/usr/include/trilinos/Intrepid_CellToolsDef.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 | // @HEADER
// ************************************************************************
//
// Intrepid Package
// Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev (pbboche@sandia.gov)
// Denis Ridzal (dridzal@sandia.gov), or
// Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER
/** \file Intrepid_CellToolsDef.hpp
\brief Definition file for the Intrepid::CellTools class.
\author Created by P. Bochev and D. Ridzal.
*/
#ifndef INTREPID_CELLTOOLSDEF_HPP
#define INTREPID_CELLTOOLSDEF_HPP
namespace Intrepid {
template<class Scalar>
const FieldContainer<double>& CellTools<Scalar>::getSubcellParametrization(const int subcellDim,
const shards::CellTopology& parentCell){
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): the specified cell topology does not have a reference cell.");
TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): parametrization defined only for 1 and 2-dimensional subcells.");
#endif
// Coefficients of the coordinate functions defining the parametrization maps are stored in
// rank-3 arrays with dimensions (SC, PCD, COEF) where:
// - SC is the subcell count of subcells with the specified dimension in the parent cell
// - PCD is Parent Cell Dimension, which gives the number of coordinate functions in the map:
// PCD = 2 for standard 2D cells and non-standard 2D cells: shell line and beam
// PCD = 3 for standard 3D cells and non-standard 3D cells: shell Tri and Quad
// - COEF is number of coefficients needed to specify a coordinate function:
// COEFF = 2 for edge parametrizations
// COEFF = 3 for both Quad and Tri face parametrizations. Because all Quad reference faces
// are affine, the coefficient of the bilinear term u*v is zero and is not stored, i.e.,
// 3 coefficients are sufficient to store Quad face parameterization maps.
//
// Arrays are sized and filled only when parametrization of a particular subcell is requested
// by setSubcellParametrization.
// Edge maps for 2D non-standard cells: ShellLine and Beam
static FieldContainer<double> lineEdges; static int lineEdgesSet = 0;
// Edge maps for 2D standard cells: Triangle and Quadrilateral
static FieldContainer<double> triEdges; static int triEdgesSet = 0;
static FieldContainer<double> quadEdges; static int quadEdgesSet = 0;
// Edge maps for 3D non-standard cells: Shell Tri and Quad
static FieldContainer<double> shellTriEdges; static int shellTriEdgesSet = 0;
static FieldContainer<double> shellQuadEdges; static int shellQuadEdgesSet = 0;
// Edge maps for 3D standard cells:
static FieldContainer<double> tetEdges; static int tetEdgesSet = 0;
static FieldContainer<double> hexEdges; static int hexEdgesSet = 0;
static FieldContainer<double> pyrEdges; static int pyrEdgesSet = 0;
static FieldContainer<double> wedgeEdges; static int wedgeEdgesSet = 0;
// Face maps for 3D non-standard cells: Shell Triangle and Quadrilateral
static FieldContainer<double> shellTriFaces; static int shellTriFacesSet = 0;
static FieldContainer<double> shellQuadFaces; static int shellQuadFacesSet = 0;
// Face maps for 3D standard cells:
static FieldContainer<double> tetFaces; static int tetFacesSet = 0;
static FieldContainer<double> hexFaces; static int hexFacesSet = 0;
static FieldContainer<double> pyrFaces; static int pyrFacesSet = 0;
static FieldContainer<double> wedgeFaces; static int wedgeFacesSet = 0;
// Select subcell parametrization according to its parent cell type
switch(parentCell.getKey() ) {
// Tet cells
case shards::Tetrahedron<4>::key:
case shards::Tetrahedron<8>::key:
case shards::Tetrahedron<10>::key:
if(subcellDim == 2) {
if(!tetFacesSet){
setSubcellParametrization(tetFaces, subcellDim, parentCell);
tetFacesSet = 1;
}
return tetFaces;
}
else if(subcellDim == 1) {
if(!tetEdgesSet){
setSubcellParametrization(tetEdges, subcellDim, parentCell);
tetEdgesSet = 1;
}
return tetEdges;
}
else{
TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Tet parametrizations defined for 1 and 2-subcells only");
}
break;
// Hex cells
case shards::Hexahedron<8>::key:
case shards::Hexahedron<20>::key:
case shards::Hexahedron<27>::key:
if(subcellDim == 2) {
if(!hexFacesSet){
setSubcellParametrization(hexFaces, subcellDim, parentCell);
hexFacesSet = 1;
}
return hexFaces;
}
else if(subcellDim == 1) {
if(!hexEdgesSet){
setSubcellParametrization(hexEdges, subcellDim, parentCell);
hexEdgesSet = 1;
}
return hexEdges;
}
else{
TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Hex parametrizations defined for 1 and 2-subcells only");
}
break;
// Pyramid cells
case shards::Pyramid<5>::key:
case shards::Pyramid<13>::key:
case shards::Pyramid<14>::key:
if(subcellDim == 2) {
if(!pyrFacesSet){
setSubcellParametrization(pyrFaces, subcellDim, parentCell);
pyrFacesSet = 1;
}
return pyrFaces;
}
else if(subcellDim == 1) {
if(!pyrEdgesSet){
setSubcellParametrization(pyrEdges, subcellDim, parentCell);
pyrEdgesSet = 1;
}
return pyrEdges;
}
else {
TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Pyramid parametrizations defined for 1 and 2-subcells only");
}
break;
// Wedge cells
case shards::Wedge<6>::key:
case shards::Wedge<15>::key:
case shards::Wedge<18>::key:
if(subcellDim == 2) {
if(!wedgeFacesSet){
setSubcellParametrization(wedgeFaces, subcellDim, parentCell);
wedgeFacesSet = 1;
}
return wedgeFaces;
}
else if(subcellDim == 1) {
if(!wedgeEdgesSet){
setSubcellParametrization(wedgeEdges, subcellDim, parentCell);
wedgeEdgesSet = 1;
}
return wedgeEdges;
}
else {
TEST_FOR_EXCEPTION( (subcellDim != 1 || subcellDim != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Wedge parametrization defined for 1 and 2-subcells only");
}
break;
//
// Standard 2D cells have only 1-subcells
//
case shards::Triangle<3>::key:
case shards::Triangle<4>::key:
case shards::Triangle<6>::key:
if(subcellDim == 1) {
if(!triEdgesSet){
setSubcellParametrization(triEdges, subcellDim, parentCell);
triEdgesSet = 1;
}
return triEdges;
}
else{
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Triangle parametrizations defined for 1-subcells only");
}
break;
case shards::Quadrilateral<4>::key:
case shards::Quadrilateral<8>::key:
case shards::Quadrilateral<9>::key:
if(subcellDim == 1) {
if(!quadEdgesSet){
setSubcellParametrization(quadEdges, subcellDim, parentCell);
quadEdgesSet = 1;
}
return quadEdges;
}
else{
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Quad parametrizations defined for 1-subcells only");
}
break;
//
// Non-standard 3D Shell Tri and Quad cells have 1 and 2-subcells. Because they are 3D cells
// can't reuse edge parametrization arrays for 2D Triangle and Quadrilateral.
//
case shards::ShellTriangle<3>::key:
case shards::ShellTriangle<6>::key:
if(subcellDim == 2) {
if(!shellTriFacesSet){
setSubcellParametrization(shellTriFaces, subcellDim, parentCell);
shellTriFacesSet = 1;
}
return shellTriFaces;
}
else if(subcellDim == 1) {
if(!shellTriEdgesSet){
setSubcellParametrization(shellTriEdges, subcellDim, parentCell);
shellTriEdgesSet = 1;
}
return shellTriEdges;
}
else if( subcellDim != 1 || subcellDim != 2){
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Shell Triangle parametrizations defined for 1 and 2-subcells only");
}
break;
case shards::ShellQuadrilateral<4>::key:
case shards::ShellQuadrilateral<8>::key:
case shards::ShellQuadrilateral<9>::key:
if(subcellDim == 2) {
if(!shellQuadFacesSet){
setSubcellParametrization(shellQuadFaces, subcellDim, parentCell);
shellQuadFacesSet = 1;
}
return shellQuadFaces;
}
else if(subcellDim == 1) {
if(!shellQuadEdgesSet){
setSubcellParametrization(shellQuadEdges, subcellDim, parentCell);
shellQuadEdgesSet = 1;
}
return shellQuadEdges;
}
else if( subcellDim != 1 || subcellDim != 2){
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): Shell Quad parametrizations defined for 1 and 2-subcells only");
}
break;
//
// Non-standard 2D cells: Shell Lines and Beams have 1-subcells
//
case shards::ShellLine<2>::key:
case shards::ShellLine<3>::key:
case shards::Beam<2>::key:
case shards::Beam<3>::key:
if(subcellDim == 1) {
if(!lineEdgesSet){
setSubcellParametrization(lineEdges, subcellDim, parentCell);
lineEdgesSet = 1;
}
return lineEdges;
}
else{
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): shell line/beam parametrizations defined for 1-subcells only");
}
break;
default:
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getSubcellParametrization): invalid cell topology.");
}//cell key
// To disable compiler warning, should never be reached
return lineEdges;
}
template<class Scalar>
void CellTools<Scalar>::setSubcellParametrization(FieldContainer<double>& subcellParametrization,
const int subcellDim,
const shards::CellTopology& parentCell)
{
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setSubcellParametrization): the specified cell topology does not have a reference cell.");
TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setSubcellParametrization): parametrization defined only for 1 and 2-dimensional subcells.");
#endif
// subcellParametrization is rank-3 FieldContainer with dimensions (SC, PCD, COEF) where:
// - SC is the subcell count of subcells with the specified dimension in the parent cell
// - PCD is Parent Cell Dimension, which gives the number of coordinate functions in the map
// PCD = 2 for standard 2D cells and non-standard 2D cells: shell line and beam
// PCD = 3 for standard 3D cells and non-standard 3D cells: shell Tri and Quad
// - COEF is number of coefficients needed to specify a coordinate function:
// COEFF = 2 for edge parametrizations
// COEFF = 3 for both Quad and Tri face parametrizations. Because all Quad reference faces
// are affine, the coefficient of the bilinear term u*v is zero and is not stored, i.e.,
// 3 coefficients are sufficient to store Quad face parameterization maps.
//
// Edge parametrization maps [-1,1] to edge defined by (v0, v1)
// Face parametrization maps [-1,1]^2 to quadrilateral face (v0, v1, v2, v3), or
// standard 2-simplex {(0,0),(1,0),(0,1)} to traingle face (v0, v1, v2).
// This defines orientation-preserving parametrizations with respect to reference edge and
// face orientations induced by their vertex order.
// get subcellParametrization dimensions: (sc, pcd, coeff)
unsigned sc = parentCell.getSubcellCount(subcellDim);
unsigned pcd = parentCell.getDimension();
unsigned coeff = (subcellDim == 1) ? 2 : 3;
// Resize container
subcellParametrization.resize(sc, pcd, coeff);
// Edge parametrizations of 2D and 3D cells (shell lines and beams are 2D cells with edges)
if(subcellDim == 1){
for(unsigned subcellOrd = 0; subcellOrd < sc; subcellOrd++){
int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
// vertexK[0] = x_k; vertexK[1] = y_k; vertexK[2] = z_k; z_k = 0 for 2D cells
// Note that ShellLine and Beam are 2D cells!
const double* v0 = getReferenceVertex(parentCell, v0ord);
const double* v1 = getReferenceVertex(parentCell, v1ord);
// x(t) = (x0 + x1)/2 + t*(x1 - x0)/2
subcellParametrization(subcellOrd, 0, 0) = (v0[0] + v1[0])/2.0;
subcellParametrization(subcellOrd, 0, 1) = (v1[0] - v0[0])/2.0;
// y(t) = (y0 + y1)/2 + t*(y1 - y0)/2
subcellParametrization(subcellOrd, 1, 0) = (v0[1] + v1[1])/2.0;
subcellParametrization(subcellOrd, 1, 1) = (v1[1] - v0[1])/2.0;
if( pcd == 3 ) {
// z(t) = (z0 + z1)/2 + t*(z1 - z0)/2
subcellParametrization(subcellOrd, 2, 0) = (v0[2] + v1[2])/2.0;
subcellParametrization(subcellOrd, 2, 1) = (v1[2] - v0[2])/2.0;
}
}// for loop over 1-subcells
}
// Face parametrizations of 3D cells: (shell Tri and Quad are 3D cells with faces)
// A 3D cell can have both Tri and Quad faces, but because they are affine images of the
// parametrization domain, 3 coefficients are enough to store them in both cases.
else if(subcellDim == 2) {
for(unsigned subcellOrd = 0; subcellOrd < sc; subcellOrd++){
switch(parentCell.getKey(subcellDim,subcellOrd)){
// Admissible triangular faces for 3D cells in Shards:
case shards::Triangle<3>::key:
case shards::Triangle<4>::key:
case shards::Triangle<6>::key:
{
int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
int v2ord = parentCell.getNodeMap(subcellDim, subcellOrd, 2);
const double* v0 = getReferenceVertex(parentCell, v0ord);
const double* v1 = getReferenceVertex(parentCell, v1ord);
const double* v2 = getReferenceVertex(parentCell, v2ord);
// x(u,v) = x0 + (x1 - x0)*u + (x2 - x0)*v
subcellParametrization(subcellOrd, 0, 0) = v0[0];
subcellParametrization(subcellOrd, 0, 1) = v1[0] - v0[0];
subcellParametrization(subcellOrd, 0, 2) = v2[0] - v0[0];
// y(u,v) = y0 + (y1 - y0)*u + (y2 - y0)*v
subcellParametrization(subcellOrd, 1, 0) = v0[1];
subcellParametrization(subcellOrd, 1, 1) = v1[1] - v0[1];
subcellParametrization(subcellOrd, 1, 2) = v2[1] - v0[1];
// z(u,v) = z0 + (z1 - z0)*u + (z2 - z0)*v
subcellParametrization(subcellOrd, 2, 0) = v0[2];
subcellParametrization(subcellOrd, 2, 1) = v1[2] - v0[2];
subcellParametrization(subcellOrd, 2, 2) = v2[2] - v0[2];
}
break;
// Admissible quadrilateral faces for 3D cells in Shards:
case shards::Quadrilateral<4>::key:
case shards::Quadrilateral<8>::key:
case shards::Quadrilateral<9>::key:
{
int v0ord = parentCell.getNodeMap(subcellDim, subcellOrd, 0);
int v1ord = parentCell.getNodeMap(subcellDim, subcellOrd, 1);
int v2ord = parentCell.getNodeMap(subcellDim, subcellOrd, 2);
int v3ord = parentCell.getNodeMap(subcellDim, subcellOrd, 3);
const double* v0 = getReferenceVertex(parentCell, v0ord);
const double* v1 = getReferenceVertex(parentCell, v1ord);
const double* v2 = getReferenceVertex(parentCell, v2ord);
const double* v3 = getReferenceVertex(parentCell, v3ord);
// x(u,v) = (x0+x1+x2+x3)/4+u*(-x0+x1+x2-x3)/4+v*(-x0-x1+x2+x3)/4+uv*(0=x0-x1+x2-x3)/4
subcellParametrization(subcellOrd, 0, 0) = ( v0[0] + v1[0] + v2[0] + v3[0])/4.0;
subcellParametrization(subcellOrd, 0, 1) = (-v0[0] + v1[0] + v2[0] - v3[0])/4.0;
subcellParametrization(subcellOrd, 0, 2) = (-v0[0] - v1[0] + v2[0] + v3[0])/4.0;
// y(u,v) = (y0+y1+y2+y3)/4+u*(-y0+y1+y2-y3)/4+v*(-y0-y1+y2+y3)/4+uv*(0=y0-y1+y2-y3)/4
subcellParametrization(subcellOrd, 1, 0) = ( v0[1] + v1[1] + v2[1] + v3[1])/4.0;
subcellParametrization(subcellOrd, 1, 1) = (-v0[1] + v1[1] + v2[1] - v3[1])/4.0;
subcellParametrization(subcellOrd, 1, 2) = (-v0[1] - v1[1] + v2[1] + v3[1])/4.0;
// z(u,v) = (z0+z1+z2+z3)/4+u*(-z0+z1+z2-z3)/4+v*(-z0-z1+z2+z3)/4+uv*(0=z0-z1+z2-z3)/4
subcellParametrization(subcellOrd, 2, 0) = ( v0[2] + v1[2] + v2[2] + v3[2])/4.0;
subcellParametrization(subcellOrd, 2, 1) = (-v0[2] + v1[2] + v2[2] - v3[2])/4.0;
subcellParametrization(subcellOrd, 2, 2) = (-v0[2] - v1[2] + v2[2] + v3[2])/4.0;
}
break;
default:
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setSubcellParametrization): parametrization not defined for the specified face topology.");
}// switch face topology key
}// for subcellOrd
}
}
template<class Scalar>
const double* CellTools<Scalar>::getReferenceVertex(const shards::CellTopology& cell,
const int vertexOrd){
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(cell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceVertex): the specified cell topology does not have a reference cell.");
TEST_FOR_EXCEPTION( !( (0 <= vertexOrd) && (vertexOrd < (int)cell.getVertexCount() ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceVertex): invalid node ordinal for the specified cell topology. ");
#endif
// Simply call getReferenceNode with the base topology of the cell
return getReferenceNode(cell.getBaseTopology(), vertexOrd);
}
template<class Scalar>
template<class ArraySubcellVert>
void CellTools<Scalar>::getReferenceSubcellVertices(ArraySubcellVert & subcellVertices,
const int subcellDim,
const int subcellOrd,
const shards::CellTopology& parentCell){
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): the specified cell topology does not have a reference cell.");
// subcellDim can equal the cell dimension because the cell itself is a valid subcell! In this case
// the method will return all cell cellWorkset.
TEST_FOR_EXCEPTION( !( (0 <= subcellDim) && (subcellDim <= (int)parentCell.getDimension()) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): subcell dimension out of range.");
TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices): subcell ordinal out of range.");
// Verify subcellVertices rank and dimensions
{
std::string errmsg = ">>> ERROR (Intrepid::CellTools::getReferenceSubcellVertices):";
TEST_FOR_EXCEPTION( !( requireRankRange(errmsg, subcellVertices, 2, 2) ), std::invalid_argument, errmsg);
int subcVertexCount = parentCell.getVertexCount(subcellDim, subcellOrd);
int spaceDim = parentCell.getDimension();
TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellVertices, 0, subcVertexCount, subcVertexCount) ),
std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellVertices, 1, spaceDim, spaceDim) ),
std::invalid_argument, errmsg);
}
#endif
// Simply call getReferenceNodes with the base topology
getReferenceSubcellNodes(subcellVertices, subcellDim, subcellOrd, parentCell.getBaseTopology() );
}
template<class Scalar>
const double* CellTools<Scalar>::getReferenceNode(const shards::CellTopology& cell,
const int nodeOrd){
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(cell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceNode): the specified cell topology does not have a reference cell.");
TEST_FOR_EXCEPTION( !( (0 <= nodeOrd) && (nodeOrd < (int)cell.getNodeCount() ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceNode): invalid node ordinal for the specified cell topology. ");
#endif
// Cartesian coordinates of supported reference cell cellWorkset, padded to three-dimensions.
// Node order follows cell topology definition in Shards
static const double line[2][3] ={
{-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}
};
static const double line_3[3][3] = {
{-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0},
// Extension node: edge midpoint
{ 0.0, 0.0, 0.0}
};
// Triangle topologies
static const double triangle[3][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}
};
static const double triangle_4[4][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
// Extension node: cell center
{ 1/3, 1/3, 0.0}
};
static const double triangle_6[6][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
// Extension cellWorkset: 3 edge midpoints
{ 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}
};
// Quadrilateral topologies
static const double quadrilateral[4][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}
};
static const double quadrilateral_8[8][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
// Extension cellWorkset: 4 edge midpoints
{ 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}
};
static const double quadrilateral_9[9][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
// Extension cellWorkset: 4 edge midpoints + 1 cell center
{ 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0}, { 0.0, 0.0, 0.0}
};
// Tetrahedron topologies
static const double tetrahedron[4][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0}
};
static const double tetrahedron_8[8][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
// Extension cellWorkset: 4 face centers (do not follow natural face order - see the cell topology!)
{ 1/3, 0.0, 1/3}, { 1/3, 1/3, 1/3}, { 1/3, 1/3, 0.0}, { 0.0, 1/3, 1/3}
};
static const double tetrahedron_10[10][3] = {
{ 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
// Extension cellWorkset: 6 edge midpoints
{ 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}, { 0.0, 0.0, 0.5}, { 0.5, 0.0, 0.5}, { 0.0, 0.5, 0.5}
};
// Hexahedron topologies
static const double hexahedron[8][3] = {
{-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
{-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0}
};
static const double hexahedron_20[20][3] = {
{-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
{-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0},
// Extension cellWorkset: 12 edge midpoints (do not follow natural edge order - see cell topology!)
{ 0.0,-1.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, {-1.0, 0.0,-1.0},
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
{ 0.0,-1.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0}, {-1.0, 0.0, 1.0}
};
static const double hexahedron_27[27][3] = {
{-1.0,-1.0,-1.0}, { 1.0,-1.0,-1.0}, { 1.0, 1.0,-1.0}, {-1.0, 1.0,-1.0},
{-1.0,-1.0, 1.0}, { 1.0,-1.0, 1.0}, { 1.0, 1.0, 1.0}, {-1.0, 1.0, 1.0},
// Extension cellWorkset: 12 edge midpoints + 1 cell center + 6 face centers (do not follow natural subcell order!)
{ 0.0,-1.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, {-1.0, 0.0,-1.0},
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0},
{ 0.0,-1.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0}, {-1.0, 0.0, 1.0},
{ 0.0, 0.0, 0.0},
{ 0.0, 0.0,-1.0}, { 0.0, 0.0, 1.0}, {-1.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, {0.0,-1.0, 0.0}, {0.0, 1.0, 0.0}
};
// Pyramid topologies
static const double pyramid[5][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0}
};
static const double pyramid_13[13][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
// Extension cellWorkset: 8 edge midpoints
{ 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0},
{-0.5,-0.5, 0.5}, { 0.5,-0.5, 0.5}, { 0.5, 0.5, 0.5}, {-0.5, 0.5, 0.5}
};
static const double pyramid_14[14][3] = {
{-1.0,-1.0, 0.0}, { 1.0,-1.0, 0.0}, { 1.0, 1.0, 0.0}, {-1.0, 1.0, 0.0}, { 0.0, 0.0, 1.0},
// Extension cellWorkset: 8 edge midpoints + quadrilateral face midpoint
{ 0.0,-1.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0}, {-1.0, 0.0, 0.0},
{-0.5,-0.5, 0.5}, { 0.5,-0.5, 0.5}, { 0.5, 0.5, 0.5}, {-0.5, 0.5, 0.5}, { 0.0, 0.0, 0.0}
};
// Wedge topologies
static const double wedge[6][3] = {
{ 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0}
};
static const double wedge_15[15][3] = {
{ 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0},
// Extension cellWorkset: 9 edge midpoints (do not follow natural edge order - see cell topology!)
{ 0.5, 0.0,-1.0}, { 0.5, 0.5,-1.0}, { 0.0, 0.5,-1.0}, { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
{ 0.5, 0.0, 1.0}, { 0.5, 0.5, 1.0}, { 0.0, 0.5, 1.0}
};
static const double wedge_18[18][3] = {
{ 0.0, 0.0,-1.0}, { 1.0, 0.0,-1.0}, { 0.0, 1.0,-1.0}, { 0.0, 0.0, 1.0}, { 1.0, 0.0, 1.0}, { 0.0, 1.0, 1.0},
// Extension cellWorkset: 9 edge midpoints + 3 quad face centers (do not follow natural subcell order - see cell topology!)
{ 0.5, 0.0,-1.0}, { 0.5, 0.5,-1.0}, { 0.0, 0.5,-1.0}, { 0.0, 0.0, 0.0}, { 1.0, 0.0, 0.0}, { 0.0, 1.0, 0.0},
{ 0.5, 0.0, 1.0}, { 0.5, 0.5, 1.0}, { 0.0, 0.5, 1.0},
{ 0.5, 0.0, 0.0}, { 0.5, 0.5, 0.0}, { 0.0, 0.5, 0.0}
};
switch(cell.getKey() ) {
// Base line topologies
case shards::Line<2>::key:
case shards::ShellLine<2>::key:
case shards::Beam<2>::key:
return line[nodeOrd];
break;
// Extended line topologies
case shards::Line<3>::key:
case shards::ShellLine<3>::key:
case shards::Beam<3>::key:
return line_3[nodeOrd];
break;
// Base triangle topologies
case shards::Triangle<3>::key:
case shards::ShellTriangle<3>::key:
return triangle[nodeOrd];
break;
// Extened Triangle topologies
case shards::Triangle<4>::key:
return triangle_4[nodeOrd];
break;
case shards::Triangle<6>::key:
case shards::ShellTriangle<6>::key:
return triangle_6[nodeOrd];
break;
// Base Quadrilateral topologies
case shards::Quadrilateral<4>::key:
case shards::ShellQuadrilateral<4>::key:
return quadrilateral[nodeOrd];
break;
// Extended Quadrilateral topologies
case shards::Quadrilateral<8>::key:
case shards::ShellQuadrilateral<8>::key:
return quadrilateral_8[nodeOrd];
break;
case shards::Quadrilateral<9>::key:
case shards::ShellQuadrilateral<9>::key:
return quadrilateral_9[nodeOrd];
break;
// Base Tetrahedron topology
case shards::Tetrahedron<4>::key:
return tetrahedron[nodeOrd];
break;
// Extended Tetrahedron topologies
case shards::Tetrahedron<8>::key:
return tetrahedron_8[nodeOrd];
break;
case shards::Tetrahedron<10>::key:
return tetrahedron_10[nodeOrd];
break;
// Base Hexahedron topology
case shards::Hexahedron<8>::key:
return hexahedron[nodeOrd];
break;
// Extended Hexahedron topologies
case shards::Hexahedron<20>::key:
return hexahedron_20[nodeOrd];
break;
case shards::Hexahedron<27>::key:
return hexahedron_27[nodeOrd];
break;
// Base Pyramid topology
case shards::Pyramid<5>::key:
return pyramid[nodeOrd];
break;
// Extended pyramid topologies
case shards::Pyramid<13>::key:
return pyramid_13[nodeOrd];
break;
case shards::Pyramid<14>::key:
return pyramid_14[nodeOrd];
break;
// Base Wedge topology
case shards::Wedge<6>::key:
return wedge[nodeOrd];
break;
// Extended Wedge topologies
case shards::Wedge<15>::key:
return wedge_15[nodeOrd];
break;
case shards::Wedge<18>::key:
return wedge_18[nodeOrd];
break;
default:
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceNode): invalid cell topology.");
}
// To disable compiler warning, should never be reached
return line[0];
}
template<class Scalar>
template<class ArraySubcellNode>
void CellTools<Scalar>::getReferenceSubcellNodes(ArraySubcellNode & subcellNodes,
const int subcellDim,
const int subcellOrd,
const shards::CellTopology& parentCell){
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): the specified cell topology does not have a reference cell.");
// subcellDim can equal the cell dimension because the cell itself is a valid subcell! In this case
// the method will return all cell cellWorkset.
TEST_FOR_EXCEPTION( !( (0 <= subcellDim) && (subcellDim <= (int)parentCell.getDimension()) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): subcell dimension out of range.");
TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes): subcell ordinal out of range.");
// Verify subcellNodes rank and dimensions
{
std::string errmsg = ">>> ERROR (Intrepid::CellTools::getReferenceSubcellNodes):";
TEST_FOR_EXCEPTION( !( requireRankRange(errmsg, subcellNodes, 2, 2) ), std::invalid_argument, errmsg);
int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
int spaceDim = parentCell.getDimension();
TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellNodes, 0, subcNodeCount, subcNodeCount) ),
std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !( requireDimensionRange(errmsg, subcellNodes, 1, spaceDim, spaceDim) ),
std::invalid_argument, errmsg);
}
#endif
// Find how many cellWorkset does the specified subcell have.
int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
// Loop over subcell cellWorkset
for(int subcNodeOrd = 0; subcNodeOrd < subcNodeCount; subcNodeOrd++){
// Get the node number relative to the parent reference cell
int cellNodeOrd = parentCell.getNodeMap(subcellDim, subcellOrd, subcNodeOrd);
// Loop over node's Cartesian coordinates
for(int dim = 0; dim < (int)parentCell.getDimension(); dim++){
subcellNodes(subcNodeOrd, dim) = CellTools::getReferenceNode(parentCell, cellNodeOrd)[dim];
}
}
}
template<class Scalar>
int CellTools<Scalar>::hasReferenceCell(const shards::CellTopology& cell) {
switch(cell.getKey() ) {
case shards::Line<2>::key:
case shards::Line<3>::key:
case shards::ShellLine<2>::key:
case shards::ShellLine<3>::key:
case shards::Beam<2>::key:
case shards::Beam<3>::key:
case shards::Triangle<3>::key:
case shards::Triangle<4>::key:
case shards::Triangle<6>::key:
case shards::ShellTriangle<3>::key:
case shards::ShellTriangle<6>::key:
case shards::Quadrilateral<4>::key:
case shards::Quadrilateral<8>::key:
case shards::Quadrilateral<9>::key:
case shards::ShellQuadrilateral<4>::key:
case shards::ShellQuadrilateral<8>::key:
case shards::ShellQuadrilateral<9>::key:
case shards::Tetrahedron<4>::key:
case shards::Tetrahedron<8>::key:
case shards::Tetrahedron<10>::key:
case shards::Hexahedron<8>::key:
case shards::Hexahedron<20>::key:
case shards::Hexahedron<27>::key:
case shards::Pyramid<5>::key:
case shards::Pyramid<13>::key:
case shards::Pyramid<14>::key:
case shards::Wedge<6>::key:
case shards::Wedge<15>::key:
case shards::Wedge<18>::key:
return 1;
break;
default:
return 0;
}
return 0;
}
//============================================================================================//
// //
// Jacobian, inverse Jacobian and Jacobian determinant //
// //
//============================================================================================//
template<class Scalar>
template<class ArrayJac, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::setJacobian(ArrayJac & jacobian,
const ArrayPoint & points,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int & whichCell)
{
INTREPID_VALIDATE( validateArguments_setJacobian(jacobian, points, cellWorkset, whichCell, cellTopo) );
int spaceDim = (int)cellTopo.getDimension();
int numCells = cellWorkset.dimension(0);
//points can be rank-2 (P,D), or rank-3 (C,P,D)
int numPoints = (points.rank() == 2) ? points.dimension(0) : points.dimension(1);
// Jacobian is computed using gradients of an appropriate H(grad) basis function: define RCP to the base class
Teuchos::RCP< Basis< Scalar, FieldContainer<Scalar> > > HGRAD_Basis;
// Choose the H(grad) basis depending on the cell topology. \todo define maps for shells and beams
switch( cellTopo.getKey() ){
// Standard Base topologies (number of cellWorkset = number of vertices)
case shards::Line<2>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_LINE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Triangle<3>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Quadrilateral<4>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Tetrahedron<4>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Hexahedron<8>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Wedge<6>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
// Standard Extended topologies
case shards::Triangle<6>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Quadrilateral<9>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Tetrahedron<10>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Hexahedron<27>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Wedge<18>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
// These extended topologies are not used for mapping purposes
case shards::Quadrilateral<8>::key:
case shards::Hexahedron<20>::key:
case shards::Wedge<15>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported. ");
break;
// Base and Extended Line, Beam and Shell topologies
case shards::Line<3>::key:
case shards::Beam<2>::key:
case shards::Beam<3>::key:
case shards::ShellLine<2>::key:
case shards::ShellLine<3>::key:
case shards::ShellTriangle<3>::key:
case shards::ShellTriangle<6>::key:
case shards::ShellQuadrilateral<4>::key:
case shards::ShellQuadrilateral<8>::key:
case shards::ShellQuadrilateral<9>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported. ");
break;
default:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setJacobian): Cell topology not supported.");
}// switch
// Temp (F,P,D) array for the values of basis functions gradients at the reference points
int basisCardinality = HGRAD_Basis -> getCardinality();
FieldContainer<Scalar> basisGrads(basisCardinality, numPoints, spaceDim);
// Initialize jacobian
for(int i = 0; i < jacobian.size(); i++){
jacobian[i] = 0.0;
}
// Handle separately rank-2 (P,D) and rank-3 (C,P,D) cases of points arrays.
switch(points.rank()) {
// refPoints is (P,D): a single or multiple cell jacobians computed for a single set of ref. points
case 2:
{
// getValues requires rank-2 (P,D) input array, but points cannot be passed directly as argument because they are a user type
FieldContainer<Scalar> tempPoints( points.dimension(0), points.dimension(1) );
// Copy point set corresponding to this cell oridinal to the temp (P,D) array
for(int pt = 0; pt < points.dimension(0); pt++){
for(int dm = 0; dm < points.dimension(1) ; dm++){
tempPoints(pt, dm) = points(pt, dm);
}//dm
}//pt
HGRAD_Basis -> getValues(basisGrads, tempPoints, OPERATOR_GRAD);
// The outer loops select the multi-index of the Jacobian entry: cell, point, row, col
// If whichCell = -1, all jacobians are computed, otherwise a single cell jacobian is computed
int cellLoop = (whichCell == -1) ? numCells : 1 ;
for(int cellOrd = 0; cellOrd < cellLoop; cellOrd++) {
for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
for(int row = 0; row < spaceDim; row++){
for(int col = 0; col < spaceDim; col++){
// The entry is computed by contracting the basis index. Number of basis functions and vertices must be the same
for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
if(whichCell == -1) {
jacobian(cellOrd, pointOrd, row, col) += cellWorkset(cellOrd, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
}
else {
jacobian(pointOrd, row, col) += cellWorkset(whichCell, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
}
} // bfOrd
} // col
} // row
} // pointOrd
} // cellOrd
}// case 2
break;
// points is (C,P,D): multiple jacobians computed at multiple point sets, one jacobian per cell
case 3:
{
// getValues requires rank-2 (P,D) input array, refPoints cannot be used as argument: need temp (P,D) array
FieldContainer<Scalar> tempPoints( points.dimension(1), points.dimension(2) );
for(int cellOrd = 0; cellOrd < numCells; cellOrd++) {
// Copy point set corresponding to this cell oridinal to the temp (P,D) array
for(int pt = 0; pt < points.dimension(1); pt++){
for(int dm = 0; dm < points.dimension(2) ; dm++){
tempPoints(pt, dm) = points(cellOrd, pt, dm);
}//dm
}//pt
// Compute gradients of basis functions at this set of ref. points
HGRAD_Basis -> getValues(basisGrads, tempPoints, OPERATOR_GRAD);
// Compute jacobians for the point set corresponding to the current cellordinal
for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
for(int row = 0; row < spaceDim; row++){
for(int col = 0; col < spaceDim; col++){
// The entry is computed by contracting the basis index. Number of basis functions and vertices must be the same
for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
jacobian(cellOrd, pointOrd, row, col) += cellWorkset(cellOrd, bfOrd, row)*basisGrads(bfOrd, pointOrd, col);
} // bfOrd
} // col
} // row
} // pointOrd
}//cellOrd
}// case 3
break;
default:
TEST_FOR_EXCEPTION( !( (points.rank() == 2) && (points.rank() == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::setJacobian): rank 2 or 3 required for points array. ");
}//switch
}
template<class Scalar>
template<class ArrayJacInv, class ArrayJac>
void CellTools<Scalar>::setJacobianInv(ArrayJacInv & jacobianInv,
const ArrayJac & jacobian)
{
INTREPID_VALIDATE( validateArguments_setJacobianInv(jacobianInv, jacobian) );
RealSpaceTools<Scalar>::inverse(jacobianInv, jacobian);
}
template<class Scalar>
template<class ArrayJacDet, class ArrayJac>
void CellTools<Scalar>::setJacobianDet(ArrayJacDet & jacobianDet,
const ArrayJac & jacobian)
{
INTREPID_VALIDATE( validateArguments_setJacobianDetArgs(jacobianDet, jacobian) );
RealSpaceTools<Scalar>::det(jacobianDet, jacobian);
}
//============================================================================================//
// //
// Reference-to-physical frame mapping and its inverse //
// //
//============================================================================================//
template<class Scalar>
template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
void CellTools<Scalar>::mapToPhysicalFrame(ArrayPhysPoint & physPoints,
const ArrayRefPoint & refPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int & whichCell)
{
INTREPID_VALIDATE(validateArguments_mapToPhysicalFrame( physPoints, refPoints, cellWorkset, cellTopo, whichCell) );
int spaceDim = (int)cellTopo.getDimension();
int numCells = cellWorkset.dimension(0);
//points can be rank-2 (P,D), or rank-3 (C,P,D)
int numPoints = (refPoints.rank() == 2) ? refPoints.dimension(0) : refPoints.dimension(1);
// Mapping is computed using an appropriate H(grad) basis function: define RCP to the base class
Teuchos::RCP<Basis<Scalar, FieldContainer<Scalar> > > HGRAD_Basis;
// Choose the H(grad) basis depending on the cell topology. \todo define maps for shells and beams
switch( cellTopo.getKey() ){
// Standard Base topologies (number of cellWorkset = number of vertices)
case shards::Line<2>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_LINE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Triangle<3>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Quadrilateral<4>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Tetrahedron<4>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Hexahedron<8>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Wedge<6>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C1_FEM<Scalar, FieldContainer<Scalar> >() );
break;
// Standard Extended topologies
case shards::Triangle<6>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TRI_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Quadrilateral<9>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_QUAD_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Tetrahedron<10>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_TET_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Hexahedron<27>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_HEX_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
case shards::Wedge<18>::key:
HGRAD_Basis = Teuchos::rcp( new Basis_HGRAD_WEDGE_C2_FEM<Scalar, FieldContainer<Scalar> >() );
break;
// These extended topologies are not used for mapping purposes
case shards::Quadrilateral<8>::key:
case shards::Hexahedron<20>::key:
case shards::Wedge<15>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported. ");
break;
// Base and Extended Line, Beam and Shell topologies
case shards::Line<3>::key:
case shards::Beam<2>::key:
case shards::Beam<3>::key:
case shards::ShellLine<2>::key:
case shards::ShellLine<3>::key:
case shards::ShellTriangle<3>::key:
case shards::ShellTriangle<6>::key:
case shards::ShellQuadrilateral<4>::key:
case shards::ShellQuadrilateral<8>::key:
case shards::ShellQuadrilateral<9>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported. ");
break;
default:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): Cell topology not supported.");
}// switch
// Temp (F,P) array for the values of nodal basis functions at the reference points
int basisCardinality = HGRAD_Basis -> getCardinality();
FieldContainer<Scalar> basisVals(basisCardinality, numPoints);
// Initialize physPoints
for(int i = 0; i < physPoints.size(); i++){
physPoints[i] = 0.0;
}
// handle separately rank-2 (P,D) and rank-3 (C,P,D) cases of refPoints
switch(refPoints.rank()) {
// refPoints is (P,D): single set of ref. points is mapped to one or multiple physical cells
case 2:
{
// getValues requires rank-2 (P,D) input array, but refPoints cannot be passed directly as argument because they are a user type
FieldContainer<Scalar> tempPoints( refPoints.dimension(0), refPoints.dimension(1) );
// Copy point set corresponding to this cell oridinal to the temp (P,D) array
for(int pt = 0; pt < refPoints.dimension(0); pt++){
for(int dm = 0; dm < refPoints.dimension(1) ; dm++){
tempPoints(pt, dm) = refPoints(pt, dm);
}//dm
}//pt
HGRAD_Basis -> getValues(basisVals, tempPoints, OPERATOR_VALUE);
// If whichCell = -1, ref pt. set is mapped to all cells, otherwise, the set is mapped to one cell only
int cellLoop = (whichCell == -1) ? numCells : 1 ;
// Compute the map F(refPoints) = sum node_coordinate*basis(refPoints)
for(int cellOrd = 0; cellOrd < cellLoop; cellOrd++) {
for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
for(int dim = 0; dim < spaceDim; dim++){
for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
if(whichCell == -1){
physPoints(cellOrd, pointOrd, dim) += cellWorkset(cellOrd, bfOrd, dim)*basisVals(bfOrd, pointOrd);
}
else{
physPoints(pointOrd, dim) += cellWorkset(whichCell, bfOrd, dim)*basisVals(bfOrd, pointOrd);
}
} // bfOrd
}// dim
}// pointOrd
}//cellOrd
}// case 2
break;
// refPoints is (C,P,D): multiple sets of ref. points are mapped to matching number of physical cells.
case 3:
{
// getValues requires rank-2 (P,D) input array, refPoints cannot be used as argument: need temp (P,D) array
FieldContainer<Scalar> tempPoints( refPoints.dimension(1), refPoints.dimension(2) );
// Compute the map F(refPoints) = sum node_coordinate*basis(refPoints)
for(int cellOrd = 0; cellOrd < numCells; cellOrd++) {
// Copy point set corresponding to this cell oridinal to the temp (P,D) array
for(int pt = 0; pt < refPoints.dimension(1); pt++){
for(int dm = 0; dm < refPoints.dimension(2) ; dm++){
tempPoints(pt, dm) = refPoints(cellOrd, pt, dm);
}//dm
}//pt
// Compute basis values for this set of ref. points
HGRAD_Basis -> getValues(basisVals, tempPoints, OPERATOR_VALUE);
for(int pointOrd = 0; pointOrd < numPoints; pointOrd++) {
for(int dim = 0; dim < spaceDim; dim++){
for(int bfOrd = 0; bfOrd < basisCardinality; bfOrd++){
physPoints(cellOrd, pointOrd, dim) += cellWorkset(cellOrd, bfOrd, dim)*basisVals(bfOrd, pointOrd);
} // bfOrd
}// dim
}// pointOrd
}//cellOrd
}// case 3
break;
default:
TEST_FOR_EXCEPTION( !( (refPoints.rank() == 2) && (refPoints.rank() == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToPhysicalFrame): rank 2 or 3 required for refPoints array. ");
}
}
template<class Scalar>
template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::mapToReferenceFrame(ArrayRefPoint & refPoints,
const ArrayPhysPoint & physPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int & whichCell)
{
INTREPID_VALIDATE( validateArguments_mapToReferenceFrame(refPoints, physPoints, cellWorkset, cellTopo, whichCell) );
int spaceDim = (int)cellTopo.getDimension();
int numPoints;
int numCells;
// Define initial guesses to be the Cell centers of the reference cell topology
FieldContainer<Scalar> cellCenter(spaceDim);
switch( cellTopo.getKey() ){
// Standard Base topologies (number of cellWorkset = number of vertices)
case shards::Line<2>::key:
cellCenter(0) = 0.0; break;
case shards::Triangle<3>::key:
case shards::Triangle<6>::key:
cellCenter(0) = 1./3.; cellCenter(1) = 1./3.; break;
case shards::Quadrilateral<4>::key:
case shards::Quadrilateral<9>::key:
cellCenter(0) = 0.0; cellCenter(1) = 0.0; break;
case shards::Tetrahedron<4>::key:
case shards::Tetrahedron<10>::key:
cellCenter(0) = 1./6.; cellCenter(1) = 1./6.; cellCenter(2) = 1./6.; break;
case shards::Hexahedron<8>::key:
case shards::Hexahedron<27>::key:
cellCenter(0) = 0.0; cellCenter(1) = 0.0; cellCenter(2) = 0.0; break;
case shards::Wedge<6>::key:
case shards::Wedge<18>::key:
cellCenter(0) = 1./3.; cellCenter(1) = 1./3.; cellCenter(2) = 0.0; break;
// These extended topologies are not used for mapping purposes
case shards::Quadrilateral<8>::key:
case shards::Hexahedron<20>::key:
case shards::Wedge<15>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported. ");
break;
// Base and Extended Line, Beam and Shell topologies
case shards::Line<3>::key:
case shards::Beam<2>::key:
case shards::Beam<3>::key:
case shards::ShellLine<2>::key:
case shards::ShellLine<3>::key:
case shards::ShellTriangle<3>::key:
case shards::ShellTriangle<6>::key:
case shards::ShellQuadrilateral<4>::key:
case shards::ShellQuadrilateral<8>::key:
case shards::ShellQuadrilateral<9>::key:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported. ");
break;
default:
TEST_FOR_EXCEPTION( (true), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceFrame): Cell topology not supported.");
}// switch key
// Resize initial guess depending on the rank of the physical points array
FieldContainer<Scalar> initGuess;
// Default: map (C,P,D) array of physical pt. sets to (C,P,D) array. Requires (C,P,D) initial guess.
if(whichCell == -1){
numPoints = physPoints.dimension(1);
numCells = cellWorkset.dimension(0);
initGuess.resize(numCells, numPoints, spaceDim);
// Set initial guess:
for(int c = 0; c < numCells; c++){
for(int p = 0; p < numPoints; p++){
for(int d = 0; d < spaceDim; d++){
initGuess(c, p, d) = cellCenter(d);
}// d
}// p
}// c
}
// Custom: map (P,D) array of physical pts. to (P,D) array. Requires (P,D) initial guess.
else {
numPoints = physPoints.dimension(0);
initGuess.resize(numPoints, spaceDim);
// Set initial guess:
for(int p = 0; p < numPoints; p++){
for(int d = 0; d < spaceDim; d++){
initGuess(p, d) = cellCenter(d);
}// d
}// p
}
// Call method with initial guess
mapToReferenceFrameInitGuess(refPoints, initGuess, physPoints, cellWorkset, cellTopo, whichCell);
}
template<class Scalar>
template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::mapToReferenceFrameInitGuess(ArrayRefPoint & refPoints,
const ArrayInitGuess & initGuess,
const ArrayPhysPoint & physPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int & whichCell)
{
INTREPID_VALIDATE( validateArguments_mapToReferenceFrame(refPoints, initGuess, physPoints, cellWorkset, cellTopo, whichCell) );
int spaceDim = (int)cellTopo.getDimension();
int numPoints;
int numCells=0;
// Temp arrays for Newton iterates and Jacobians. Resize according to rank of ref. point array
FieldContainer<Scalar> xOld;
FieldContainer<Scalar> xTem;
FieldContainer<Scalar> jacobian;
FieldContainer<Scalar> jacobInv;
FieldContainer<Scalar> error;
FieldContainer<Scalar> cellCenter(spaceDim);
// Default: map (C,P,D) array of physical pt. sets to (C,P,D) array. Requires (C,P,D) temp arrays and (C,P,D,D) Jacobians.
if(whichCell == -1){
numPoints = physPoints.dimension(1);
numCells = cellWorkset.dimension(0);
xOld.resize(numCells, numPoints, spaceDim);
xTem.resize(numCells, numPoints, spaceDim);
jacobian.resize(numCells,numPoints, spaceDim, spaceDim);
jacobInv.resize(numCells,numPoints, spaceDim, spaceDim);
error.resize(numCells,numPoints);
// Set initial guess to xOld
for(int c = 0; c < numCells; c++){
for(int p = 0; p < numPoints; p++){
for(int d = 0; d < spaceDim; d++){
xOld(c, p, d) = initGuess(c, p, d);
}// d
}// p
}// c
}
// Custom: map (P,D) array of physical pts. to (P,D) array. Requires (P,D) temp arrays and (P,D,D) Jacobians.
else {
numPoints = physPoints.dimension(0);
xOld.resize(numPoints, spaceDim);
xTem.resize(numPoints, spaceDim);
jacobian.resize(numPoints, spaceDim, spaceDim);
jacobInv.resize(numPoints, spaceDim, spaceDim);
error.resize(numPoints);
// Set initial guess to xOld
for(int p = 0; p < numPoints; p++){
for(int d = 0; d < spaceDim; d++){
xOld(p, d) = initGuess(p, d);
}// d
}// p
}
// Newton method to solve the equation F(refPoints) - physPoints = 0:
// refPoints = xOld - DF^{-1}(xOld)*(F(xOld) - physPoints) = xOld + DF^{-1}(xOld)*(physPoints - F(xOld))
for(int iter = 0; iter < INTREPID_MAX_NEWTON; ++iter) {
// Jacobians at the old iterates and their inverses.
setJacobian(jacobian, xOld, cellWorkset, cellTopo, whichCell);
setJacobianInv(jacobInv, jacobian);
// The Newton step.
mapToPhysicalFrame( xTem, xOld, cellWorkset, cellTopo, whichCell ); // xTem <- F(xOld)
RealSpaceTools<Scalar>::subtract( xTem, physPoints, xTem ); // xTem <- physPoints - F(xOld)
RealSpaceTools<Scalar>::matvec( refPoints, jacobInv, xTem); // refPoints <- DF^{-1}( physPoints - F(xOld) )
RealSpaceTools<Scalar>::add( refPoints, xOld ); // refPoints <- DF^{-1}( physPoints - F(xOld) ) + xOld
// l2 error (Euclidean distance) between old and new iterates: |xOld - xNew|
RealSpaceTools<Scalar>::subtract( xTem, xOld, refPoints );
RealSpaceTools<Scalar>::vectorNorm( error, xTem, NORM_TWO );
// Average L2 error for a multiple sets of physical points: error is rank-2 (C,P) array
double totalError;
if(whichCell == -1) {
FieldContainer<Scalar> cellWiseError(numCells);
// error(C,P) -> cellWiseError(P)
RealSpaceTools<Scalar>::vectorNorm( cellWiseError, error, NORM_ONE );
totalError = RealSpaceTools<Scalar>::vectorNorm( cellWiseError, NORM_ONE );
}
//Average L2 error for a single set of physical points: error is rank-1 (P) array
else{
totalError = RealSpaceTools<Scalar>::vectorNorm( error, NORM_ONE );
totalError = totalError;
}
// Stopping criterion:
if (totalError < INTREPID_TOL) {
break;
}
else if ( iter > INTREPID_MAX_NEWTON) {
INTREPID_VALIDATE(std::cout << " Intrepid::CellTools::mapToReferenceFrameInitGuess failed to converge to desired tolerance within "
<< INTREPID_MAX_NEWTON << " iterations\n" );
break;
}
// initialize next Newton step
xOld = refPoints;
} // for(iter)
}
template<class Scalar>
template<class ArraySubcellPoint, class ArrayParamPoint>
void CellTools<Scalar>::mapToReferenceSubcell(ArraySubcellPoint & refSubcellPoints,
const ArrayParamPoint & paramPoints,
const int subcellDim,
const int subcellOrd,
const shards::CellTopology & parentCell){
int cellDim = parentCell.getDimension();
int numPts = paramPoints.dimension(0);
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(hasReferenceCell(parentCell) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): the specified cell topology does not have a reference cell.");
TEST_FOR_EXCEPTION( !( (1 <= subcellDim) && (subcellDim <= 2 ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): method defined only for 1 and 2-dimensional subcells.");
TEST_FOR_EXCEPTION( !( (0 <= subcellOrd) && (subcellOrd < (int)parentCell.getSubcellCount(subcellDim) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): subcell ordinal out of range.");
// refSubcellPoints is rank-2 (P,D1), D1 = cell dimension
std::string errmsg = ">>> ERROR (Intrepid::mapToReferenceSubcell):";
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, refSubcellPoints, 2,2), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, refSubcellPoints, 1, cellDim, cellDim), std::invalid_argument, errmsg);
// paramPoints is rank-2 (P,D2) with D2 = subcell dimension
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, paramPoints, 2,2), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, paramPoints, 1, subcellDim, subcellDim), std::invalid_argument, errmsg);
// cross check: refSubcellPoints and paramPoints: dimension 0 must match
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, refSubcellPoints, 0, paramPoints, 0), std::invalid_argument, errmsg);
#endif
// Get the subcell map, i.e., the coefficients of the parametrization function for the subcell
const FieldContainer<double>& subcellMap = getSubcellParametrization(subcellDim, parentCell);
// Apply the parametrization map to every point in parameter domain
if(subcellDim == 2) {
for(int pt = 0; pt < numPts; pt++){
double u = paramPoints(pt,0);
double v = paramPoints(pt,1);
// map_dim(u,v) = c_0(dim) + c_1(dim)*u + c_2(dim)*v because both Quad and Tri ref faces are affine!
for(int dim = 0; dim < cellDim; dim++){
refSubcellPoints(pt, dim) = subcellMap(subcellOrd, dim, 0) + \
subcellMap(subcellOrd, dim, 1)*u + \
subcellMap(subcellOrd, dim, 2)*v;
}
}
}
else if(subcellDim == 1) {
for(int pt = 0; pt < numPts; pt++){
for(int dim = 0; dim < cellDim; dim++) {
refSubcellPoints(pt, dim) = subcellMap(subcellOrd, dim, 0) + subcellMap(subcellOrd, dim, 1)*paramPoints(pt,0);
}
}
}
else{
TEST_FOR_EXCEPTION( !( (subcellDim == 1) || (subcellDim == 2) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::mapToReferenceSubcell): method defined only for 1 and 2-subcells");
}
}
template<class Scalar>
template<class ArrayEdgeTangent>
void CellTools<Scalar>::getReferenceEdgeTangent(ArrayEdgeTangent & refEdgeTangent,
const int & edgeOrd,
const shards::CellTopology & parentCell){
int spaceDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): two or three-dimensional parent cell required");
TEST_FOR_EXCEPTION( !( (0 <= edgeOrd) && (edgeOrd < (int)parentCell.getSubcellCount(1) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): edge ordinal out of bounds");
TEST_FOR_EXCEPTION( !( refEdgeTangent.size() == spaceDim ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): output array size is required to match space dimension");
#endif
// Edge parametrizations are computed in setSubcellParametrization and stored in rank-3 array
// (subcOrd, coordinate, coefficient)
const FieldContainer<double>& edgeMap = getSubcellParametrization(1, parentCell);
// All ref. edge maps have affine coordinate functions: f_dim(u) = C_0(dim) + C_1(dim)*u,
// => edge Tangent: -> C_1(*)
refEdgeTangent(0) = edgeMap(edgeOrd, 0, 1);
refEdgeTangent(1) = edgeMap(edgeOrd, 1, 1);
// Skip last coordinate for 2D parent cells
if(spaceDim == 3) {
refEdgeTangent(2) = edgeMap(edgeOrd, 2, 1);
}
}
template<class Scalar>
template<class ArrayFaceTangentU, class ArrayFaceTangentV>
void CellTools<Scalar>::getReferenceFaceTangents(ArrayFaceTangentU & uTan,
ArrayFaceTangentV & vTan,
const int & faceOrd,
const shards::CellTopology & parentCell){
#ifdef HAVE_INTREPID_DEBUG
int spaceDim = parentCell.getDimension();
TEST_FOR_EXCEPTION( !(spaceDim == 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): three-dimensional parent cell required");
TEST_FOR_EXCEPTION( !( (0 <= faceOrd) && (faceOrd < (int)parentCell.getSubcellCount(2) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): face ordinal out of bounds");
TEST_FOR_EXCEPTION( !( (uTan.rank() == 1) && (vTan.rank() == 1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): rank = 1 required for output arrays");
TEST_FOR_EXCEPTION( !( uTan.dimension(0) == spaceDim ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): dim0 (spatial dim) must match that of parent cell");
TEST_FOR_EXCEPTION( !( vTan.dimension(0) == spaceDim ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceTangents): dim0 (spatial dim) must match that of parent cell");
#endif
// Face parametrizations are computed in setSubcellParametrization and stored in rank-3 array
// (subcOrd, coordinate, coefficient): retrieve this array
const FieldContainer<double>& faceMap = getSubcellParametrization(2, parentCell);
/* All ref. face maps have affine coordinate functions: f_dim(u,v) = C_0(dim) + C_1(dim)*u + C_2(dim)*v
* ` => Tangent vectors are: uTan -> C_1(*); vTan -> C_2(*)
*/
// set uTan -> C_1(*)
uTan(0) = faceMap(faceOrd, 0, 1);
uTan(1) = faceMap(faceOrd, 1, 1);
uTan(2) = faceMap(faceOrd, 2, 1);
// set vTan -> C_2(*)
vTan(0) = faceMap(faceOrd, 0, 2);
vTan(1) = faceMap(faceOrd, 1, 2);
vTan(2) = faceMap(faceOrd, 2, 2);
}
template<class Scalar>
template<class ArraySideNormal>
void CellTools<Scalar>::getReferenceSideNormal(ArraySideNormal & refSideNormal,
const int & sideOrd,
const shards::CellTopology & parentCell){
int spaceDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSideNormal): two or three-dimensional parent cell required");
// Check side ordinal: by definition side is subcell whose dimension = spaceDim-1
TEST_FOR_EXCEPTION( !( (0 <= sideOrd) && (sideOrd < (int)parentCell.getSubcellCount(spaceDim - 1) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceSideNormal): side ordinal out of bounds");
#endif
if(spaceDim == 2){
// 2D parent cells: side = 1D subcell (edge), call the edge tangent method and rotate tangents
getReferenceEdgeTangent(refSideNormal, sideOrd, parentCell);
// rotate t(t1, t2) to get n(t2, -t1) so that (n,t) is positively oriented: det(n1,n2/t1,t2)>0
Scalar temp = refSideNormal(0);
refSideNormal(0) = refSideNormal(1);
refSideNormal(1) = -temp;
}
else{
// 3D parent cell: side = 2D subcell (face), call the face normal method.
getReferenceFaceNormal(refSideNormal, sideOrd, parentCell);
}
}
template<class Scalar>
template<class ArrayFaceNormal>
void CellTools<Scalar>::getReferenceFaceNormal(ArrayFaceNormal & refFaceNormal,
const int & faceOrd,
const shards::CellTopology & parentCell){
int spaceDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(spaceDim == 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): three-dimensional parent cell required");
TEST_FOR_EXCEPTION( !( (0 <= faceOrd) && (faceOrd < (int)parentCell.getSubcellCount(2) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): face ordinal out of bounds");
TEST_FOR_EXCEPTION( !( refFaceNormal.rank() == 1 ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): rank = 1 required for output array");
TEST_FOR_EXCEPTION( !( refFaceNormal.dimension(0) == spaceDim ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getReferenceFaceNormal): dim0 (spatial dim) must match that of parent cell");
#endif
// Reference face normal = vector product of reference face tangents. Allocate temp FC storage:
FieldContainer<Scalar> uTan(spaceDim);
FieldContainer<Scalar> vTan(spaceDim);
getReferenceFaceTangents(uTan, vTan, faceOrd, parentCell);
// Compute the vector product of the reference face tangents:
RealSpaceTools<Scalar>::vecprod(refFaceNormal, uTan, vTan);
}
template<class Scalar>
template<class ArrayEdgeTangent, class ArrayJac>
void CellTools<Scalar>::getPhysicalEdgeTangents(ArrayEdgeTangent & edgeTangents,
const ArrayJac & worksetJacobians,
const int & worksetEdgeOrd,
const shards::CellTopology & parentCell){
int worksetSize = worksetJacobians.dimension(0);
int edgePtCount = worksetJacobians.dimension(1);
int pCellDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalEdgeTangents):";
TEST_FOR_EXCEPTION( !( (pCellDim == 3) || (pCellDim == 2) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getPhysicalEdgeTangents): 2D or 3D parent cell required");
// (1) edgeTangents is rank-3 (C,P,D) and D=2, or 3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, edgeTangents, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, edgeTangents, 2, 2,3), std::invalid_argument, errmsg);
// (2) worksetJacobians in rank-4 (C,P,D,D) and D=2, or 3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 2,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 2,3), std::invalid_argument, errmsg);
// (4) cross-check array dimensions: edgeTangents (C,P,D) vs. worksetJacobians (C,P,D,D)
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, edgeTangents, 0,1,2,2, worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);
#endif
// Temp storage for constant reference edge tangent: rank-1 (D) arrays
FieldContainer<double> refEdgeTan(pCellDim);
getReferenceEdgeTangent(refEdgeTan, worksetEdgeOrd, parentCell);
// Loop over workset faces and edge points
for(int pCell = 0; pCell < worksetSize; pCell++){
for(int pt = 0; pt < edgePtCount; pt++){
// Apply parent cell Jacobian to ref. edge tangent
for(int i = 0; i < pCellDim; i++){
edgeTangents(pCell, pt, i) = 0.0;
for(int j = 0; j < pCellDim; j++){
edgeTangents(pCell, pt, i) += worksetJacobians(pCell, pt, i, j)*refEdgeTan(j);
}// for j
}// for i
}// for pt
}// for pCell
}
template<class Scalar>
template<class ArrayFaceTangentU, class ArrayFaceTangentV, class ArrayJac>
void CellTools<Scalar>::getPhysicalFaceTangents(ArrayFaceTangentU & faceTanU,
ArrayFaceTangentV & faceTanV,
const ArrayJac & worksetJacobians,
const int & worksetFaceOrd,
const shards::CellTopology & parentCell){
int worksetSize = worksetJacobians.dimension(0);
int facePtCount = worksetJacobians.dimension(1);
int pCellDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalFaceTangents):";
TEST_FOR_EXCEPTION( !(pCellDim == 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getPhysicalFaceTangents): three-dimensional parent cell required");
// (1) faceTanU and faceTanV are rank-3 (C,P,D) and D=3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceTanU, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceTanU, 2, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceTanV, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceTanV, 2, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceTanU, faceTanV), std::invalid_argument, errmsg);
// (3) worksetJacobians in rank-4 (C,P,D,D) and D=3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 3,3), std::invalid_argument, errmsg);
// (4) cross-check array dimensions: faceTanU (C,P,D) vs. worksetJacobians (C,P,D,D)
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceTanU, 0,1,2,2, worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);
#endif
// Temp storage for the pair of constant ref. face tangents: rank-1 (D) arrays
FieldContainer<double> refFaceTanU(pCellDim);
FieldContainer<double> refFaceTanV(pCellDim);
getReferenceFaceTangents(refFaceTanU, refFaceTanV, worksetFaceOrd, parentCell);
// Loop over workset faces and face points
for(int pCell = 0; pCell < worksetSize; pCell++){
for(int pt = 0; pt < facePtCount; pt++){
// Apply parent cell Jacobian to ref. face tangents
for(int dim = 0; dim < pCellDim; dim++){
faceTanU(pCell, pt, dim) = 0.0;
faceTanV(pCell, pt, dim) = 0.0;
// Unroll loops: parent cell dimension can only be 3
faceTanU(pCell, pt, dim) = \
worksetJacobians(pCell, pt, dim, 0)*refFaceTanU(0) + \
worksetJacobians(pCell, pt, dim, 1)*refFaceTanU(1) + \
worksetJacobians(pCell, pt, dim, 2)*refFaceTanU(2);
faceTanV(pCell, pt, dim) = \
worksetJacobians(pCell, pt, dim, 0)*refFaceTanV(0) + \
worksetJacobians(pCell, pt, dim, 1)*refFaceTanV(1) + \
worksetJacobians(pCell, pt, dim, 2)*refFaceTanV(2);
}// for dim
}// for pt
}// for pCell
}
template<class Scalar>
template<class ArraySideNormal, class ArrayJac>
void CellTools<Scalar>::getPhysicalSideNormals(ArraySideNormal & sideNormals,
const ArrayJac & worksetJacobians,
const int & worksetSideOrd,
const shards::CellTopology & parentCell){
int worksetSize = worksetJacobians.dimension(0);
int sidePtCount = worksetJacobians.dimension(1);
int spaceDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !( (spaceDim == 2) || (spaceDim == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getPhysicalSideNormals): two or three-dimensional parent cell required");
// Check side ordinal: by definition side is subcell whose dimension = spaceDim-1
TEST_FOR_EXCEPTION( !( (0 <= worksetSideOrd) && (worksetSideOrd < (int)parentCell.getSubcellCount(spaceDim - 1) ) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getPhysicalSideNormals): side ordinal out of bounds");
#endif
if(spaceDim == 2){
// 2D parent cells: side = 1D subcell (edge), call the edge tangent method and rotate tangents
getPhysicalEdgeTangents(sideNormals, worksetJacobians, worksetSideOrd, parentCell);
// rotate t(t1, t2) to get n(t2, -t1) so that (n,t) is positively oriented: det(n1,n2/t1,t2)>0
for(int cell = 0; cell < worksetSize; cell++){
for(int pt = 0; pt < sidePtCount; pt++){
Scalar temp = sideNormals(cell, pt, 0);
sideNormals(cell, pt, 0) = sideNormals(cell, pt, 1);
sideNormals(cell, pt, 1) = -temp;
}// for pt
}// for cell
}
else{
// 3D parent cell: side = 2D subcell (face), call the face normal method.
getPhysicalFaceNormals(sideNormals, worksetJacobians, worksetSideOrd, parentCell);
}
}
template<class Scalar>
template<class ArrayFaceNormal, class ArrayJac>
void CellTools<Scalar>::getPhysicalFaceNormals(ArrayFaceNormal & faceNormals,
const ArrayJac & worksetJacobians,
const int & worksetFaceOrd,
const shards::CellTopology & parentCell){
int worksetSize = worksetJacobians.dimension(0);
int facePtCount = worksetJacobians.dimension(1);
int pCellDim = parentCell.getDimension();
#ifdef HAVE_INTREPID_DEBUG
std::string errmsg = ">>> ERROR (Intrepid::CellTools::getPhysicalFaceNormals):";
TEST_FOR_EXCEPTION( !(pCellDim == 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::getPhysicalFaceNormals): three-dimensional parent cell required");
// (1) faceNormals is rank-3 (C,P,D) and D=3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, faceNormals, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, faceNormals, 2, 3,3), std::invalid_argument, errmsg);
// (3) worksetJacobians in rank-4 (C,P,D,D) and D=3 is required
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, worksetJacobians, 4,4), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 2, 3,3), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !requireDimensionRange(errmsg, worksetJacobians, 3, 3,3), std::invalid_argument, errmsg);
// (4) cross-check array dimensions: faceNormals (C,P,D) vs. worksetJacobians (C,P,D,D)
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, faceNormals, 0,1,2,2, worksetJacobians, 0,1,2,3), std::invalid_argument, errmsg);
#endif
// Temp storage for physical face tangents: rank-3 (C,P,D) arrays
FieldContainer<double> faceTanU(worksetSize, facePtCount, pCellDim);
FieldContainer<double> faceTanV(worksetSize, facePtCount, pCellDim);
getPhysicalFaceTangents(faceTanU, faceTanV, worksetJacobians, worksetFaceOrd, parentCell);
// Compute the vector product of the physical face tangents:
RealSpaceTools<Scalar>::vecprod(faceNormals, faceTanU, faceTanV);
}
//============================================================================================//
// //
// Inclusion tests //
// //
//============================================================================================//
template<class Scalar>
int CellTools<Scalar>::checkPointInclusion(const Scalar* point,
const int pointDim,
const shards::CellTopology & cellTopo,
const double & threshold) {
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !(pointDim == (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointInclusion): Point and cell dimensions do not match. ");
#endif
int testResult = 1;
// Using these values in the tests effectievly inflates the reference element to a larger one
double minus_one = -1.0 - threshold;
double plus_one = 1.0 + threshold;
double minus_zero = - threshold;
// A cell with extended topology has the same reference cell as a cell with base topology.
// => testing for inclusion in a reference Triangle<> and a reference Triangle<6> relies on
// on the same set of inequalities. To eliminate unnecessary cases we switch on the base topology
unsigned key = cellTopo.getBaseTopology() -> key ;
switch( key ) {
case shards::Line<>::key :
if( !(minus_one <= point[0] && point[0] <= plus_one)) testResult = 0;
break;
case shards::Triangle<>::key : {
Scalar distance = std::max( std::max( -point[0], -point[1] ), point[0] + point[1] - 1.0 );
if( distance > threshold ) testResult = 0;
break;
}
case shards::Quadrilateral<>::key :
if(!( (minus_one <= point[0] && point[0] <= plus_one) && \
(minus_one <= point[1] && point[1] <= plus_one) ) ) testResult = 0;
break;
case shards::Tetrahedron<>::key : {
Scalar distance = std::max( std::max(-point[0],-point[1]), \
std::max(-point[2], point[0] + point[1] + point[2] - 1) );
if( distance > threshold ) testResult = 0;
break;
}
case shards::Hexahedron<>::key :
if(!((minus_one <= point[0] && point[0] <= plus_one) && \
(minus_one <= point[1] && point[1] <= plus_one) && \
(minus_one <= point[2] && point[2] <= plus_one))) \
testResult = 0;
break;
// The base of the reference prism is the same as the reference triangle => apply triangle test
// to X and Y coordinates and test whether Z is in [-1,1]
case shards::Wedge<>::key : {
Scalar distance = std::max( std::max( -point[0], -point[1] ), point[0] + point[1] - 1 );
if( distance > threshold || \
point[2] < minus_one || point[2] > plus_one) \
testResult = 0;
break;
}
// The base of the reference pyramid is the same as the reference quad cell => a horizontal plane
// through a point P(x,y,z) intersects the pyramid at a quadrilateral that equals the base quad
// scaled by (1-z) => P(x,y,z) is inside the pyramid <=> (x,y) is in [-1+z,1-z]^2 && 0 <= Z <= 1
case shards::Pyramid<>::key : {
Scalar left = minus_one + point[2];
Scalar right = plus_one - point[2];
if(!( (left <= point[0] && point[0] <= right) && \
(left <= point[1] && point[1] <= right) &&
(minus_zero <= point[2] && point[2] <= plus_one) ) ) \
testResult = 0;
break;
}
default:
TEST_FOR_EXCEPTION( !( (key == shards::Line<>::key ) ||
(key == shards::Triangle<>::key) ||
(key == shards::Quadrilateral<>::key) ||
(key == shards::Tetrahedron<>::key) ||
(key == shards::Hexahedron<>::key) ||
(key == shards::Wedge<>::key) ||
(key == shards::Pyramid<>::key) ),
std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointInclusion): Invalid cell topology. ");
}
return testResult;
}
template<class Scalar>
template<class ArrayPoint>
int CellTools<Scalar>::checkPointsetInclusion(const ArrayPoint& points,
const shards::CellTopology & cellTopo,
const double & threshold) {
int rank = points.rank();
#ifdef HAVE_INTREPID_DEBUG
TEST_FOR_EXCEPTION( !( (1 <= points.rank() ) && (points.rank() <= 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointsetInclusion): rank-1, 2 or 3 required for input points array. ");
// The last dimension of points array at (rank - 1) is the spatial dimension. Must equal the cell dimension.
TEST_FOR_EXCEPTION( !( points.dimension(rank - 1) == (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointsetInclusion): Point and cell dimensions do not match. ");
#endif
// create temp output array depending on the rank of the input array
FieldContainer<int> inRefCell;
switch(rank) {
case 1: inRefCell.resize(1); break;
case 2: inRefCell.resize( points.dimension(0) ); break;
case 3: inRefCell.resize( points.dimension(0), points.dimension(1) ); break;
}
// Call the inclusion method which returns inclusion results for all points
checkPointwiseInclusion(inRefCell, points, cellTopo, threshold);
// Check if any points were outside, break when finding the first one
int allInside = 1;
for(int i = 0; i < inRefCell.size(); i++ ){
if (inRefCell[i] == 0) {
allInside = 0;
break;
}
}
return allInside;
}
template<class Scalar>
template<class ArrayIncl, class ArrayPoint>
void CellTools<Scalar>::checkPointwiseInclusion(ArrayIncl & inRefCell,
const ArrayPoint & points,
const shards::CellTopology & cellTopo,
const double & threshold) {
int apRank = points.rank();
#ifdef HAVE_INTREPID_DEBUG
// Verify that points and inRefCell have correct ranks and dimensions
std::string errmsg = ">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion):";
if(points.rank() == 1) {
TEST_FOR_EXCEPTION( !(inRefCell.rank() == 1 ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1 input array requires rank-1 output array.");
TEST_FOR_EXCEPTION( !(inRefCell.dimension(0) == 1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1 input array requires dim0 = 1 for output array.");
}
else if(points.rank() == 2){
TEST_FOR_EXCEPTION( !(inRefCell.rank() == 1 ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-2 input array requires rank-1 output array.");
// dimension 0 of the arrays must match
TEST_FOR_EXCEPTION( !requireDimensionMatch( errmsg, inRefCell, 0, points, 0), std::invalid_argument, errmsg);
}
else if (points.rank() == 3) {
TEST_FOR_EXCEPTION( !(inRefCell.rank() == 2 ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-3 input array requires rank-2 output array.");
// dimensions 0 and 1 of the arrays must match
TEST_FOR_EXCEPTION( !requireDimensionMatch( errmsg, inRefCell, 0,1, points, 0,1), std::invalid_argument, errmsg);
}
else{
TEST_FOR_EXCEPTION( !( (points.rank() == 1) || (points.rank() == 2) || (points.rank() == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1, 2 or 3 required for input points array. ");
}
// The last dimension of points array at (rank - 1) is the spatial dimension. Must equal the cell dimension.
TEST_FOR_EXCEPTION( !( points.dimension(apRank - 1) == (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): Point and cell dimensions do not match. ");
#endif
// Initializations
int dim0 = 1;
int dim1 = 1;
int pointDim = 0;
switch(apRank) {
case 1:
pointDim = points.dimension(0);
break;
case 2:
dim1 = points.dimension(0);
pointDim = points.dimension(1);
break;
case 3:
dim0 = points.dimension(0);
dim1 = points.dimension(1);
pointDim = points.dimension(2);
break;
default:
TEST_FOR_EXCEPTION( !( (1 <= points.rank() ) && (points.rank() <= 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): rank-1, 2 or 3 required for input points array. ");
}// switch
// This method can handle up to rank-3 input arrays. The spatial dim must be the last dimension.
// The method uses [] accessor because array rank is determined at runtime and the appropriate
// (i,j,..,k) accessor is not known. Use of [] requires the following offsets:
// for input array = i0*dim1*pointDim + i1*dim1 (computed in 2 pieces: inPtr0 and inPtr1, resp)
// for output array = i0*dim1 (computed in one piece: outPtr0)
int inPtr0 = 0;
int inPtr1 = 0;
int outPtr0 = 0;
Scalar point[3] = {0.0, 0.0, 0.0};
for(int i0 = 0; i0 < dim0; i0++){
outPtr0 = i0*dim1;
inPtr0 = outPtr0*pointDim;
for(int i1 = 0; i1 < dim1; i1++) {
inPtr1 = inPtr0 + i1*pointDim;
point[0] = points[inPtr1];
if(pointDim > 1) {
point[1] = points[inPtr1 + 1];
if(pointDim > 2) {
point[2] = points[inPtr1 + 2];
if(pointDim > 3) {
TEST_FOR_EXCEPTION( !( (1 <= pointDim) && (pointDim <= 3)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): Input array specifies invalid point dimension ");
}
}
} //if(pointDim > 1)
inRefCell[outPtr0 + i1] = checkPointInclusion(point, pointDim, cellTopo, threshold);
} // for (i1)
} // for(i2)
}
template<class Scalar>
template<class ArrayIncl, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::checkPointwiseInclusion(ArrayIncl & inCell,
const ArrayPoint & points,
const ArrayCell & cellWorkset,
const shards::CellTopology & cell,
const int & whichCell,
const double & threshold)
{
INTREPID_VALIDATE( validateArguments_checkPointwiseInclusion(inCell, points, cellWorkset, whichCell, cell) );
// For cell topologies with reference cells this test maps the points back to the reference cell
// and uses the method for reference cells
unsigned baseKey = cell.getBaseTopology() -> key;
switch(baseKey){
case shards::Line<>::key :
case shards::Triangle<>::key:
case shards::Quadrilateral<>::key :
case shards::Tetrahedron<>::key :
case shards::Hexahedron<>::key :
case shards::Wedge<>::key :
case shards::Pyramid<>::key :
{
FieldContainer<Scalar> refPoints;
if(points.rank() == 2){
refPoints.resize(points.dimension(0), points.dimension(1) );
mapToReferenceFrame(refPoints, points, cellWorkset, cell, whichCell);
checkPointwiseInclusion(inCell, refPoints, cell, threshold );
}
else if(points.rank() == 3){
refPoints.resize(points.dimension(0), points.dimension(1), points.dimension(2) );
mapToReferenceFrame(refPoints, points, cellWorkset, cell, whichCell);
checkPointwiseInclusion(inCell, refPoints, cell, threshold );
}
break;
}
default:
TEST_FOR_EXCEPTION( true, std::invalid_argument,
">>> ERROR (Intrepid::CellTools::checkPointwiseInclusion): cell topology not supported");
}// switch
}
//============================================================================================//
// //
// Validation of input/output arguments for CellTools methods //
// //
//============================================================================================//
template<class Scalar>
template<class ArrayJac, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_setJacobian(const ArrayJac & jacobian,
const ArrayPoint & points,
const ArrayCell & cellWorkset,
const int & whichCell,
const shards::CellTopology & cellTopo){
// Validate cellWorkset array
TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 3 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) >= 1 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of cellWorkset array does not match cell dimension");
// validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): whichCell = -1 or a valid cell ordinal is required.");
// Validate points array: can be rank-2 (P,D) or rank-3 (C,P,D)
// If rank-2: admissible jacobians: rank-3 (P,D,D) or rank-4 (C,P,D,D); admissible whichCell: -1 (default) or cell ordinal.
if(points.rank() == 2) {
TEST_FOR_EXCEPTION( (points.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of points) >= 1 required for points array ");
TEST_FOR_EXCEPTION( (points.dimension(1) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (spatial dimension) of points array does not match cell dimension");
// Validate the output array for the Jacobian: if whichCell == -1 all Jacobians are computed, rank-4 (C,P,D,D) required
if(whichCell == -1) {
TEST_FOR_EXCEPTION( (jacobian.rank() != 4), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 4 required for jacobian array");
TEST_FOR_EXCEPTION( (jacobian.dimension(0) != cellWorkset.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of jacobian array must equal dim 0 of cellWorkset array");
TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) of jacobian array must equal dim 0 of points array");
TEST_FOR_EXCEPTION( (jacobian.dimension(2) != points.dimension(1)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of jacobian array must equal dim 1 of points array");
TEST_FOR_EXCEPTION( !(jacobian.dimension(2) == jacobian.dimension(3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 = dim 3 (same spatial dimensions) required for jacobian array. ");
TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(3) ) && (jacobian.dimension(3) < 4) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 and dim 3 (spatial dimensions) must be between 1 and 3. ");
}
// A single cell Jacobian is computed when whichCell != -1 (whichCell has been already validated), rank-3 (P,D,D) required
else {
TEST_FOR_EXCEPTION( (jacobian.rank() != 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 3 required for jacobian array");
TEST_FOR_EXCEPTION( (jacobian.dimension(0) != points.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of points) of jacobian array must equal dim 0 of points array");
TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(1)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (spatial dimension) of jacobian array must equal dim 1 of points array");
TEST_FOR_EXCEPTION( !(jacobian.dimension(1) == jacobian.dimension(2) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 = dim 2 (same spatial dimensions) required for jacobian array. ");
TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(1) ) && (jacobian.dimension(1) < 4) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 and dim 2 (spatial dimensions) must be between 1 and 3. ");
}
}
// Point array is rank-3 (C,P,D): requires whichCell = -1 and rank-4 (C,P,D,D) jacobians
else if(points.rank() ==3){
std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian):";
TEST_FOR_EXCEPTION( (points.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of points array must equal dim 0 of cellWorkset array");
TEST_FOR_EXCEPTION( (points.dimension(1) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) >= 1 required for points array ");
TEST_FOR_EXCEPTION( (points.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of points array does not match cell dimension");
TEST_FOR_EXCEPTION( (whichCell != -1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): default value whichCell=-1 required for rank-3 input points");
// rank-4 (C,P,D,D) jacobian required for rank-3 (C,P,D) input points
TEST_FOR_EXCEPTION( !requireRankRange(errmsg, jacobian, 4, 4), std::invalid_argument,errmsg);
TEST_FOR_EXCEPTION( (jacobian.dimension(0) != points.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 0 (number of cells) of jacobian array must equal dim 0 of points array");
TEST_FOR_EXCEPTION( (jacobian.dimension(1) != points.dimension(1)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 1 (number of points) of jacobian array must equal dim 1 of points array");
TEST_FOR_EXCEPTION( (jacobian.dimension(2) != points.dimension(2)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 (spatial dimension) of jacobian array must equal dim 2 of points array");
TEST_FOR_EXCEPTION( !(jacobian.dimension(2) == jacobian.dimension(3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 = dim 3 (same spatial dimensions) required for jacobian array. ");
TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(3) ) && (jacobian.dimension(3) < 4) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): dim 2 and dim 3 (spatial dimensions) must be between 1 and 3. ");
}
else {
TEST_FOR_EXCEPTION( !( (points.rank() == 2) && (points.rank() ==3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobian): rank = 2 or 3 required for points array");
}
}
template<class Scalar>
template<class ArrayJacInv, class ArrayJac>
void CellTools<Scalar>::validateArguments_setJacobianInv(const ArrayJacInv & jacobianInv,
const ArrayJac & jacobian)
{
// Validate input jacobian array: admissible ranks & dimensions are:
// - rank-4 with dimensions (C,P,D,D), or rank-3 with dimensions (P,D,D).
int jacobRank = jacobian.rank();
TEST_FOR_EXCEPTION( !( (jacobRank == 4) || (jacobRank == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): rank = 4 or 3 required for jacobian array. ");
// Verify correctness of spatial dimensions - they are the last two dimensions of the array: rank-2 and rank-1
TEST_FOR_EXCEPTION( !(jacobian.dimension(jacobRank - 1) == jacobian.dimension(jacobRank - 2) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-2) = dim(rank-2) (same spatial dimensions) required for jacobian array. ");
TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(jacobRank - 1) ) && (jacobian.dimension(jacobRank - 1) < 4) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-1) and dim(rank-2) (spatial dimensions) must be between 1 and 3. ");
// Validate output jacobianInv array: must have the same rank and dimensions as the input array.
std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv):";
TEST_FOR_EXCEPTION( !(requireRankMatch(errmsg, jacobianInv, jacobian) ), std::invalid_argument, errmsg);
TEST_FOR_EXCEPTION( !(requireDimensionMatch(errmsg, jacobianInv, jacobian) ), std::invalid_argument, errmsg);
}
template<class Scalar>
template<class ArrayJacDet, class ArrayJac>
void CellTools<Scalar>::validateArguments_setJacobianDetArgs(const ArrayJacDet & jacobianDet,
const ArrayJac & jacobian)
{
// Validate input jacobian array: admissible ranks & dimensions are:
// - rank-4 with dimensions (C,P,D,D), or rank-3 with dimensions (P,D,D).
int jacobRank = jacobian.rank();
TEST_FOR_EXCEPTION( !( (jacobRank == 4) || (jacobRank == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): rank = 4 or 3 required for jacobian array. ");
// Verify correctness of spatial dimensions - they are the last two dimensions of the array: rank-2 and rank-1
TEST_FOR_EXCEPTION( !(jacobian.dimension(jacobRank - 1) == jacobian.dimension(jacobRank - 2) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-2) = dim(rank-2) (same spatial dimensions) required for jacobian array. ");
TEST_FOR_EXCEPTION( !( (0 < jacobian.dimension(jacobRank - 1) ) && (jacobian.dimension(jacobRank - 1) < 4) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianInv): dim(rank-1) and dim(rank-2) (spatial dimensions) must be between 1 and 3. ");
// Validate output jacobianDet array: must be rank-2 with dimensions (C,P) if jacobian was rank-4:
if(jacobRank == 4){
TEST_FOR_EXCEPTION( !(jacobianDet.rank() == 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): rank = 2 required for jacobianDet if jacobian is rank-4. ");
TEST_FOR_EXCEPTION( !(jacobianDet.dimension(0) == jacobian.dimension(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 0 (number of cells) of jacobianDet array must equal dim 0 of jacobian array. ");
TEST_FOR_EXCEPTION( !(jacobianDet.dimension(1) == jacobian.dimension(1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 1 (number of points) of jacobianDet array must equal dim 1 of jacobian array.");
}
// must be rank-1 with dimension (P) if jacobian was rank-3
else {
TEST_FOR_EXCEPTION( !(jacobianDet.rank() == 1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): rank = 1 required for jacobianDet if jacobian is rank-3. ");
TEST_FOR_EXCEPTION( !(jacobianDet.dimension(0) == jacobian.dimension(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_setJacobianDetArgs): dim 0 (number of points) of jacobianDet array must equal dim 0 of jacobian array.");
}
}
template<class Scalar>
template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToPhysicalFrame(const ArrayPhysPoint & physPoints,
const ArrayRefPoint & refPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int& whichCell)
{
std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame):";
// Validate cellWorkset array
TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 3 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) >= 1 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) of cellWorkset array does not match cell dimension");
// validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): whichCell = -1 or a valid cell ordinal is required.");
// Validate refPoints array: can be rank-2 (P,D) or rank-3 (C,P,D) array
// If rank-2: admissible output array is (P,D) or (C,P,D); admissible whichCell: -1 (default) or cell ordinal
if(refPoints.rank() == 2) {
TEST_FOR_EXCEPTION( (refPoints.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of points) >= 1 required for refPoints array ");
TEST_FOR_EXCEPTION( (refPoints.dimension(1) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (spatial dimension) of refPoints array does not match cell dimension");
// Validate output array: whichCell = -1 requires rank-3 array with dimensions (C,P,D)
if(whichCell == -1) {
TEST_FOR_EXCEPTION( ( (physPoints.rank() != 3) && (whichCell == -1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 3 required for physPoints array for the default whichCell value");
TEST_FOR_EXCEPTION( (physPoints.dimension(0) != cellWorkset.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) of physPoints array must equal dim 0 of cellWorkset array");
TEST_FOR_EXCEPTION( (physPoints.dimension(1) != refPoints.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of points) of physPoints array must equal dim 0 of refPoints array");
TEST_FOR_EXCEPTION( (physPoints.dimension(2) != (int)cellTopo.getDimension()), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) does not match cell dimension ");
}
// 0 <= whichCell < num cells requires rank-2 (P,D) arrays for both refPoints and physPoints
else{
TEST_FOR_EXCEPTION( (physPoints.rank() != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 2 required for physPoints array");
TEST_FOR_EXCEPTION( (physPoints.dimension(0) != refPoints.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of points) of physPoints array must equal dim 0 of refPoints array");
TEST_FOR_EXCEPTION( (physPoints.dimension(1) != (int)cellTopo.getDimension()), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (spatial dimension) does not match cell dimension ");
}
}
// refPoints is (C,P,D): requires physPoints to be (C,P,D) and whichCell=-1 (because all cell mappings are applied)
else if(refPoints.rank() == 3) {
// 1. validate refPoints dimensions and rank
TEST_FOR_EXCEPTION( (refPoints.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 0 (number of cells) of refPoints and cellWorkset arraya are required to match ");
TEST_FOR_EXCEPTION( (refPoints.dimension(1) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 1 (number of points) >= 1 required for refPoints array ");
TEST_FOR_EXCEPTION( (refPoints.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): dim 2 (spatial dimension) of refPoints array does not match cell dimension");
// 2. whichCell must be -1
TEST_FOR_EXCEPTION( (whichCell != -1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): default value is required for rank-3 refPoints array");
// 3. physPoints must match rank and dimensions of refPoints
TEST_FOR_EXCEPTION( !requireRankMatch(errmsg, refPoints, physPoints), std::invalid_argument, errmsg );
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, refPoints, physPoints), std::invalid_argument, errmsg);
}
// if rank is not 2 or 3 throw exception
else {
TEST_FOR_EXCEPTION( !( (refPoints.rank() == 2) || (refPoints.rank() == 3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToPhysicalFrame): rank = 2 or 3 required for refPoints array");
}
}
template<class Scalar>
template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToReferenceFrame(const ArrayRefPoint & refPoints,
const ArrayPhysPoint & physPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int& whichCell)
{
std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
std::string errmsg1 = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
// Validate cellWorkset array
TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): rank = 3 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 0 (number of cells) >= 1 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cellTopo.getSubcellCount(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cellTopo.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): dim 2 (spatial dimension) of cellWorkset array does not match cell dimension");
// Validate whichCell. It can be either -1 (default value) or a valid cell ordinal.
TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame): whichCell = -1 or a valid cell ordinal is required.");
// Admissible ranks and dimensions of refPoints and physPoints depend on whichCell value:
// default is to map multiple sets of points to multiple sets of points. (C,P,D) arrays required
int validRank;
if(whichCell == -1) {
validRank = 3;
errmsg1 += " default value of whichCell requires rank-3 arrays:";
}
// whichCell is valid cell ordinal => we map single set of pts to a single set of pts. (P,D) arrays required
else{
errmsg1 += " rank-2 arrays required when whichCell is valid cell ordinal";
validRank = 2;
}
TEST_FOR_EXCEPTION( !requireRankRange(errmsg1, refPoints, validRank,validRank), std::invalid_argument, errmsg1);
TEST_FOR_EXCEPTION( !requireRankMatch(errmsg1, physPoints, refPoints), std::invalid_argument, errmsg1);
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg1, refPoints, physPoints), std::invalid_argument, errmsg1);
}
template<class Scalar>
template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_mapToReferenceFrame(const ArrayRefPoint & refPoints,
const ArrayInitGuess & initGuess,
const ArrayPhysPoint & physPoints,
const ArrayCell & cellWorkset,
const shards::CellTopology & cellTopo,
const int& whichCell)
{
// Call the method that validates arguments with the default initial guess selection
validateArguments_mapToReferenceFrame(refPoints, physPoints, cellWorkset, cellTopo, whichCell);
// Then check initGuess: its rank and dimensions must match those of physPoints.
std::string errmsg = ">>> ERROR (Intrepid::CellTools::validateArguments_mapToReferenceFrame):";
TEST_FOR_EXCEPTION( !requireDimensionMatch(errmsg, initGuess, physPoints), std::invalid_argument, errmsg);
}
template<class Scalar>
template<class ArrayIncl, class ArrayPoint, class ArrayCell>
void CellTools<Scalar>::validateArguments_checkPointwiseInclusion(ArrayIncl & inCell,
const ArrayPoint & physPoints,
const ArrayCell & cellWorkset,
const int & whichCell,
const shards::CellTopology & cell)
{
// Validate cellWorkset array
TEST_FOR_EXCEPTION( (cellWorkset.rank() != 3), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 3 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells) >= 1 required for cellWorkset array");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(1) != (int)cell.getSubcellCount(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of cell nodes) of cellWorkset array does not match cell topology");
TEST_FOR_EXCEPTION( (cellWorkset.dimension(2) != (int)cell.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 2 (spatial dimension) of cellWorkset array does not match cell dimension");
// Validate whichCell It can be either -1 (default value) or a valid cell ordinal.
TEST_FOR_EXCEPTION( !( ( (0 <= whichCell ) && (whichCell < cellWorkset.dimension(0) ) ) || (whichCell == -1) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = -1 or a valid cell ordinal is required.");
// Validate points array: can be rank-2 (P,D) or rank-3 (C,P,D)
// If rank-2: admissible inCell is rank-1 (P); admissible whichCell is valid cell ordinal but not -1.
if(physPoints.rank() == 2) {
TEST_FOR_EXCEPTION( (whichCell == -1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = a valid cell ordinal is required with rank-2 input array.");
TEST_FOR_EXCEPTION( (physPoints.dimension(0) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of points) >= 1 required for physPoints array ");
TEST_FOR_EXCEPTION( (physPoints.dimension(1) != (int)cell.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (spatial dimension) of physPoints array does not match cell dimension");
// Validate inCell
TEST_FOR_EXCEPTION( (inCell.rank() != 1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 1 required for inCell array");
TEST_FOR_EXCEPTION( (inCell.dimension(0) != physPoints.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of points) of inCell array must equal dim 0 of physPoints array");
}
// If rank-3: admissible inCell is rank-2 (C,P); admissible whichCell = -1.
else if (physPoints.rank() == 3){
TEST_FOR_EXCEPTION( !(whichCell == -1), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): whichCell = -1 is required with rank-3 input array.");
TEST_FOR_EXCEPTION( (physPoints.dimension(0) != cellWorkset.dimension(0) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells) of physPoints array must equal dim 0 of cellWorkset array ");
TEST_FOR_EXCEPTION( (physPoints.dimension(1) <= 0), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of points) >= 1 required for physPoints array ");
TEST_FOR_EXCEPTION( (physPoints.dimension(2) != (int)cell.getDimension() ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 2 (spatial dimension) of physPoints array does not match cell dimension");
// Validate inCell
TEST_FOR_EXCEPTION( (inCell.rank() != 2), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 2 required for inCell array");
TEST_FOR_EXCEPTION( (inCell.dimension(0) != physPoints.dimension(0)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 0 (number of cells) of inCell array must equal dim 0 of physPoints array");
TEST_FOR_EXCEPTION( (inCell.dimension(1) != physPoints.dimension(1)), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): dim 1 (number of points) of inCell array must equal dim 1 of physPoints array");
}
else {
TEST_FOR_EXCEPTION( !( (physPoints.rank() == 2) && (physPoints.rank() ==3) ), std::invalid_argument,
">>> ERROR (Intrepid::CellTools::validateArguments_checkPointwiseInclusion): rank = 2 or 3 required for points array");
}
}
//============================================================================================//
// //
// Debug //
// //
//============================================================================================//
template<class Scalar>
void CellTools<Scalar>::printSubcellVertices(const int subcellDim,
const int subcellOrd,
const shards::CellTopology & parentCell){
// Get number of vertices for the specified subcell and parent cell dimension
int subcVertexCount = parentCell.getVertexCount(subcellDim, subcellOrd);
int cellDim = parentCell.getDimension();
// Allocate space for the subcell vertex coordinates
FieldContainer<double> subcellVertices(subcVertexCount, cellDim);
// Retrieve the vertex coordinates
getReferenceSubcellVertices(subcellVertices,
subcellDim,
subcellOrd,
parentCell);
// Print the vertices
std::cout
<< " Subcell " << std::setw(2) << subcellOrd
<< " is " << parentCell.getName(subcellDim, subcellOrd) << " with vertices = {";
// Loop over subcell vertices
for(int subcVertOrd = 0; subcVertOrd < subcVertexCount; subcVertOrd++){
std::cout<< "(";
// Loop over vertex Cartesian coordinates
for(int dim = 0; dim < (int)parentCell.getDimension(); dim++){
std::cout << subcellVertices(subcVertOrd, dim);
if(dim < (int)parentCell.getDimension()-1 ) { std::cout << ","; }
}
std::cout<< ")";
if(subcVertOrd < subcVertexCount - 1) { std::cout << ", "; }
}
std::cout << "}\n";
}
template<class Scalar>
template<class ArrayCell>
void CellTools<Scalar>::printWorksetSubcell(const ArrayCell & cellWorkset,
const shards::CellTopology & parentCell,
const int& pCellOrd,
const int& subcellDim,
const int& subcellOrd,
const int& fieldWidth){
// Get the ordinals, relative to reference cell, of subcell cellWorkset
int subcNodeCount = parentCell.getNodeCount(subcellDim, subcellOrd);
int pCellDim = parentCell.getDimension();
std::vector<int> subcNodeOrdinals(subcNodeCount);
for(int i = 0; i < subcNodeCount; i++){
subcNodeOrdinals[i] = parentCell.getNodeMap(subcellDim, subcellOrd, i);
}
// Loop over parent cells and print subcell cellWorkset
std::cout
<< " Subcell " << subcellOrd << " on parent cell " << pCellOrd << " is "
<< parentCell.getName(subcellDim, subcellOrd) << " with node(s) \n ({";
for(int i = 0; i < subcNodeCount; i++){
// print Cartesian coordinates of the node
for(int dim = 0; dim < pCellDim; dim++){
std::cout
<< std::setw(fieldWidth) << std::right << cellWorkset(pCellOrd, subcNodeOrdinals[i], dim);
if(dim < pCellDim - 1){ std::cout << ","; }
}
std::cout << "}";
if(i < subcNodeCount - 1){ std::cout <<", {"; }
}
std::cout << ")\n\n";
}
} // namespace Intrepid
#endif
|