrilateral<4>::key:
      case shards::ShellQuadrilateral<4>::key:
        return quadrilateral[nodeOrd];
        break;
        
      // Extended Quadrilateral topologies
      case shards::Quadrilateral<8>::key:
      case shards::ShellQuadrilateral<8>::key:
        return quadrilateral_8[nodeOrd];
        break;
      case shards::Quadrilateral<9>::key:
      case shards::ShellQuadrilateral<9>::key:
        return quadrilateral_9[nodeOrd];
        break;
        
        
      // Base Tetrahedron topology
      case shards::Tetrahedron<4>::key:
        return tetrahedron[nodeOrd];
        break;
        
      // Extended Tetrahedron topologies
      case shards::Tetrahedron<8>::key:
        return tetrahedron_8[nodeOrd];
        break;
      case shards::Tetrahedron<10>::key:
        return tetrahedron_10[nodeOrd];
        break;

        
      // Base Hexahedron topology
      case shards::Hexahedron<8>::key:
        return hexahedron[nodeOrd];
        break;
        
      // Extended Hexahedron topologies
      case shards::Hexahedron<20>::key:
        return hexahedron_20[nodeOrd];
        break;
      case shards::Hexahedron<27>::key:
        return hexahedron_27[nodeOrd];
        break;

        
      // Base Pyramid topology  
      case shards::Pyramid<5>::key:
        return pyramid[nodeOrd];
        break;
        
      // Extended pyramid topologies
      case shards::Pyramid<13>::key:
        return pyramid_13[nodeOrd];
        break;
     case shards::Pyramid<14>::key:
        return pyramid_14[nodeOrd];
        break;
      
        
      // Base Wedge topology
      case shards::Wedge<6>::key:
        return wedge[nodeOrd];
        break;
        
      // Extended Wedge topologies
      case shards::Wedge<15>::key:
        return wedge_15[nodeOrd];
        break;
      case shards::Wedge<18>::key:
        return wedge_18[nodeOrd];
        break;
        
      default:
        TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                            ">>> ERROR (Intrepid::CellTools::getReferenceNode): invalid cell topology.");
    }
    // To disable compiler warning, should never be reached
    return line[0];
  }
  
  
  
  template<class Scalar>
  template<class ArraySubcellNode>
  void CellTools<Scalar>::getReferenceSubcellNodes(ArraySubcellNode &          subcellNodes,
                                                   const int                   subcellDim,
                                                   const int                   subcellOrd,
                                                   const shards::CellTopology& parentCell){
#ifdef HAVE_INTREPID_DEBUG
    TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): the specified cell topology does not have a reference cell.");
    
    // subcellDim can equal the cell dimension because the cell itself is a valid subcell! In this case
    // the method will return all cell cellWorkset.
    TEST_FOR_EXCEPTION( !( (0 <= subcellDim) && (subcellDim <= (int)parentCell.getDimension()) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): subcell dimension out of range.");
    
    TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): subcell ordinal out of range.");
    
    // Verify subcellNodes rank and dimensions
    {
      std::string errmsg = ">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes):";
      TEST_FOR_EXCEPTION( !( requireRankRange(errmsg, subcellNodes, 2, 2) ), std::invalid_argument, errmsg);
      
      int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
      int spaceDim = parentCell.getDimension();
      
      TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellNodes, 0,  subcNodeCount, subcNodeCount) ),
                          std::invalid_argument, errmsg);
      
      TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellNodes, 1,  spaceDim, spaceDim) ),
                          std::invalid_argument, errmsg);
    }
#endif 
    
    // Find how many cellWorkset does the specified subcell have.
    int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
    
    // Loop over subcell cellWorkset
    for(int subcNodeOrd = 0; subcNodeOrd < subcNodeCount; subcNodeOrd++){
      
      // Get the node number relative to the parent reference cell
      int cellNodeOrd = parentCell.getNodeMap(subcellDim, subcellOrd, subcNodeOrd);
            
      // Loop over node's Cartesian coordinates
      for(int dim = 0; dim < (int)parentCell.getDimension(); dim++){
        subcellNodes(subcNodeOrd, dim) = CellTools::getReferenceNode(parentCell, cellNodeOrd)[dim];
      }
    }
  }  
  
  
  
  template<class Scalar>
  int CellTools<Scalar>::hasReferenceCell(const shards::CellTopology& cell) {
    
    switch(cell.getKey() ) {
      case shards::Line<2>::key:
      case shards::Line<3>::key:
      case shards::ShellLine<2>::key:
      case shards::ShellLine<3>::key:
      case shards::Beam<2>::key:
      case shards::Beam<3>::key:
        
      case shards::Triangle<3>::key:
      case shards::Triangle<4>::key:
      case shards::Triangle<6>::key:
      case shards::ShellTriangle<3>::key:
      case shards::ShellTriangle<6>::key:
        
      case shards::Quadrilateral<4>::key:
      case shards::Quadrilateral<8>::key:
      case shards::Quadrilateral<9>::key:
      case shards::ShellQuadrilateral<4>::key:
      case shards::ShellQuadrilateral<8>::key:
      case shards::ShellQuadrilateral<9>::key:
        
      case shards::Tetrahedron<4>::key:
      case shards::Tetrahedron<8>::key:
      case shards::Tetrahedron<10>::key:
        
      case shards::Hexahedron<8>::key:
      case shards::Hexahedron<20>::key:
      case shards::Hexahedron<27>::key:
        
      case shards::Pyramid<5>::key:
      case shards::Pyramid<13>::key:
      case shards::Pyramid<14>::key:
        
      case shards::Wedge<6>::key:
      case shards::Wedge<15>::key:
      case shards::Wedge<18>::key:
        return 1;
        break;
        
      default:
        return 0;
    }
    return 0;
  }
  
  //============================================================================================//
  //                                                                                            //
  //                     Jacobian, inverse Jacobian and Jacobian determinant                    //
  //                                                                                            //
  //============================================================================================//  
  
  template<class Scalar>
  template<class ArrayJac, class ArrayPoint, class ArrayCell>
  void CellTools<Scalar>::setJacobian(ArrayJac &                   jacobian,
                                      const ArrayPoint &           points,
                                      const ArrayCell  &           cellWorkset,
                                      const shards::CellTopology & cellTopo,
                                      const int &                  whichCell) 
  {
    INTREPID_VALIDATE( validateArguments_setJacobian(jacobian, points, cellWorkset, whichCell,  cellTopo) );
    
    int spaceDim  = (int)cellTopo.getDimension();
    int numCells  = cellWorkset.dimension(0);
    //points can be rank-2 (P,D), or rank-3 (C,P,D)
    int numPoints = (points.rank() == 2) ? points.dimension(0) : points.dimension(1);
    
    // Jacobian is computed using gradients of an appropriate H(grad) basis function: define RCP to the base class
    Teuchos::RCP< Basis< Scalar, FieldContainer<Scalar> > > HGRAD_Basis;
    
    // Choose the H(grad) basis depending on the cell topology. \todo define maps for shells and beams
    switch( cellTopo.getKey() ){
      
      // Standard Base topologies (number of cellWorkset = number of vertices)
      case shards::Line<2>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_LINE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Triangle<3>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Quadrilateral<4>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Tetrahedron<4>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Hexahedron<8>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Wedge<6>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      // Standard Extended topologies
      case shards::Triangle<6>::key:    
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C2_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
      case shards::Quadrilateral<9>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C2_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Tetrahedron<10>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C2_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Hexahedron<27>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C2_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
      case shards::Wedge<18>::key:
        HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C2_FEM<Scalar, FieldContainer<Scalar> >() );
        break;
        
        // These extended topologies are not used for mapping purposes
      case shards::Quadrilateral<8>::key:
      case shards::Hexahedron<20>::key:
      case shards::Wedge<15>::key:
        TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                            ">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported. ");
        break;
        
        // Base and Extended Line, Beam and Shell topologies  
      case shards::Line<3>::key:
      case shards::Beam<2>::key:
      case shards::Beam<3>::key:
      case shards::ShellLine<2>::key:
      case shards::ShellLine<3>::key:
      case shards::ShellTriangle<3>::key:
      case shards::ShellTriangle<6>::key:
      case shards::ShellQuadrilateral<4>::key:
      case shards::ShellQuadrilateral<8>::key:
      case shards::ShellQuadrilateral<9>::key:
        TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                            ">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported. ");
        break;
      default:
        TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                            ">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported.");        
    }// switch  
    
    // Temp (F,P,D) array for the values of basis functions gradients at the reference points
    int basisCardinality = HGRAD_Basis -> getCardinality();
    FieldContainer<Scalar> basisGrads(basisCardinality, numPoints, spaceDim);
    
    // Initialize jacobian
    for(int i = 0; i < jacobian.size(); i++){
      jacobian[i] = 0.0;
    }
        
    // Handle separately rank-2 (P,D) and rank-3 (C,P,D) cases of points arrays.
    switch(points.rank()) {
      
      // refPoints is (P,D): a single or multiple cell jacobians computed for a single set of ref. points
      case 2:
        {
          // getValues requires rank-2 (P,D) input array, but points cannot be passed directly as argument because they are a user type
          FieldContainer<Scalar> tempPoints( points.dimension(0), points.dimension(1) );
          // Copy point set corresponding to this cell oridinal to the temp (P,D) array
          for(int pt = 0; pt < points.dimension(0); pt++){
            for(int dm = 0; dm < points.dimension(1) ; dm++){
              tempPoints(pt, dm) = points(pt, dm);
            }//dm
          }//pt
          HGRAD_Basis -> getValues(basisGrads, tempPoints, OPERATOR_GRAD);
          
          // The outer loops select the multi-index of the Jacobian entry: cell, point, row, col
          // If whichCell = -1, all jacobians are computed, otherwise a single cell jacobian is computed
          int cellLoop = (whichCell == -1) ? numCells : 1 ;
          
          for(int cellOrd = 0; cellOrd < cellLoop; cellOrd++) {
            for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
              for(int row = 0; row < spaceDim; row++){
                for(int col = 0; col < spaceDim; col++){
                  
                  // The entry is computed by contracting the basis index. Number of basis functions and vertices must be the same
                  for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
                    
                    if(whichCell == -1) {
                      jacobian(cellOrd, pointOrd, row, col) += cellWorkset(cellOrd, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
                    }
                    else {
                      jacobian(pointOrd, row, col) += cellWorkset(whichCell, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
                    }
                  } // bfOrd
                } // col
              } // row
            } // pointOrd
          } // cellOrd
        }// case 2
        break;
        
        // points is (C,P,D): multiple jacobians computed at multiple point sets, one jacobian per cell  
      case 3:
        {
          // getValues requires rank-2 (P,D) input array, refPoints cannot be used as argument: need temp (P,D) array
          FieldContainer<Scalar> tempPoints( points.dimension(1), points.dimension(2) );
          
          for(int cellOrd = 0; cellOrd < numCells; cellOrd++) {
            
            // Copy point set corresponding to this cell oridinal to the temp (P,D) array
            for(int pt = 0; pt < points.dimension(1); pt++){
              for(int dm = 0; dm < points.dimension(2) ; dm++){
                tempPoints(pt, dm) = points(cellOrd, pt, dm);
              }//dm
            }//pt
            
            // Compute gradients of basis functions at this set of ref. points
            HGRAD_Basis -> getValues(basisGrads, tempPoints, OPERATOR_GRAD);
            
            // Compute jacobians for the point set corresponding to the current cellordinal
            for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
              for(int row = 0; row < spaceDim; row++){
                for(int col = 0; col < spaceDim; col++){
                  
                  // The entry is computed by contracting the basis index. Number of basis functions and vertices must be the same
                  for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
                    jacobian(cellOrd, pointOrd, row, col) += cellWorkset(cellOrd, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
                  } // bfOrd
                } // col
              } // row
            } // pointOrd
          }//cellOrd
        }// case 3
        
        break;
        
      default:
        TEST_FOR_EXCEPTION( !( (points.rank() == 2) && (points.rank() == 3) ), std::invalid_argument,
                            ">>> ERROR (Intrepid::CellTools::setJacobian): rank 2 or 3 required for points array. ");        
    }//switch
  }
  


template<class Scalar>
template<class ArrayJacInv, class ArrayJac>
void CellTools<Scalar>::setJacobianInv(ArrayJacInv &     jacobianInv,
                                       const ArrayJac &  jacobian) 
{
  INTREPID_VALIDATE( validateArguments_setJacobianInv(jacobianInv, jacobian) );

  RealSpaceTools<Scalar>::inverse(jacobianInv, jacobian);
}



template<class Scalar>
template<class ArrayJacDet, class ArrayJac>
void CellTools<Scalar>::setJacobianDet(ArrayJacDet &     jacobianDet,
                                       const ArrayJac &  jacobian)
{
  INTREPID_VALIDATE( validateArguments_setJacobianDetArgs(jacobianDet, jacobian) );

  RealSpaceTools<Scalar>::det(jacobianDet, jacobian);
}

//============================================================================================//
//                                                                                            //
//                      Reference-to-physical frame mapping and its inverse                   //
//                                                                                            //
//============================================================================================//

template<class Scalar>
template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
void CellTools<Scalar>::mapToPhysicalFrame(ArrayPhysPoint      &        physPoints,
                                           const ArrayRefPoint &        refPoints,
                                           const ArrayCell     &        cellWorkset,
                                           const shards::CellTopology & cellTopo,
                                           const int &                  whichCell)
{
  INTREPID_VALIDATE(validateArguments_mapToPhysicalFrame( physPoints, refPoints, cellWorkset, cellTopo, whichCell) );
  
  int spaceDim  = (int)cellTopo.getDimension();
  int numCells  = cellWorkset.dimension(0);
  //points can be rank-2 (P,D), or rank-3 (C,P,D)
  int numPoints = (refPoints.rank() == 2) ? refPoints.dimension(0) : refPoints.dimension(1);
    
  // Mapping is computed using an appropriate H(grad) basis function: define RCP to the base class
  Teuchos::RCP<Basis<Scalar, FieldContainer<Scalar> > > HGRAD_Basis;
  
  // Choose the H(grad) basis depending on the cell topology. \todo define maps for shells and beams
  switch( cellTopo.getKey() ){
    
    // Standard Base topologies (number of cellWorkset = number of vertices)
    case shards::Line<2>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_LINE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Triangle<3>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Quadrilateral<4>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Tetrahedron<4>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Hexahedron<8>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Wedge<6>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    // Standard Extended topologies
    case shards::Triangle<6>::key:    
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C2_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Quadrilateral<9>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C2_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Tetrahedron<10>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C2_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Hexahedron<27>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C2_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    case shards::Wedge<18>::key:
      HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C2_FEM<Scalar, FieldContainer<Scalar> >() );
      break;
      
    // These extended topologies are not used for mapping purposes
    case shards::Quadrilateral<8>::key:
    case shards::Hexahedron<20>::key:
    case shards::Wedge<15>::key:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported. ");
      break;
      
    // Base and Extended Line, Beam and Shell topologies  
    case shards::Line<3>::key:
    case shards::Beam<2>::key:
    case shards::Beam<3>::key:
    case shards::ShellLine<2>::key:
    case shards::ShellLine<3>::key:
    case shards::ShellTriangle<3>::key:
    case shards::ShellTriangle<6>::key:
    case shards::ShellQuadrilateral<4>::key:
    case shards::ShellQuadrilateral<8>::key:
    case shards::ShellQuadrilateral<9>::key:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported. ");
      break;
    default:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported.");        
  }// switch  

  // Temp (F,P) array for the values of nodal basis functions at the reference points
  int basisCardinality = HGRAD_Basis -> getCardinality();
  FieldContainer<Scalar> basisVals(basisCardinality, numPoints);
  
  // Initialize physPoints
  for(int i = 0; i < physPoints.size(); i++){
    physPoints[i] = 0.0;
  }
  
  // handle separately rank-2 (P,D) and rank-3 (C,P,D) cases of refPoints
  switch(refPoints.rank()) {
    
    // refPoints is (P,D): single set of ref. points is mapped to one or multiple physical cells
    case 2:
      {
        // getValues requires rank-2 (P,D) input array, but refPoints cannot be passed directly as argument because they are a user type
        FieldContainer<Scalar> tempPoints( refPoints.dimension(0), refPoints.dimension(1) );
        // Copy point set corresponding to this cell oridinal to the temp (P,D) array
        for(int pt = 0; pt < refPoints.dimension(0); pt++){
          for(int dm = 0; dm < refPoints.dimension(1) ; dm++){
            tempPoints(pt, dm) = refPoints(pt, dm);
          }//dm
        }//pt
        HGRAD_Basis -> getValues(basisVals, tempPoints, OPERATOR_VALUE);
        
        // If whichCell = -1, ref pt. set is mapped to all cells, otherwise, the set is mapped to one cell only
        int cellLoop = (whichCell == -1) ? numCells : 1 ;
        
        // Compute the map F(refPoints) = sum node_coordinate*basis(refPoints)
        for(int cellOrd = 0; cellOrd < cellLoop; cellOrd++) {
          for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
            for(int dim = 0; dim < spaceDim; dim++){
              for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
                
                if(whichCell == -1){
                  physPoints(cellOrd, pointOrd, dim) += cellWorkset(cellOrd, bfOrd, dim)*basisVals(bfOrd, pointOrd);
                }
                else{
                  physPoints(pointOrd, dim) += cellWorkset(whichCell, bfOrd, dim)*basisVals(bfOrd, pointOrd);
                }
              } // bfOrd
            }// dim
          }// pointOrd
        }//cellOrd
      }// case 2
      break;
      
    // refPoints is (C,P,D): multiple sets of ref. points are mapped to matching number of physical cells.  
    case 3:
      {
        // getValues requires rank-2 (P,D) input array, refPoints cannot be used as argument: need temp (P,D) array
        FieldContainer<Scalar> tempPoints( refPoints.dimension(1), refPoints.dimension(2) );
        
        // Compute the map F(refPoints) = sum node_coordinate*basis(refPoints)
        for(int cellOrd = 0; cellOrd < numCells; cellOrd++) {
          
          // Copy point set corresponding to this cell oridinal to the temp (P,D) array
          for(int pt = 0; pt < refPoints.dimension(1); pt++){
            for(int dm = 0; dm < refPoints.dimension(2) ; dm++){
              tempPoints(pt, dm) = refPoints(cellOrd, pt, dm);
            }//dm
          }//pt
          
          // Compute basis values for this set of ref. points
          HGRAD_Basis -> getValues(basisVals, tempPoints, OPERATOR_VALUE);
          
          for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
            for(int dim = 0; dim < spaceDim; dim++){
              for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
                
                physPoints(cellOrd, pointOrd, dim) += cellWorkset(cellOrd, bfOrd, dim)*basisVals(bfOrd, pointOrd);
                
              } // bfOrd
            }// dim
          }// pointOrd
        }//cellOrd        
      }// case 3
      break;
      
    default:
      TEST_FOR_EXCEPTION( !( (refPoints.rank() == 2) && (refPoints.rank() == 3) ), std::invalid_argument,
                             ">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): rank 2 or 3 required for refPoints array. ");
  }
}



template<class Scalar>
template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::mapToReferenceFrame(ArrayRefPoint        &        refPoints,
                                            const ArrayPhysPoint &        physPoints,
                                            const ArrayCell      &        cellWorkset,
                                            const shards::CellTopology &  cellTopo,
                                            const int &                   whichCell)
{
  INTREPID_VALIDATE( validateArguments_mapToReferenceFrame(refPoints, physPoints, cellWorkset, cellTopo, whichCell) );
  
  int spaceDim  = (int)cellTopo.getDimension();
  int numPoints;
  int numCells;
  
  // Define initial guesses to be  the Cell centers of the reference cell topology
  FieldContainer<Scalar> cellCenter(spaceDim);
  switch( cellTopo.getKey() ){
    // Standard Base topologies (number of cellWorkset = number of vertices)
    case shards::Line<2>::key:
      cellCenter(0) = 0.0;    break;
      
    case shards::Triangle<3>::key:
    case shards::Triangle<6>::key:    
      cellCenter(0) = 1./3.;    cellCenter(1) = 1./3.;  break;
      
    case shards::Quadrilateral<4>::key:
    case shards::Quadrilateral<9>::key:
      cellCenter(0) = 0.0;      cellCenter(1) = 0.0;    break;
      
    case shards::Tetrahedron<4>::key:
    case shards::Tetrahedron<10>::key:
      cellCenter(0) = 1./6.;    cellCenter(1) =  1./6.;    cellCenter(2) =  1./6.;  break;
      
    case shards::Hexahedron<8>::key:
    case shards::Hexahedron<27>::key:
      cellCenter(0) = 0.0;      cellCenter(1) =  0.0;       cellCenter(2) =  0.0;   break;
      
    case shards::Wedge<6>::key:
    case shards::Wedge<18>::key:
      cellCenter(0) = 1./3.;    cellCenter(1) =  1./3.;     cellCenter(2) = 0.0;    break;
      
      // These extended topologies are not used for mapping purposes
    case shards::Quadrilateral<8>::key:
    case shards::Hexahedron<20>::key:
    case shards::Wedge<15>::key:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported. ");
      break;
      
      // Base and Extended Line, Beam and Shell topologies  
    case shards::Line<3>::key:
    case shards::Beam<2>::key:
    case shards::Beam<3>::key:
    case shards::ShellLine<2>::key:
    case shards::ShellLine<3>::key:
    case shards::ShellTriangle<3>::key:
    case shards::ShellTriangle<6>::key:
    case shards::ShellQuadrilateral<4>::key:
    case shards::ShellQuadrilateral<8>::key:
    case shards::ShellQuadrilateral<9>::key:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported. ");
      break;
    default:
      TEST_FOR_EXCEPTION( (true), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported.");        
  }// switch key 
  
  // Resize initial guess depending on the rank of the physical points array
  FieldContainer<Scalar> initGuess;
  
  // Default: map (C,P,D) array of physical pt. sets to (C,P,D) array. Requires (C,P,D) initial guess.
  if(whichCell == -1){
    numPoints = physPoints.dimension(1);
    numCells = cellWorkset.dimension(0);
    initGuess.resize(numCells, numPoints, spaceDim);
    // Set initial guess:
    for(int c = 0; c < numCells; c++){
      for(int p = 0; p < numPoints; p++){
        for(int d = 0; d < spaceDim; d++){
          initGuess(c, p, d) = cellCenter(d);
        }// d
      }// p
    }// c
  }
  // Custom: map (P,D) array of physical pts. to (P,D) array. Requires (P,D) initial guess.
  else {
    numPoints = physPoints.dimension(0);
    initGuess.resize(numPoints, spaceDim);
    // Set initial guess:
    for(int p = 0; p < numPoints; p++){
      for(int d = 0; d < spaceDim; d++){
        initGuess(p, d) = cellCenter(d);
      }// d
    }// p
  }
  
  // Call method with initial guess
  mapToReferenceFrameInitGuess(refPoints, initGuess, physPoints, cellWorkset, cellTopo, whichCell);  
}
  
  

template<class Scalar>
template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::mapToReferenceFrameInitGuess(ArrayRefPoint        &        refPoints,
                                                     const ArrayInitGuess &        initGuess,
                                                     const ArrayPhysPoint &        physPoints,
                                                     const ArrayCell      &        cellWorkset,
                                                     const shards::CellTopology &  cellTopo,
                                                     const int &                   whichCell)
{
  INTREPID_VALIDATE( validateArguments_mapToReferenceFrame(refPoints, initGuess, physPoints, cellWorkset, cellTopo, whichCell) );

  int spaceDim  = (int)cellTopo.getDimension();
  int numPoints;
  int numCells=0;
  
  // Temp arrays for Newton iterates and Jacobians. Resize according to rank of ref. point array
  FieldContainer<Scalar> xOld;
  FieldContainer<Scalar> xTem;  
  FieldContainer<Scalar> jacobian;
  FieldContainer<Scalar> jacobInv;
  FieldContainer<Scalar> error; 
  FieldContainer<Scalar> cellCenter(spaceDim);
  
  // Default: map (C,P,D) array of physical pt. sets to (C,P,D) array. Requires (C,P,D) temp arrays and (C,P,D,D) Jacobians.
  if(whichCell == -1){
    numPoints = physPoints.dimension(1);
    numCells = cellWorkset.dimension(0);
    xOld.resize(numCells, numPoints, spaceDim);
    xTem.resize(numCells, numPoints, spaceDim);  
    jacobian.resize(numCells,numPoints, spaceDim, spaceDim);
    jacobInv.resize(numCells,numPoints, spaceDim, spaceDim);
    error.resize(numCells,numPoints); 
    // Set initial guess to xOld
    for(int c = 0; c < numCells; c++){
      for(int p = 0; p < numPoints; p++){
        for(int d = 0; d < spaceDim; d++){
          xOld(c, p, d) = initGuess(c, p, d);
        }// d
      }// p
    }// c
  }
  // Custom: map (P,D) array of physical pts. to (P,D) array. Requires (P,D) temp arrays and (P,D,D) Jacobians.
  else {
    numPoints = physPoints.dimension(0);
    xOld.resize(numPoints, spaceDim);
    xTem.resize(numPoints, spaceDim);  
    jacobian.resize(numPoints, spaceDim, spaceDim);
    jacobInv.resize(numPoints, spaceDim, spaceDim);
    error.resize(numPoints); 
    // Set initial guess to xOld
    for(int p = 0; p < numPoints; p++){
      for(int d = 0; d < spaceDim; d++){
        xOld(p, d) = initGuess(p, d);
      }// d
    }// p
  }
  
  
  // Newton method to solve the equation F(refPoints) - physPoints = 0:
  // refPoints = xOld - DF^{-1}(xOld)*(F(xOld) - physPoints) = xOld + DF^{-1}(xOld)*(physPoints - F(xOld))
  for(int iter = 0; iter < INTREPID_MAX_NEWTON; ++iter) {
    
    // Jacobians at the old iterates and their inverses. 
    setJacobian(jacobian, xOld, cellWorkset, cellTopo, whichCell);
    setJacobianInv(jacobInv, jacobian);
        
    // The Newton step.
    mapToPhysicalFrame( xTem, xOld, cellWorkset, cellTopo, whichCell );      // xTem <- F(xOld)
    RealSpaceTools<Scalar>::subtract( xTem, physPoints, xTem );        // xTem <- physPoints - F(xOld)
    RealSpaceTools<Scalar>::matvec( refPoints, jacobInv, xTem);        // refPoints <- DF^{-1}( physPoints - F(xOld) )
    RealSpaceTools<Scalar>::add( refPoints, xOld );                    // refPoints <- DF^{-1}( physPoints - F(xOld) ) + xOld
    
    // l2 error (Euclidean distance) between old and new iterates: |xOld - xNew|
    RealSpaceTools<Scalar>::subtract( xTem, xOld, refPoints );
    RealSpaceTools<Scalar>::vectorNorm( error, xTem, NORM_TWO );
    
    // Average L2 error for a multiple sets of physical points: error is rank-2 (C,P) array 
    double totalError;
    if(whichCell == -1) {
      FieldContainer<Scalar> cellWiseError(numCells);
      // error(C,P) -> cellWiseError(P)
      RealSpaceTools<Scalar>::vectorNorm( cellWiseError, error, NORM_ONE );
      totalError = RealSpaceTools<Scalar>::vectorNorm( cellWiseError, NORM_ONE );
    }
    //Average L2 error for a single set of physical points: error is rank-1 (P) array
    else{
      totalError = RealSpaceTools<Scalar>::vectorNorm( error, NORM_ONE );   
      totalError = totalError;
    }
    
    // Stopping criterion:
    if (totalError < INTREPID_TOL) {
      break;
    } 
    else if ( iter > INTREPID_MAX_NEWTON) {
      INTREPID_VALIDATE(std::cout << " Intrepid::CellTools::mapToReferenceFrameInitGuess failed to converge to desired tolerance within " 
                      << INTREPID_MAX_NEWTON  << " iterations\n" );
      break;
    }
    
    // initialize next Newton step
    xOld = refPoints;
  } // for(iter)
}



template<class Scalar>
template<class ArraySubcellPoint, class ArrayParamPoint>
void CellTools<Scalar>::mapToReferenceSubcell(ArraySubcellPoint     &       refSubcellPoints,
                                              const ArrayParamPoint &       paramPoints,
                                              const int                     subcellDim,
                                              const int                     subcellOrd,
                                              const shards::CellTopology &  parentCell){
  
  int cellDim = parentCell.getDimension();
  int numPts  = paramPoints.dimension(0);

#ifdef HAVE_INTREPID_DEBUG
  TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): the specified cell topology does not have a reference cell.");
  
  TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): method defined only for 1 and 2-dimensional subcells.");  
  
  TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): subcell ordinal out of range.");
  
  // refSubcellPoints is rank-2 (P,D1), D1 = cell dimension
  std::string errmsg = ">>> ERROR (Intrepid::mapToReferenceSubcell):";
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, refSubcellPoints, 2,2), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, refSubcellPoints, 1, cellDim, cellDim), std::invalid_argument, errmsg);
                    
  // paramPoints is rank-2 (P,D2) with D2 = subcell dimension
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, paramPoints, 2,2), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, paramPoints, 1, subcellDim, subcellDim), std::invalid_argument, errmsg);    
  
  // cross check: refSubcellPoints and paramPoints: dimension 0 must match
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, refSubcellPoints, 0,  paramPoints, 0), std::invalid_argument, errmsg);      
#endif
  
  
  // Get the subcell map, i.e., the coefficients of the parametrization function for the subcell
  const FieldContainer<double>& subcellMap = getSubcellParametrization(subcellDim, parentCell);

  // Apply the parametrization map to every point in parameter domain
  if(subcellDim == 2) {
    for(int pt = 0; pt < numPts; pt++){
      double u = paramPoints(pt,0);
      double v = paramPoints(pt,1);
      
      // map_dim(u,v) = c_0(dim) + c_1(dim)*u + c_2(dim)*v because both Quad and Tri ref faces are affine!
      for(int  dim = 0; dim < cellDim; dim++){
        refSubcellPoints(pt, dim) = subcellMap(subcellOrd, dim, 0) + \
                                    subcellMap(subcellOrd, dim, 1)*u + \
                                    subcellMap(subcellOrd, dim, 2)*v;
      }
    }
  }
  else if(subcellDim == 1) {    
    for(int pt = 0; pt < numPts; pt++){
      for(int dim = 0; dim < cellDim; dim++) {
        refSubcellPoints(pt, dim) = subcellMap(subcellOrd, dim, 0) + subcellMap(subcellOrd, dim, 1)*paramPoints(pt,0);
      }
    }
  }
  else{
    TEST_FOR_EXCEPTION( !( (subcellDim == 1) || (subcellDim == 2) ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): method defined only for 1 and 2-subcells");
  }
}



template<class Scalar>
template<class ArrayEdgeTangent>
void CellTools<Scalar>::getReferenceEdgeTangent(ArrayEdgeTangent &            refEdgeTangent,
                                                const int &                   edgeOrd,
                                                const shards::CellTopology &  parentCell){
  
  int spaceDim  = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  
  TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): two or three-dimensional parent cell required");
  
  TEST_FOR_EXCEPTION( !( (0 <= edgeOrd) && (edgeOrd < (int)parentCell.getSubcellCount(1) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): edge ordinal out of bounds");  
  
  TEST_FOR_EXCEPTION( !( refEdgeTangent.size() == spaceDim ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): output array size is required to match space dimension");  
#endif
  
  // Edge parametrizations are computed in setSubcellParametrization and stored in rank-3 array 
  // (subcOrd, coordinate, coefficient)
  const FieldContainer<double>& edgeMap = getSubcellParametrization(1, parentCell);
  
  // All ref. edge maps have affine coordinate functions: f_dim(u) = C_0(dim) + C_1(dim)*u, 
  //                                     => edge Tangent: -> C_1(*)
  refEdgeTangent(0) = edgeMap(edgeOrd, 0, 1);
  refEdgeTangent(1) = edgeMap(edgeOrd, 1, 1);
  
  // Skip last coordinate for 2D parent cells
  if(spaceDim == 3) {
    refEdgeTangent(2) = edgeMap(edgeOrd, 2, 1);  
  }
}



template<class Scalar>
template<class ArrayFaceTangentU, class ArrayFaceTangentV>
void CellTools<Scalar>::getReferenceFaceTangents(ArrayFaceTangentU &           uTan,
                                                 ArrayFaceTangentV &           vTan,
                                                 const int &                   faceOrd,
                                                 const shards::CellTopology &  parentCell){
  
#ifdef HAVE_INTREPID_DEBUG
  int spaceDim  = parentCell.getDimension();
  TEST_FOR_EXCEPTION( !(spaceDim == 3), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): three-dimensional parent cell required");  
  
  TEST_FOR_EXCEPTION( !( (0 <= faceOrd) && (faceOrd < (int)parentCell.getSubcellCount(2) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): face ordinal out of bounds");  

  TEST_FOR_EXCEPTION( !( (uTan.rank() == 1)  && (vTan.rank() == 1) ), std::invalid_argument,  
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): rank = 1 required for output arrays"); 
  
  TEST_FOR_EXCEPTION( !( uTan.dimension(0) == spaceDim ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): dim0 (spatial dim) must match that of parent cell");  

  TEST_FOR_EXCEPTION( !( vTan.dimension(0) == spaceDim ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): dim0 (spatial dim) must match that of parent cell");  
#endif
  
  // Face parametrizations are computed in setSubcellParametrization and stored in rank-3 array 
  // (subcOrd, coordinate, coefficient): retrieve this array
  const FieldContainer<double>& faceMap = getSubcellParametrization(2, parentCell);
  
  /*  All ref. face maps have affine coordinate functions:  f_dim(u,v) = C_0(dim) + C_1(dim)*u + C_2(dim)*v
   *                           `   => Tangent vectors are:  uTan -> C_1(*);    vTan -> C_2(*)
   */
    // set uTan -> C_1(*)
    uTan(0) = faceMap(faceOrd, 0, 1);
    uTan(1) = faceMap(faceOrd, 1, 1);
    uTan(2) = faceMap(faceOrd, 2, 1);
    
     // set vTan -> C_2(*)
    vTan(0) = faceMap(faceOrd, 0, 2);
    vTan(1) = faceMap(faceOrd, 1, 2);
    vTan(2) = faceMap(faceOrd, 2, 2);
}



template<class Scalar>
template<class ArraySideNormal>
void CellTools<Scalar>::getReferenceSideNormal(ArraySideNormal &             refSideNormal,
                                               const int &                   sideOrd,
                                               const shards::CellTopology &  parentCell){
  int spaceDim  = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
  
  TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getReferenceSideNormal): two or three-dimensional parent cell required");
  
  // Check side ordinal: by definition side is subcell whose dimension = spaceDim-1
  TEST_FOR_EXCEPTION( !( (0 <= sideOrd) && (sideOrd < (int)parentCell.getSubcellCount(spaceDim - 1) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceSideNormal): side ordinal out of bounds");    
#endif  
  
  if(spaceDim == 2){
    
    // 2D parent cells: side = 1D subcell (edge), call the edge tangent method and rotate tangents
    getReferenceEdgeTangent(refSideNormal, sideOrd, parentCell);
    
    // rotate t(t1, t2) to get n(t2, -t1) so that (n,t) is positively oriented: det(n1,n2/t1,t2)>0
    Scalar temp = refSideNormal(0);
    refSideNormal(0) = refSideNormal(1);
    refSideNormal(1) = -temp;
  }
  else{
    // 3D parent cell: side = 2D subcell (face), call the face normal method.
    getReferenceFaceNormal(refSideNormal, sideOrd, parentCell);
  }
}
  


template<class Scalar>
template<class ArrayFaceNormal>
void CellTools<Scalar>::getReferenceFaceNormal(ArrayFaceNormal &             refFaceNormal,
                                               const int &                   faceOrd,
                                               const shards::CellTopology &  parentCell){
  int spaceDim  = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  
  TEST_FOR_EXCEPTION( !(spaceDim == 3), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): three-dimensional parent cell required");  
  
  TEST_FOR_EXCEPTION( !( (0 <= faceOrd) && (faceOrd < (int)parentCell.getSubcellCount(2) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): face ordinal out of bounds");  
  
  TEST_FOR_EXCEPTION( !( refFaceNormal.rank() == 1 ), std::invalid_argument,  
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): rank = 1 required for output array"); 
    
  TEST_FOR_EXCEPTION( !( refFaceNormal.dimension(0) == spaceDim ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): dim0 (spatial dim) must match that of parent cell");  
#endif

  // Reference face normal = vector product of reference face tangents. Allocate temp FC storage:
  FieldContainer<Scalar> uTan(spaceDim);
  FieldContainer<Scalar> vTan(spaceDim);
  getReferenceFaceTangents(uTan, vTan, faceOrd, parentCell);
  
  // Compute the vector product of the reference face tangents:
  RealSpaceTools<Scalar>::vecprod(refFaceNormal, uTan, vTan);
}



template<class Scalar>
template<class ArrayEdgeTangent, class ArrayJac>
void CellTools<Scalar>::getPhysicalEdgeTangents(ArrayEdgeTangent &            edgeTangents,
                                                const ArrayJac &              worksetJacobians,
                                                const int &                   worksetEdgeOrd,
                                                const shards::CellTopology &  parentCell){
  int worksetSize = worksetJacobians.dimension(0);
  int edgePtCount = worksetJacobians.dimension(1); 
  int pCellDim    = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalEdgeTangents):";
  
  TEST_FOR_EXCEPTION( !( (pCellDim == 3) || (pCellDim == 2) ), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getPhysicalEdgeTangents): 2D or 3D parent cell required");  
  
  // (1) edgeTangents is rank-3 (C,P,D) and D=2, or 3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, edgeTangents, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, edgeTangents, 2, 2,3), std::invalid_argument, errmsg);
 
  // (2) worksetJacobians in rank-4 (C,P,D,D) and D=2, or 3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 2,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 2,3), std::invalid_argument, errmsg);
  
  // (4) cross-check array dimensions: edgeTangents (C,P,D) vs. worksetJacobians (C,P,D,D)
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, edgeTangents, 0,1,2,2,  worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);      
  
#endif
  
  // Temp storage for constant reference edge tangent: rank-1 (D) arrays
  FieldContainer<double> refEdgeTan(pCellDim);
  getReferenceEdgeTangent(refEdgeTan, worksetEdgeOrd, parentCell);
  
  // Loop over workset faces and edge points
  for(int pCell = 0; pCell < worksetSize; pCell++){
    for(int pt = 0; pt < edgePtCount; pt++){
      
      // Apply parent cell Jacobian to ref. edge tangent
      for(int i = 0; i < pCellDim; i++){
        edgeTangents(pCell, pt, i) = 0.0;
        for(int j = 0; j < pCellDim; j++){
          edgeTangents(pCell, pt, i) +=  worksetJacobians(pCell, pt, i, j)*refEdgeTan(j);
        }// for j
      }// for i
    }// for pt
  }// for pCell
}



template<class Scalar>
template<class ArrayFaceTangentU, class ArrayFaceTangentV, class ArrayJac>
void CellTools<Scalar>::getPhysicalFaceTangents(ArrayFaceTangentU &           faceTanU,
                                                ArrayFaceTangentV &           faceTanV,
                                                const ArrayJac &              worksetJacobians,
                                                const int &                   worksetFaceOrd,
                                                const shards::CellTopology &  parentCell){
  int worksetSize = worksetJacobians.dimension(0);
  int facePtCount = worksetJacobians.dimension(1); 
  int pCellDim    = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalFaceTangents):";

  TEST_FOR_EXCEPTION( !(pCellDim == 3), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getPhysicalFaceTangents): three-dimensional parent cell required");  
  
  // (1) faceTanU and faceTanV are rank-3 (C,P,D) and D=3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceTanU, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceTanU, 2, 3,3), std::invalid_argument, errmsg);

  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceTanV, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceTanV, 2, 3,3), std::invalid_argument, errmsg);

  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceTanU,  faceTanV), std::invalid_argument, errmsg);      

  // (3) worksetJacobians in rank-4 (C,P,D,D) and D=3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 3,3), std::invalid_argument, errmsg);

  // (4) cross-check array dimensions: faceTanU (C,P,D) vs. worksetJacobians (C,P,D,D)
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceTanU, 0,1,2,2,  worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);      

#endif
    
  // Temp storage for the pair of constant ref. face tangents: rank-1 (D) arrays
  FieldContainer<double> refFaceTanU(pCellDim);
  FieldContainer<double> refFaceTanV(pCellDim);
  getReferenceFaceTangents(refFaceTanU, refFaceTanV, worksetFaceOrd, parentCell);

  // Loop over workset faces and face points
  for(int pCell = 0; pCell < worksetSize; pCell++){
    for(int pt = 0; pt < facePtCount; pt++){
      
      // Apply parent cell Jacobian to ref. face tangents
      for(int dim = 0; dim < pCellDim; dim++){
        faceTanU(pCell, pt, dim) = 0.0;
        faceTanV(pCell, pt, dim) = 0.0;
        
        // Unroll loops: parent cell dimension can only be 3
        faceTanU(pCell, pt, dim) = \
          worksetJacobians(pCell, pt, dim, 0)*refFaceTanU(0) + \
          worksetJacobians(pCell, pt, dim, 1)*refFaceTanU(1) + \
          worksetJacobians(pCell, pt, dim, 2)*refFaceTanU(2);
        faceTanV(pCell, pt, dim) = \
          worksetJacobians(pCell, pt, dim, 0)*refFaceTanV(0) + \
          worksetJacobians(pCell, pt, dim, 1)*refFaceTanV(1) + \
          worksetJacobians(pCell, pt, dim, 2)*refFaceTanV(2);
      }// for dim
    }// for pt
  }// for pCell
}


template<class Scalar>
template<class ArraySideNormal, class ArrayJac>
void CellTools<Scalar>::getPhysicalSideNormals(ArraySideNormal &             sideNormals,
                                               const ArrayJac &              worksetJacobians,
                                               const int &                   worksetSideOrd,
                                               const shards::CellTopology &  parentCell){
  int worksetSize = worksetJacobians.dimension(0);
  int sidePtCount = worksetJacobians.dimension(1);   
  int spaceDim  = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getPhysicalSideNormals): two or three-dimensional parent cell required");
  
  // Check side ordinal: by definition side is subcell whose dimension = spaceDim-1
  TEST_FOR_EXCEPTION( !( (0 <= worksetSideOrd) && (worksetSideOrd < (int)parentCell.getSubcellCount(spaceDim - 1) ) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::getPhysicalSideNormals): side ordinal out of bounds");  
#endif  
  
  if(spaceDim == 2){

    // 2D parent cells: side = 1D subcell (edge), call the edge tangent method and rotate tangents
    getPhysicalEdgeTangents(sideNormals, worksetJacobians, worksetSideOrd, parentCell);
    
    // rotate t(t1, t2) to get n(t2, -t1) so that (n,t) is positively oriented: det(n1,n2/t1,t2)>0
    for(int cell = 0; cell < worksetSize; cell++){
      for(int pt = 0; pt < sidePtCount; pt++){
        Scalar temp = sideNormals(cell, pt, 0);
        sideNormals(cell, pt, 0) = sideNormals(cell, pt, 1);
        sideNormals(cell, pt, 1) = -temp;
      }// for pt
    }// for cell
  }
  else{
    // 3D parent cell: side = 2D subcell (face), call the face normal method.
    getPhysicalFaceNormals(sideNormals, worksetJacobians, worksetSideOrd, parentCell);
  }
}
  
  
  
template<class Scalar>
template<class ArrayFaceNormal, class ArrayJac>
void CellTools<Scalar>::getPhysicalFaceNormals(ArrayFaceNormal &             faceNormals,
                                               const ArrayJac &              worksetJacobians,
                                               const int &                   worksetFaceOrd,
                                               const shards::CellTopology &  parentCell){
  int worksetSize = worksetJacobians.dimension(0);
  int facePtCount = worksetJacobians.dimension(1); 
  int pCellDim    = parentCell.getDimension();
  
#ifdef HAVE_INTREPID_DEBUG
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalFaceNormals):";
  
  TEST_FOR_EXCEPTION( !(pCellDim == 3), std::invalid_argument, 
                      ">>> ERROR (Intrepid::CellTools::getPhysicalFaceNormals): three-dimensional parent cell required");  
  
  // (1) faceNormals is rank-3 (C,P,D) and D=3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceNormals, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceNormals, 2, 3,3), std::invalid_argument, errmsg);
  
  // (3) worksetJacobians in rank-4 (C,P,D,D) and D=3 is required
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 3,3), std::invalid_argument, errmsg);
  TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 3,3), std::invalid_argument, errmsg);
  
  // (4) cross-check array dimensions: faceNormals (C,P,D) vs. worksetJacobians (C,P,D,D)
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceNormals, 0,1,2,2,  worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);        
#endif
  
  // Temp storage for physical face tangents: rank-3 (C,P,D) arrays
  FieldContainer<double> faceTanU(worksetSize, facePtCount, pCellDim);
  FieldContainer<double> faceTanV(worksetSize, facePtCount, pCellDim);
  getPhysicalFaceTangents(faceTanU, faceTanV, worksetJacobians, worksetFaceOrd, parentCell);
  
  // Compute the vector product of the physical face tangents:
  RealSpaceTools<Scalar>::vecprod(faceNormals, faceTanU, faceTanV);
  
  
}

//============================================================================================//
//                                                                                            //
//                                        Inclusion tests                                     //
//                                                                                            //
//============================================================================================//


template<class Scalar>
int CellTools<Scalar>::checkPointInclusion(const Scalar*                 point,
                                           const int                     pointDim,
                                           const shards::CellTopology &  cellTopo,
                                           const double &                threshold) {
#ifdef HAVE_INTREPID_DEBUG
  TEST_FOR_EXCEPTION( !(pointDim == (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::checkPointInclusion): Point and cell dimensions do not match. ");
#endif
  int testResult = 1;
  
  // Using these values in the tests effectievly inflates the reference element to a larger one
  double minus_one = -1.0 - threshold;
  double plus_one  =  1.0 + threshold;
  double minus_zero = - threshold;
  
  // A cell with extended topology has the same reference cell as a cell with base topology. 
  // => testing for inclusion in a reference Triangle<> and a reference Triangle<6> relies on 
  // on the same set of inequalities. To eliminate unnecessary cases we switch on the base topology
  unsigned key = cellTopo.getBaseTopology() -> key ;
  switch( key ) {
    
    case shards::Line<>::key :
      if( !(minus_one <= point[0] && point[0] <= plus_one))  testResult = 0;
      break;
      
    case shards::Triangle<>::key : {
      Scalar distance = std::max( std::max( -point[0], -point[1] ), point[0] + point[1] - 1.0 );
      if( distance > threshold ) testResult = 0;
      break;
    }
      
    case shards::Quadrilateral<>::key :
      if(!( (minus_one <= point[0] && point[0] <= plus_one) && \
            (minus_one <= point[1] && point[1] <= plus_one) ) ) testResult = 0;   
      break;
      
    case shards::Tetrahedron<>::key : {
      Scalar distance = std::max(  std::max(-point[0],-point[1]), \
                                   std::max(-point[2], point[0] + point[1] + point[2] - 1)  );
      if( distance > threshold ) testResult = 0;
      break;
    }
      
    case shards::Hexahedron<>::key :
      if(!((minus_one <= point[0] && point[0] <= plus_one) && \
           (minus_one <= point[1] && point[1] <= plus_one) && \
           (minus_one <= point[2] && point[2] <= plus_one)))  \
             testResult = 0;
      break;
      
    // The base of the reference prism is the same as the reference triangle => apply triangle test
    // to X and Y coordinates and test whether Z is in [-1,1]
    case shards::Wedge<>::key : {
      Scalar distance = std::max( std::max( -point[0], -point[1] ), point[0] + point[1] - 1 );
      if( distance > threshold  || \
          point[2] < minus_one || point[2] > plus_one) \
            testResult = 0;
      break;
    }

    // The base of the reference pyramid is the same as the reference quad cell => a horizontal plane
    // through a point P(x,y,z) intersects the pyramid at a quadrilateral that equals the base quad 
    // scaled by (1-z) => P(x,y,z) is inside the pyramid <=> (x,y) is in [-1+z,1-z]^2 && 0 <= Z <= 1 
    case shards::Pyramid<>::key : {
      Scalar left  = minus_one + point[2];
      Scalar right = plus_one  - point[2];
      if(!( (left       <= point[0] && point[0] <= right) && \
            (left       <= point[1] && point[1] <= right) && 
            (minus_zero <= point[2] && point[2] <= plus_one) ) )  \
             testResult = 0;  
      break;
    }
      
    default:
      TEST_FOR_EXCEPTION( !( (key == shards::Line<>::key ) ||
                             (key == shards::Triangle<>::key)  ||
                             (key == shards::Quadrilateral<>::key) ||
                             (key == shards::Tetrahedron<>::key)  ||
                             (key == shards::Hexahedron<>::key)  ||
                             (key == shards::Wedge<>::key)  ||
                             (key == shards::Pyramid<>::key) ),
                          std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::checkPointInclusion): Invalid cell topology. ");
  }
  return testResult;
}



template<class Scalar>
template<class ArrayPoint>
int CellTools<Scalar>::checkPointsetInclusion(const ArrayPoint&             points,
                                              const shards::CellTopology &  cellTopo, 
                                              const double &                threshold) {
  
  int rank = points.rank();  
  
#ifdef HAVE_INTREPID_DEBUG
  TEST_FOR_EXCEPTION( !( (1 <= points.rank() ) && (points.rank() <= 3) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::checkPointsetInclusion): rank-1, 2 or 3 required for input points array. ");

  // The last dimension of points array at (rank - 1) is the spatial dimension. Must equal the cell dimension.
  TEST_FOR_EXCEPTION( !( points.dimension(rank - 1) == (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::checkPointsetInclusion): Point and cell dimensions do not match. ");
#endif
  
  // create temp output array depending on the rank of the input array 
  FieldContainer<int> inRefCell;
  switch(rank) {
    case 1: inRefCell.resize(1); break;
    case 2: inRefCell.resize( points.dimension(0) ); break;
    case 3: inRefCell.resize( points.dimension(0), points.dimension(1) ); break;
  }

  // Call the inclusion method which returns inclusion results for all points
  checkPointwiseInclusion(inRefCell, points, cellTopo, threshold);
  
  // Check if any points were outside, break when finding the first one
  int allInside = 1;
  for(int i = 0; i < inRefCell.size(); i++ ){
    if (inRefCell[i] == 0) {
      allInside = 0;
      break;
    }
  }
   return allInside;
}



template<class Scalar>
template<class ArrayIncl, class ArrayPoint>
void CellTools<Scalar>::checkPointwiseInclusion(ArrayIncl &                   inRefCell,
                                                const ArrayPoint &            points,
                                                const shards::CellTopology &  cellTopo, 
                                                const double &                threshold) {
  int apRank   = points.rank();
  
#ifdef HAVE_INTREPID_DEBUG
  
  // Verify that points and inRefCell have correct ranks and dimensions
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion):";
  if(points.rank() == 1) {
    TEST_FOR_EXCEPTION( !(inRefCell.rank() == 1 ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1 input array requires rank-1 output array.");  
    TEST_FOR_EXCEPTION( !(inRefCell.dimension(0) == 1), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1 input array requires dim0 = 1 for output array.");  
  }
  else if(points.rank() == 2){
    TEST_FOR_EXCEPTION( !(inRefCell.rank() == 1 ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-2 input array requires rank-1 output array.");  
    // dimension 0 of the arrays must match
    TEST_FOR_EXCEPTION( !requireDimensionMatch( errmsg, inRefCell, 0,  points, 0), std::invalid_argument, errmsg);
  }
  else if (points.rank() == 3) {
    TEST_FOR_EXCEPTION( !(inRefCell.rank() == 2 ), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-3 input array requires rank-2 output array.");  
    // dimensions 0 and 1 of the arrays must match
    TEST_FOR_EXCEPTION( !requireDimensionMatch( errmsg, inRefCell, 0,1,  points, 0,1), std::invalid_argument, errmsg);
  }
  else{
    TEST_FOR_EXCEPTION( !( (points.rank() == 1) || (points.rank() == 2) || (points.rank() == 3) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1, 2 or 3 required for input points array. ");      
  }    
  
  // The last dimension of points array at (rank - 1) is the spatial dimension. Must equal the cell dimension.
  TEST_FOR_EXCEPTION( !( points.dimension(apRank - 1) == (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): Point and cell dimensions do not match. ");
  
#endif
  
  // Initializations
  int dim0     = 1;
  int dim1     = 1;
  int pointDim = 0;
  switch(apRank) {
    case 1:
      pointDim = points.dimension(0);
      break;
    case 2:
      dim1     = points.dimension(0);
      pointDim = points.dimension(1);
      break;
    case 3:
      dim0     = points.dimension(0);
      dim1     = points.dimension(1);
      pointDim = points.dimension(2);
      break;
    default:
      TEST_FOR_EXCEPTION( !( (1 <= points.rank() ) && (points.rank() <= 3) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1, 2 or 3 required for input points array. ");      
  }// switch
  
  
  // This method can handle up to rank-3 input arrays. The spatial dim must be the last dimension. 
  // The method uses [] accessor because array rank is determined at runtime and the appropriate
  // (i,j,..,k) accessor is not known. Use of [] requires the following offsets:
  //    for input array  = i0*dim1*pointDim + i1*dim1  (computed in 2 pieces: inPtr0 and inPtr1, resp)
  //    for output array = i0*dim1                     (computed in one piece: outPtr0)
  int inPtr0  = 0;
  int inPtr1  = 0;
  int outPtr0 = 0;
  Scalar point[3] = {0.0, 0.0, 0.0};
  
  for(int i0 = 0; i0 < dim0; i0++){
    outPtr0 = i0*dim1;
    inPtr0  = outPtr0*pointDim;
    
    for(int i1 = 0; i1 < dim1; i1++) {
      inPtr1 = inPtr0 + i1*pointDim;      
      point[0] = points[inPtr1];
      if(pointDim > 1) {
        point[1] = points[inPtr1 + 1];
        if(pointDim > 2) {
          point[2] = points[inPtr1 + 2];
          if(pointDim > 3) {
            TEST_FOR_EXCEPTION( !( (1 <= pointDim) && (pointDim <= 3)), std::invalid_argument, 
                                ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): Input array specifies invalid point dimension ");      
          }
        }
      } //if(pointDim > 1)
      inRefCell[outPtr0 + i1] = checkPointInclusion(point, pointDim, cellTopo, threshold);
    } // for (i1)
  } // for(i2)

}  


template<class Scalar>
template<class ArrayIncl, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::checkPointwiseInclusion(ArrayIncl &                   inCell,
                                                const ArrayPoint &            points,
                                                const ArrayCell &             cellWorkset,
                                                const shards::CellTopology &  cell,
                                                const int &                   whichCell, 
                                                const double &                threshold)
{
  INTREPID_VALIDATE( validateArguments_checkPointwiseInclusion(inCell, points, cellWorkset, whichCell, cell) );
  
  // For cell topologies with reference cells this test maps the points back to the reference cell
  // and uses the method for reference cells
  unsigned baseKey = cell.getBaseTopology() -> key;
  
  switch(baseKey){
    
    case shards::Line<>::key :
    case shards::Triangle<>::key:
    case shards::Quadrilateral<>::key :
    case shards::Tetrahedron<>::key :
    case shards::Hexahedron<>::key :
    case shards::Wedge<>::key :
    case shards::Pyramid<>::key :
      {
        FieldContainer<Scalar> refPoints;
        
        if(points.rank() == 2){
          refPoints.resize(points.dimension(0), points.dimension(1) );
          mapToReferenceFrame(refPoints, points, cellWorkset, cell, whichCell);
          checkPointwiseInclusion(inCell, refPoints, cell, threshold );
        }
        else if(points.rank() == 3){
          refPoints.resize(points.dimension(0), points.dimension(1), points.dimension(2) );
          mapToReferenceFrame(refPoints, points, cellWorkset, cell, whichCell);
          checkPointwiseInclusion(inCell, refPoints, cell, threshold );          
        }
        break;
      }
    default: 
      TEST_FOR_EXCEPTION( true, std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): cell topology not supported");
  }// switch
  
}


//============================================================================================//
//                                                                                            //
//                  Validation of input/output arguments for CellTools methods                //
//                                                                                            //
//============================================================================================//

template<class Scalar>
template<class ArrayJac, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_setJacobian(const ArrayJac    &          jacobian,
                                                      const ArrayPoint  &          points,
                                                      const ArrayCell   &          cellWorkset,
                                                      const int &                  whichCell,
                                                      const shards::CellTopology & cellTopo){
  
  // Validate cellWorkset array
  TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 3 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) >= 1 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of cellWorkset array  does not match cell dimension");
    
  // validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
  TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): whichCell = -1 or a valid cell ordinal is required.");
  
  
  // Validate points array: can be rank-2 (P,D) or rank-3 (C,P,D)
  // If rank-2: admissible jacobians: rank-3 (P,D,D) or rank-4 (C,P,D,D); admissible whichCell: -1 (default) or cell ordinal.
  if(points.rank() == 2) {
    TEST_FOR_EXCEPTION( (points.dimension(0) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of points) >= 1 required for points array ");
    
    TEST_FOR_EXCEPTION( (points.dimension(1) != (int)cellTopo.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (spatial dimension) of points array does not match cell dimension");
    
    // Validate the output array for the Jacobian: if whichCell == -1 all Jacobians are computed, rank-4 (C,P,D,D) required
    if(whichCell == -1) {
      TEST_FOR_EXCEPTION( (jacobian.rank() != 4), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 4 required for jacobian array");
      
      TEST_FOR_EXCEPTION( (jacobian.dimension(0) != cellWorkset.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of jacobian array must equal dim 0 of cellWorkset array");
      
      TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) of jacobian array must equal dim 0 of points array");

      TEST_FOR_EXCEPTION( (jacobian.dimension(2) != points.dimension(1)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of jacobian array must equal dim 1 of points array");
      
      TEST_FOR_EXCEPTION( !(jacobian.dimension(2) == jacobian.dimension(3) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 = dim 3 (same spatial dimensions) required for jacobian array. ");
      
      TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(3) ) && (jacobian.dimension(3) < 4) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 and dim 3 (spatial dimensions) must be between 1 and 3. ");
    }     
    // A single cell Jacobian is computed when whichCell != -1 (whichCell has been already validated), rank-3 (P,D,D) required
    else {
      TEST_FOR_EXCEPTION( (jacobian.rank() != 3), std::invalid_argument, 
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 3 required for jacobian array");
      
      TEST_FOR_EXCEPTION( (jacobian.dimension(0) != points.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of points) of jacobian array must equal dim 0 of points array");

      TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(1)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (spatial dimension) of jacobian array must equal dim 1 of points array");
      
      TEST_FOR_EXCEPTION( !(jacobian.dimension(1) == jacobian.dimension(2) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 = dim 2 (same spatial dimensions) required for jacobian array. ");
      
      TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(1) ) && (jacobian.dimension(1) < 4) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 and dim 2 (spatial dimensions) must be between 1 and 3. ");
    }
  }
  // Point array is rank-3 (C,P,D): requires whichCell = -1 and rank-4 (C,P,D,D) jacobians
  else if(points.rank() ==3){
    std::string errmsg  = ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian):";
    TEST_FOR_EXCEPTION( (points.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of points array must equal dim 0 of cellWorkset array");

    TEST_FOR_EXCEPTION( (points.dimension(1) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) >= 1 required for points array ");
    
    TEST_FOR_EXCEPTION( (points.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of points array does not match cell dimension");
    
    TEST_FOR_EXCEPTION( (whichCell != -1), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): default value whichCell=-1 required for rank-3 input points");
    
    // rank-4 (C,P,D,D) jacobian required for rank-3 (C,P,D) input points
    TEST_FOR_EXCEPTION( !requireRankRange(errmsg, jacobian,  4, 4), std::invalid_argument,errmsg);
    
    TEST_FOR_EXCEPTION( (jacobian.dimension(0) != points.dimension(0)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of jacobian array must equal dim 0 of points array");
    
    TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(1)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) of jacobian array must equal dim 1 of points array");
  
    TEST_FOR_EXCEPTION( (jacobian.dimension(2) != points.dimension(2)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of jacobian array must equal dim 2 of points array");
    
    TEST_FOR_EXCEPTION( !(jacobian.dimension(2) == jacobian.dimension(3) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 = dim 3 (same spatial dimensions) required for jacobian array. ");
    
    TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(3) ) && (jacobian.dimension(3) < 4) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 and dim 3 (spatial dimensions) must be between 1 and 3. ");
  }
  else {
    TEST_FOR_EXCEPTION( !( (points.rank() == 2) && (points.rank() ==3) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 2 or 3 required for points array");
  }  
}



template<class Scalar>
template<class ArrayJacInv, class ArrayJac>
void CellTools<Scalar>::validateArguments_setJacobianInv(const ArrayJacInv & jacobianInv,
                                                         const ArrayJac &    jacobian)
{
  // Validate input jacobian array: admissible ranks & dimensions are: 
  // - rank-4 with dimensions (C,P,D,D), or rank-3 with dimensions (P,D,D).
  int jacobRank = jacobian.rank();
  TEST_FOR_EXCEPTION( !( (jacobRank == 4) || (jacobRank == 3) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): rank = 4 or 3 required for jacobian array. ");
  
  // Verify correctness of spatial dimensions - they are the last two dimensions of the array: rank-2 and rank-1
  TEST_FOR_EXCEPTION( !(jacobian.dimension(jacobRank - 1) == jacobian.dimension(jacobRank - 2) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-2) = dim(rank-2) (same spatial dimensions) required for jacobian array. ");
  
  TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(jacobRank - 1) ) && (jacobian.dimension(jacobRank - 1) < 4) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-1) and dim(rank-2) (spatial dimensions) must be between 1 and 3. ");
  
  // Validate output jacobianInv array: must have the same rank and dimensions as the input array.
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv):";

  TEST_FOR_EXCEPTION( !(requireRankMatch(errmsg, jacobianInv, jacobian) ), std::invalid_argument, errmsg);
  
  TEST_FOR_EXCEPTION( !(requireDimensionMatch(errmsg, jacobianInv, jacobian) ), std::invalid_argument, errmsg);
}



template<class Scalar>
template<class ArrayJacDet, class ArrayJac>
void CellTools<Scalar>::validateArguments_setJacobianDetArgs(const ArrayJacDet &  jacobianDet,
                                                             const ArrayJac    &  jacobian)
{
  // Validate input jacobian array: admissible ranks & dimensions are: 
  // - rank-4 with dimensions (C,P,D,D), or rank-3 with dimensions (P,D,D).
  int jacobRank = jacobian.rank();
  TEST_FOR_EXCEPTION( !( (jacobRank == 4) || (jacobRank == 3) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): rank = 4 or 3 required for jacobian array. ");
  
  // Verify correctness of spatial dimensions - they are the last two dimensions of the array: rank-2 and rank-1
  TEST_FOR_EXCEPTION( !(jacobian.dimension(jacobRank - 1) == jacobian.dimension(jacobRank - 2) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-2) = dim(rank-2) (same spatial dimensions) required for jacobian array. ");
  
  TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(jacobRank - 1) ) && (jacobian.dimension(jacobRank - 1) < 4) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-1) and dim(rank-2) (spatial dimensions) must be between 1 and 3. ");

  
  // Validate output jacobianDet array: must be rank-2 with dimensions (C,P) if jacobian was rank-4:
  if(jacobRank == 4){
    TEST_FOR_EXCEPTION( !(jacobianDet.rank() == 2), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): rank = 2 required for jacobianDet if jacobian is rank-4. ");
    
    TEST_FOR_EXCEPTION( !(jacobianDet.dimension(0) == jacobian.dimension(0) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 0 (number of cells) of jacobianDet array must equal dim 0 of jacobian array. ");
    
    TEST_FOR_EXCEPTION( !(jacobianDet.dimension(1) == jacobian.dimension(1) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 1 (number of points) of jacobianDet array must equal dim 1 of jacobian array.");  
  }
  
  // must be rank-1 with dimension (P) if jacobian was rank-3
  else {
    TEST_FOR_EXCEPTION( !(jacobianDet.rank() == 1), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): rank = 1 required for jacobianDet if jacobian is rank-3. ");
    
    TEST_FOR_EXCEPTION( !(jacobianDet.dimension(0) == jacobian.dimension(0) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 0 (number of points) of jacobianDet array must equal dim 0 of jacobian array.");  
  }
}



template<class Scalar>
template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToPhysicalFrame(const ArrayPhysPoint &        physPoints,
                                                             const ArrayRefPoint  &        refPoints,
                                                             const ArrayCell      &        cellWorkset,
                                                             const shards::CellTopology &  cellTopo,
                                                             const int&                    whichCell)
{
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame):";
  
  // Validate cellWorkset array
  TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 3 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) >= 1 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) of cellWorkset array  does not match cell dimension");
  
    
  // validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
  TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): whichCell = -1 or a valid cell ordinal is required.");
  
  // Validate refPoints array: can be rank-2 (P,D) or rank-3 (C,P,D) array
  // If rank-2: admissible output array is (P,D) or (C,P,D); admissible whichCell: -1 (default) or cell ordinal
  if(refPoints.rank() == 2) {
    TEST_FOR_EXCEPTION( (refPoints.dimension(0) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of points) >= 1 required for refPoints array ");
    
    TEST_FOR_EXCEPTION( (refPoints.dimension(1) != (int)cellTopo.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (spatial dimension) of refPoints array does not match cell dimension");

    // Validate output array: whichCell = -1 requires rank-3 array with dimensions (C,P,D)  
    if(whichCell == -1) {
      TEST_FOR_EXCEPTION( ( (physPoints.rank() != 3) && (whichCell == -1) ), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 3 required for physPoints array for the default whichCell value");
      
      TEST_FOR_EXCEPTION( (physPoints.dimension(0) != cellWorkset.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) of physPoints array must equal dim 0 of cellWorkset array");
      
      TEST_FOR_EXCEPTION( (physPoints.dimension(1) != refPoints.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of points) of physPoints array must equal dim 0 of refPoints array"); 
      
      TEST_FOR_EXCEPTION( (physPoints.dimension(2) != (int)cellTopo.getDimension()), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) does not match cell dimension ");  
    }
    // 0 <= whichCell < num cells requires rank-2 (P,D) arrays for both refPoints and physPoints
    else{
      TEST_FOR_EXCEPTION( (physPoints.rank() != 2), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 2 required for physPoints array");
      
      TEST_FOR_EXCEPTION( (physPoints.dimension(0) != refPoints.dimension(0)), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of points) of physPoints array must equal dim 0 of refPoints array"); 
      
      TEST_FOR_EXCEPTION( (physPoints.dimension(1) != (int)cellTopo.getDimension()), std::invalid_argument,
                          ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (spatial dimension) does not match cell dimension ");      
    }
  }
  // refPoints is (C,P,D): requires physPoints to be (C,P,D) and whichCell=-1  (because all cell mappings are applied)
  else if(refPoints.rank() == 3) {
    
    // 1. validate refPoints dimensions and rank
    TEST_FOR_EXCEPTION( (refPoints.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) of refPoints and cellWorkset arraya are required to match ");

    TEST_FOR_EXCEPTION( (refPoints.dimension(1) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of points) >= 1 required for refPoints array ");
    
    TEST_FOR_EXCEPTION( (refPoints.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) of refPoints array does not match cell dimension");
    
    // 2. whichCell  must be -1
    TEST_FOR_EXCEPTION( (whichCell != -1), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): default value is required for rank-3 refPoints array");

    // 3.  physPoints must match rank and dimensions of refPoints
    TEST_FOR_EXCEPTION( !requireRankMatch(errmsg, refPoints, physPoints), std::invalid_argument, errmsg );
    TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, refPoints, physPoints), std::invalid_argument, errmsg);
  }
  // if rank is not 2 or 3 throw exception
  else {
    TEST_FOR_EXCEPTION( !( (refPoints.rank() == 2) || (refPoints.rank() == 3) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 2 or 3 required for refPoints array");
  }
}



template<class Scalar>
template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToReferenceFrame(const ArrayRefPoint  &        refPoints,
                                                              const ArrayPhysPoint &        physPoints,
                                                              const ArrayCell      &        cellWorkset,
                                                              const shards::CellTopology &  cellTopo,
                                                              const int&                    whichCell)
{
  std::string errmsg  = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
  std::string errmsg1 = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
  
  // Validate cellWorkset array
  TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): rank = 3 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 0 (number of cells) >= 1 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 2 (spatial dimension) of cellWorkset array  does not match cell dimension");
    
  // Validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
  TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): whichCell = -1 or a valid cell ordinal is required.");
  
  // Admissible ranks and dimensions of refPoints and physPoints depend on whichCell value:
  // default is to map multiple sets of points to multiple sets of points. (C,P,D) arrays required
  int validRank;
  if(whichCell == -1) {
    validRank = 3;
    errmsg1 += " default value of whichCell requires rank-3 arrays:";
  }
  // whichCell is valid cell ordinal => we map single set of pts to a single set of pts. (P,D) arrays required
  else{
    errmsg1 += " rank-2 arrays required when whichCell is valid cell ordinal";
    validRank = 2;
  }
  TEST_FOR_EXCEPTION( !requireRankRange(errmsg1, refPoints,  validRank,validRank), std::invalid_argument, errmsg1);
  TEST_FOR_EXCEPTION( !requireRankMatch(errmsg1, physPoints, refPoints),           std::invalid_argument, errmsg1);
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg1, refPoints, physPoints),      std::invalid_argument, errmsg1);
}



template<class Scalar>
template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToReferenceFrame(const ArrayRefPoint  &        refPoints,
                                                              const ArrayInitGuess &        initGuess,
                                                              const ArrayPhysPoint &        physPoints,
                                                              const ArrayCell      &        cellWorkset,
                                                              const shards::CellTopology &  cellTopo,
                                                              const int&                    whichCell)
{
  // Call the method that validates arguments with the default initial guess selection
  validateArguments_mapToReferenceFrame(refPoints, physPoints, cellWorkset, cellTopo, whichCell);
  
  // Then check initGuess: its rank and dimensions must match those of physPoints.
  std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
  TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, initGuess, physPoints), std::invalid_argument, errmsg);  
}


template<class Scalar>
template<class ArrayIncl, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_checkPointwiseInclusion(ArrayIncl &                   inCell,
                                                                  const ArrayPoint &            physPoints,
                                                                  const ArrayCell &             cellWorkset,
                                                                  const int &                   whichCell,
                                                                  const shards::CellTopology &  cell)
{
  // Validate cellWorkset array
  TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 3 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells) >= 1 required for cellWorkset array");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cell.getSubcellCount(0) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
  
  TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cell.getDimension() ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 2 (spatial dimension) of cellWorkset array  does not match cell dimension");
  
  
  // Validate whichCell It can be either -1 (default value) or a valid cell ordinal.
  TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
                      ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = -1 or a valid cell ordinal is required.");
  
  
  // Validate points array: can be rank-2 (P,D) or rank-3 (C,P,D)
  // If rank-2: admissible inCell is rank-1 (P); admissible whichCell is valid cell ordinal but not -1.
  if(physPoints.rank() == 2) {
    
    TEST_FOR_EXCEPTION( (whichCell == -1), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = a valid cell ordinal is required with rank-2 input array.");

    TEST_FOR_EXCEPTION( (physPoints.dimension(0) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of points) >= 1 required for physPoints array ");
    
    TEST_FOR_EXCEPTION( (physPoints.dimension(1) != (int)cell.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (spatial dimension) of physPoints array does not match cell dimension");
    
    // Validate inCell
    TEST_FOR_EXCEPTION( (inCell.rank() != 1), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 1 required for inCell array");
    
    TEST_FOR_EXCEPTION( (inCell.dimension(0) != physPoints.dimension(0)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of points) of inCell array must equal dim 0 of physPoints array");
  }
  // If rank-3: admissible inCell is rank-2 (C,P); admissible whichCell = -1.
  else if (physPoints.rank() == 3){
    
    TEST_FOR_EXCEPTION( !(whichCell == -1), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = -1 is required with rank-3 input array.");
    
    TEST_FOR_EXCEPTION( (physPoints.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells)  of physPoints array must equal dim 0 of cellWorkset array ");

    TEST_FOR_EXCEPTION( (physPoints.dimension(1) <= 0), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of points) >= 1 required for physPoints array ");
    
    TEST_FOR_EXCEPTION( (physPoints.dimension(2) != (int)cell.getDimension() ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 2 (spatial dimension) of physPoints array does not match cell dimension");
    
    // Validate inCell
    TEST_FOR_EXCEPTION( (inCell.rank() != 2), std::invalid_argument, 
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 2 required for inCell array");
    
    TEST_FOR_EXCEPTION( (inCell.dimension(0) != physPoints.dimension(0)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells) of inCell array must equal dim 0 of physPoints array");    

    TEST_FOR_EXCEPTION( (inCell.dimension(1) != physPoints.dimension(1)), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of points) of inCell array must equal dim 1 of physPoints array");    
  }
  else {
    TEST_FOR_EXCEPTION( !( (physPoints.rank() == 2) && (physPoints.rank() ==3) ), std::invalid_argument,
                        ">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 2 or 3 required for points array");
  }
}



//============================================================================================//
//                                                                                            //
//                                           Debug                                            //
//                                                                                            //
//============================================================================================//


template<class Scalar>
void CellTools<Scalar>::printSubcellVertices(const int subcellDim,
                                             const int subcellOrd,
                                             const shards::CellTopology & parentCell){
  
  // Get number of vertices for the specified subcell and parent cell dimension
  int subcVertexCount = parentCell.getVertexCount(subcellDim, subcellOrd);
  int cellDim         = parentCell.getDimension();
  
  // Allocate space for the subcell vertex coordinates
  FieldContainer<double> subcellVertices(subcVertexCount, cellDim);
  
  // Retrieve the vertex coordinates
  getReferenceSubcellVertices(subcellVertices,
                              subcellDim,
                              subcellOrd,
                              parentCell);
  
  // Print the vertices
  std::cout 
    << " Subcell " << std::setw(2) << subcellOrd 
    <<  " is " << parentCell.getName(subcellDim, subcellOrd) << " with vertices = {";
  
  // Loop over subcell vertices
  for(int subcVertOrd = 0; subcVertOrd < subcVertexCount; subcVertOrd++){
    std::cout<< "(";
    
    // Loop over vertex Cartesian coordinates
    for(int dim = 0; dim < (int)parentCell.getDimension(); dim++){
      std::cout << subcellVertices(subcVertOrd, dim);
      if(dim < (int)parentCell.getDimension()-1 ) { std::cout << ","; }
    }
    std::cout<< ")";
    if(subcVertOrd < subcVertexCount - 1) { std::cout << ", "; }
  }
  std::cout << "}\n";
}
  

template<class Scalar>
template<class ArrayCell>
void CellTools<Scalar>::printWorksetSubcell(const ArrayCell &             cellWorkset,
                                            const shards::CellTopology &  parentCell,
                                            const int&                    pCellOrd,
                                            const int&                    subcellDim,
                                            const int&                    subcellOrd,
                                            const int&                    fieldWidth){
  
  // Get the ordinals, relative to reference cell, of subcell cellWorkset
  int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
  int pCellDim      = parentCell.getDimension();
  std::vector<int> subcNodeOrdinals(subcNodeCount);
  
  for(int i = 0; i < subcNodeCount; i++){
    subcNodeOrdinals[i] = parentCell.getNodeMap(subcellDim, subcellOrd, i);
  }
  
  // Loop over parent cells and print subcell cellWorkset
  
  std::cout 
    << " Subcell " << subcellOrd << " on parent cell " << pCellOrd << " is " 
    << parentCell.getName(subcellDim, subcellOrd) << " with node(s) \n ({";
  
  for(int i = 0; i < subcNodeCount; i++){
    
    // print Cartesian coordinates of the node
    for(int dim = 0; dim < pCellDim; dim++){
      std::cout
      << std::setw(fieldWidth) << std::right << cellWorkset(pCellOrd, subcNodeOrdinals[i], dim); 
      if(dim < pCellDim - 1){ std::cout << ","; }
    }
    std::cout << "}";
    if(i < subcNodeCount - 1){ std::cout <<", {"; }
  }
  std::cout << ")\n\n";
}



} // namespace Intrepid
#endif