This file is indexed.

/usr/include/trilinos/Intrepid_CellTools.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
// @HEADER
// ************************************************************************
//
//                           Intrepid Package
//                 Copyright (2007) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Pavel Bochev  (pbboche@sandia.gov)
//                    Denis Ridzal  (dridzal@sandia.gov), or
//                    Kara Peterson (kjpeter@sandia.gov)
//
// ************************************************************************
// @HEADER

/** \file   Intrepid_CellTools.hpp
    \brief  Header file for the Intrepid::CellTools class.
    \author Created by P. Bochev and D. Ridzal.
*/

#ifndef INTREPID_CELLTOOLS_HPP
#define INTREPID_CELLTOOLS_HPP


#include "Intrepid_FieldContainer.hpp"
#include "Intrepid_RealSpaceTools.hpp"
#include "Intrepid_ConfigDefs.hpp"
#include "Intrepid_Types.hpp"
#include "Intrepid_Utils.hpp"
#include "Intrepid_Basis.hpp"
#include "Intrepid_HGRAD_TRI_C1_FEM.hpp"
#include "Intrepid_HGRAD_QUAD_C1_FEM.hpp"
#include "Intrepid_HGRAD_TET_C1_FEM.hpp"
#include "Intrepid_HGRAD_WEDGE_C1_FEM.hpp"
#include "Intrepid_HGRAD_HEX_C1_FEM.hpp"

#include "Intrepid_HGRAD_LINE_C1_FEM.hpp"

#include "Intrepid_HGRAD_TRI_C2_FEM.hpp"
#include "Intrepid_HGRAD_QUAD_C2_FEM.hpp"
#include "Intrepid_HGRAD_TET_C2_FEM.hpp"
#include "Intrepid_HGRAD_WEDGE_C2_FEM.hpp"
#include "Intrepid_HGRAD_HEX_C2_FEM.hpp"

#include "Shards_CellTopology.hpp"
#include "Shards_BasicTopologies.hpp"

#include "Teuchos_TestForException.hpp"
#include "Teuchos_RCP.hpp"

namespace Intrepid {
  
  
  //============================================================================================//
  //                                                                                            //
  //                                          CellTools                                         //
  //                                                                                            //
  //============================================================================================//
  
/** \class  Intrepid::CellTools
    \brief  A stateless class for operations on cell data. Provides methods for:
    \li     computing Jacobians of reference-to-physical frame mappings, their inverses and determinants    
    \li     application of the reference-to-physical frame mapping and its inverse
    \li     parametrizations of edges and faces of reference cells needed for edge and face integrals,
    \li     computation of edge and face tangents and face normals on both reference and physical frames
    \li     inclusion tests for point sets in reference and physical cells.  
*/
template<class Scalar>
class CellTools {
private:
  
  //============================================================================================//
  //                                                                                            //
  //          Parametrization coefficients of edges and faces of reference cells                //
  //                                                                                            //
  //============================================================================================//
  
  
  /** \brief  Returns array with the coefficients of the parametrization maps for the edges or faces
              of a reference cell topology. 
  
              See CellTools<Scalar>::setSubcellParametrization and Section \ref sec_cell_topology_subcell_map 
              more information about parametrization maps.
   
      \param  subcellDim        [in]  - dimension of subcells whose parametrization map is returned
      \param  parentCell        [in]  - topology of the reference cell owning the subcells
  
      \return FieldContainer<double> with the coefficients of the parametrization map for all subcells
              of the specified dimension. 
    */
  static const FieldContainer<double>& getSubcellParametrization(const int                   subcellDim, 
                                                                 const shards::CellTopology& parentCell);
  
  
  
  /** \brief  Defines orientation-preserving parametrizations of reference edges and faces of cell 
              topologies with reference cells. 
  
              Given an edge {V0, V1} of some reference cell, its parametrization is a mapping from
              [-1,1] onto the edge. Parametrization of a triangular face {V0,V1,V2} is mapping from
              the standard 2-simplex {(0,0,0), (1,0,0), (0,1,0)}, embedded in 3D onto that face. 
              Parametrization of a quadrilateral face {V0,V1,V2,V3} is mapping from the standard 
              2-cube {(-1,-1,0),(1,-1,0),(1,1,0),(-1,1,0)}, embedded in 3D, onto that face.  
  
              This method computes the coefficients of edge and face parametrization maps and stores
              them in static arrays owned by CellTools<Scalar>::getSubcellParametrization method. 
              All mappings are affine and orientation-preserving, i.e., they preserve the tangent
              and normal directions implied by the vertex order of the edge or the face relative to
              the reference cell:
  
      \li     the tangent on [-1,1] from -1 in the direction of 1 is mapped to a tangent on edge {V0,V1}
              from V0 in the direction of V1  (the forward direction of the edge determined by its 
              start and end vertices)
  
      \li     the normal in the direction of (0,0,1) to the standard 2-simplex {(0,0,0),(1,0,0),(0,1,0)} 
              and the standard 2-cube {(-1,-1,0),(1,-1,0),(1,1,0),(-1,1,0)} is mapped to a normal
              on {V0,V1,V2} and {V0,V1,V2,V3}, determined according to the right-hand rule 
              (see http://mathworld.wolfram.com/Right-HandRule.html for definition of right-hand rule
              and Section \ref Section sec_cell_topology_subcell_map for further details).
  
              Because faces of all reference cells supported in Intrepid are affine images of either
              the standard 2-simplex or the standard 2-cube, the coordinate functions of the respective
              parmetrization maps are linear polynomials in the parameter variables (u,v), i.e., they
              are of the form \c F_i(u,v)=C_0(i)+C_1(i)u+C_2(i)v;  \c 0<=i<3 (face parametrizations
              are supported only for 3D cells, thus parametrization maps have 3 coordinate functions).   
              As a result, application of these maps is independent of the face type which is convenient
              for cells such as Wedge or Pyramid that have both types of faces. Also, coefficients of
              coordinate functions for all faces can be stored together in the same array.
  
      \param  subcellParametrization [out]  - array with the coefficients of the parametrization map
      \param  subcellDim             [in]   - dimension of the subcells being parametrized (1 or 2)
      \param  parentCell             [in]   - topology of the parent cell owning the subcells.
  */
  
  static void setSubcellParametrization(FieldContainer<double>&     subcellParametrization,
                                        const int                   subcellDim,
                                        const shards::CellTopology& parentCell);
  
  //============================================================================================//
  //                                                                                            //
  //                  Validation of input/output arguments for CellTools methods                //
  //                                                                                            //
  //============================================================================================//
  
  /** \brief  Validates arguments to Intrepid::CellTools::setJacobian
      \param  jacobian          [in]  - rank-4 (C,P,D,D) array or rank-3 (P,D,D) array required
      \param  points            [in]  - rank-2 (P,D) or rank-3 (C,P,D) array required
      \param  cellWorkset       [in]  - rank-3 (C,N,D) array required
      \param  whichCell         [in]  - default = -1 or 0 <= whichCell < C required
      \param  cellTopo          [in]  - cell topology with a reference cell required
  */
  template<class ArrayJac, class ArrayPoint, class ArrayCell>
  static void validateArguments_setJacobian(const ArrayJac    &          jacobian,
                                            const ArrayPoint  &          points,
                                            const ArrayCell   &          cellWorkset,
                                            const int &                  whichCell,
                                            const shards::CellTopology & cellTopo);
  
  
  
  /** \brief  Validates arguments to Intrepid::CellTools::setJacobianInv
      \param  jacobianInv       [in]  - rank and dimensions must match jacobian array
      \param  jacobian          [in]  - rank-4 (C,P,D,D) array or rank-3 (P,D,D) array required
  */
  template<class ArrayJacInv, class ArrayJac>
  static void validateArguments_setJacobianInv(const ArrayJacInv &  jacobianInv,
                                               const ArrayJac    &  jacobian);
  
  
  
  /** \brief  Validates arguments to Intrepid::CellTools::setJacobianDet
      \param  jacobianDet       [in]  - rank = (jacobian rank - 2) required
      \param  jacobian          [in]  - rank-4 (C,P,D,D) array or rank-3 (P,D,D) array required
    */
  template<class ArrayJacDet, class ArrayJac>
  static void validateArguments_setJacobianDetArgs(const ArrayJacDet &  jacobianDet,
                                                   const ArrayJac    &  jacobian);
  
  
  
  /** \brief  Validates arguments to Intrepid::CellTools::mapToPhysicalFrame
      \param  physPoints        [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  refPoints         [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  cellWorkset       [in]  - rank-3 (C,N,D) array required
      \param  whichCell         [in]  - default = -1 or 0 <= whichCell < C required
      \param  cellTopo          [in]  - cell topology with a reference cell required
    */
  template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
  static void validateArguments_mapToPhysicalFrame(const ArrayPhysPoint &        physPoints,
                                                   const ArrayRefPoint  &        refPoints,
                                                   const ArrayCell      &        cellWorkset,
                                                   const shards::CellTopology &  cellTopo,
                                                   const int&                    whichCell);
  
  
  
  /** \brief  Validates arguments to Intrepid::CellTools::mapToReferenceFrame with default initial guess.
      \param  physPoints        [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  refPoints         [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  cellWorkset       [in]  - rank-3 (C,N,D) array required
      \param  whichCell         [in]  - default = -1 or 0 <= whichCell < C required
      \param  cellTopo          [in]  - cell topology with a reference cell required
    */
  template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
  static void validateArguments_mapToReferenceFrame(const ArrayRefPoint  &        refPoints,
                                                    const ArrayPhysPoint &        physPoints,
                                                    const ArrayCell      &        cellWorkset,
                                                    const shards::CellTopology &  cellTopo,
                                                    const int&                    whichCell);

  
  
  /** \brief  Validates arguments to Intrepid::CellTools::mapToReferenceFrame with user-defined initial guess.
      \param  physPoints        [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  initGuess         [in]  - rank and dimensions must match those of physPoints
      \param  refPoints         [in]  - rank-3 (C,P,D) array or rank-2 (P,D) array required
      \param  cellWorkset       [in]  - rank-3 (C,N,D) array required
      \param  whichCell         [in]  - default = -1 or 0 <= whichCell < C required
      \param  cellTopo          [in]  - cell topology with a reference cell required
    */
  template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
  static void validateArguments_mapToReferenceFrame(const ArrayRefPoint  &        refPoints,
                                                    const ArrayInitGuess &        initGuess,
                                                    const ArrayPhysPoint &        physPoints,
                                                    const ArrayCell      &        cellWorkset,
                                                    const shards::CellTopology &  cellTopo,
                                                    const int&                    whichCell);
  
  
  
  /** \brief  Validates arguments to Intrepid::CellTools::checkPointwiseInclusion
      \param  inCell            [out] - rank-1  (P) array required
      \param  physPoints        [in]  - rank-2  (P,D) array required
      \param  cellWorkset       [in]  - rank-3  (C,N,D) array required
      \param  whichCell         [in]  - 0 <= whichCell < C required
      \param  cellTopo          [in]  - cell topology with a reference cell required
    */
  template<class ArrayIncl, class ArrayPoint, class ArrayCell>
  static void validateArguments_checkPointwiseInclusion(ArrayIncl        &            inCell,
                                                        const ArrayPoint &            physPoints,
                                                        const ArrayCell  &            cellWorkset,
                                                        const int &                   whichCell,
                                                        const shards::CellTopology &  cell);
public:
  
    /** \brief  Default constructor.
      */
    CellTools(){ };
      
      
    /** \brief  Destructor
      */
    ~CellTools(){ };
    
    //============================================================================================//
    //                                                                                            //
    //                     Jacobian, inverse Jacobian and Jacobian determinant                    //
    //                                                                                            //
    //============================================================================================//
    
    /** \brief  Computes the Jacobian matrix \e DF of the reference-to-physical frame map \e F.
      
                There are three use cases:
        \li     Computes Jacobians \f$DF_{c}\f$ of the reference-to-physical map for a \b specified physical
                cell \f${\mathcal C}\f$ from a cell workset on a \b single set of reference points stored
                in a rank-2 (P,D) array;
        \li     Computes Jacobians \f$DF_{c}\f$ of the reference-to-physical map for \b all physical cells
                in a cell workset on a \b single set of reference points stored in a rank-2 (P,D) array;
        \li     Computes Jacobians \f$DF_{c}\f$ of the reference-to-physical map for \b all physical cells
                in a cell workset on \b multiple reference point sets having the same number of points, 
                indexed by cell ordinal, and stored in a rank-3 (C,P,D) array;
      
                For a single point set in a rank-2 array (P,D) and \c whichCell set to a valid cell ordinal
                relative to \c cellWorkset returns a rank-3 (P,D,D) array such that
        \f[ 
                \mbox{jacobian}(p,i,j)   = [DF_{c}(\mbox{points}(p))]_{ij} \quad \mbox{for $0\le c < C$ - fixed} 
        \f]
                For a single point set in a rank-2 array (P,D) and \c whichCell=-1 (default value) returns
                a rank-4 (C,P,D,D) array such that
        \f[
                \mbox{jacobian}(c,p,i,j) = [DF_{c}(\mbox{points}(p))]_{ij} \quad c=0,\ldots, C
        \f]
                For multiple sets of reference points in a rank-3 (C,P,D) array returns 
                rank-4 (C,P,D,D) array such that
        \f[ 
                \mbox{jacobian}(c,p,i,j) = [DF_{c}(\mbox{points}(c,p))]_{ij} \quad c=0,\ldots, C
        \f]
                This setting requires the default value \c whichCell=-1. 
      
                Requires cell topology with a reference cell. See Section \ref sec_cell_topology_ref_map_DF 
                for definition of the Jacobian. 
      
                The default \c whichCell = -1 forces computation of all cell Jacobians and 
                requiers rank-4 output array. Computation of single cell Jacobians is forced by  
                selecting a valid cell ordinal \c whichCell and requires rank-3 output array.
      
                \warning
                The points are not required to be in the reference cell associated with the specified 
                cell topology. CellTools provides several inclusion tests methods to check whether 
                or not the points are inside a reference cell.
      
        \param  jacobian          [out] - rank-4/3 array with dimensions (C,P,D,D)/(P,D,D) with the Jacobians
        \param  points            [in]  - rank-2/3 array with dimensions (P,D)/(C,P,D) with the evaluation points 
        \param  cellWorkset       [in]  - rank-3 array with dimensions (C,N,D) with the nodes of the cell workset
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  whichCell         [in]  - cell ordinal (for single cell Jacobian computation); default is -1      
     */
    template<class ArrayJac, class ArrayPoint, class ArrayCell>
    static void setJacobian(ArrayJac &                   jacobian,
                            const ArrayPoint &           points,
                            const ArrayCell  &           cellWorkset,
                            const shards::CellTopology & cellTopo,
                            const int &                  whichCell = -1);
    
  
    
    /** \brief  Computes the inverse of the Jacobian matrix \e DF of the reference-to-physical frame map \e F.
      
                Returns rank-4 or rank-3 array with dimensions (C,P,D,D) or (P,D,D) such that 
        \f[ 
                \mbox{jacobianInv}(c,p,*,*) = \mbox{jacobian}^{-1}(c,p,*,*) \quad c = 0,\ldots, C
                \quad\mbox{or}\quad
                \mbox{jacobianInv}(p,*,*)   = \mbox{jacobian}^{-1}(p,*,*) 
        \f]
        
        \param  jacobianInv       [out] - rank-4/3 array with dimensions (C,P,D,D)/(P,D,D) with the inverse Jacobians
        \param  jacobian          [in]  - rank-4/3 array with dimensions (C,P,D,D)/(P,D,D) with the Jacobians
    */
    template<class ArrayJacInv, class ArrayJac>
    static void setJacobianInv(ArrayJacInv &     jacobianInv,
                               const ArrayJac &  jacobian);
    
    
    
    /** \brief  Computes the determinant of the Jacobian matrix \e DF of the reference-to-physical frame map \e F.
      
                Returns rank-2 or rank-1 array with dimensions (C,P)/(P) such that 
        \f[ 
                \mbox{jacobianDet}(c,p) = \mbox{det}(\mbox{jacobian}(c,p,*,*)) \quad c=0,\ldots, C 
                \quad\mbox{or}\quad
                \mbox{jacobianDet}(p)   = \mbox{det}(\mbox{jacobian}(p,*,*)) 
          \f]
      
        \param  jacobianDet       [out] - rank-2/1 array with dimensions (C,P)/(P) with Jacobian determinants
        \param  jacobian          [in]  - rank-4/3 array with dimensions (C,P,D,D)/(P,D,D) with the Jacobians
      */
    template<class ArrayJacDet, class ArrayJac>
    static void setJacobianDet(ArrayJacDet &     jacobianDet,
                               const ArrayJac &  jacobian);
    
    //============================================================================================//
    //                                                                                            //
    //                      Reference-to-physical frame mapping and its inverse                   //
    //                                                                                            //
    //============================================================================================//
    
    /** \brief  Computes \e F, the reference-to-physical frame map.
      
                There are 3 use cases:
        \li     Applies \f$ F_{c} \f$ for a \b specified physical cell \f${\mathcal C}\f$ from a cell 
                workset to a \b single point set stored in a rank-2 (P,D) array;
        \li     Applies \f$ F_{c} \f$ for \b all cells in a cell workset to a \b single point set stored 
                in a rank-2 (P,D) array;
        \li     Applies \f$ F_{c} \f$ for \b all cells in a cell workset to \b multiple point sets having  
                the same number of points, indexed by cell ordinal, and stored in a rank-3 (C,P,D) array;
      
                For a single point set in a rank-2 array (P,D) and \c whichCell set to a valid cell ordinal
                relative to \c cellWorkset returns a rank-2 (P,D) array such that
        \f[  
                \mbox{physPoints}(p,d)   = \Big(F_c(\mbox{refPoint}(p,*)) \Big)_d \quad \mbox{for $0\le c < C$ - fixed}    
        \f]
                For a single point set in a rank-2 array (P,D) and \c whichCell=-1 (default value) returns
                a rank-3 (C,P,D) array such that
        \f[
                \mbox{physPoints}(c,p,d) = \Big(F_c(\mbox{refPoint}(p,*)) \Big)_d \quad c=0,\ldots, C 
        \f]
                For multiple point sets in a rank-3 (C,P,D) array returns a rank-3 (C,P,D) array such that 
        \f[  
                \mbox{physPoints}(c,p,d) = \Big(F_c(\mbox{refPoint}(c,p,*)) \Big)_d \quad c=0,\ldots, C 
        \f]
                This corresponds to mapping multiple sets of reference points to a matching number of 
                physical cells and requires the default value \c whichCell=-1.
      
                Requires cell topology with a reference cell. See Section \ref sec_cell_topology_ref_map
                for definition of the mapping function. Presently supported cell topologies are
        
        \li     1D:   \c Line<2>
        \li     2D:   \c Triangle<3>, \c Triangle<6>, \c Quadrilateral<4>, \c Quadrilateral<9>
        \li     3D:   \c Tetrahedron<4>, \c Tetrahedron<10>, \c Hexahedron<8>, \c Hexahedron<27>
      
                The default \c whichCell = -1 requires rank-3 output array and
                forces application of all reference-to-physical frame mappings corresponding to the
                cells stored in \c cellWorkset. Application of a single mapping is forced by selecting 
                a valid cell ordinal \c whichCell and requires rank-2 input/output point arrays.  
      
        \warning
                The array \c refPoints represents an arbitrary set of points in the reference
                frame that are not required to be in the reference cell corresponding to the
                specified cell topology. As a result, the images of these points under a given 
                reference-to-physical map are not necessarily contained in the physical cell that
                is the image of the reference cell under that map. CellTools provides several 
                inclusion tests methods to check whether or not the points are inside a reference cell.
       
        \param  physPoints        [out] - rank-3/2 array with dimensions (C,P,D)/(P,D) with the images of the ref. points
        \param  refPoints         [in]  - rank-3/2 array with dimensions (C,P,D)/(P,D) with points in reference frame
        \param  cellWorkset       [in]  - rank-3 array with dimensions (C,N,D) with the nodes of the cell workset
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  whichCell         [in]  - ordinal of the cell that defines the reference-to-physical map; default is -1 
      
        \todo   Implement method for non-standard (shell, beam, etc) topologies.
     */
    template<class ArrayPhysPoint, class ArrayRefPoint, class ArrayCell>
    static void mapToPhysicalFrame(ArrayPhysPoint      &         physPoints,
                                   const ArrayRefPoint &         refPoints,
                                   const ArrayCell     &         cellWorkset,
                                   const shards::CellTopology &  cellTopo,
                                   const int &                   whichCell = -1);

    
    
    /** \brief  Computes \f$ F^{-1}_{c} \f$, the inverse of the reference-to-physical frame map
                using a default initial guess. 
      
                There are two use cases: 
        \li     Applies \f$ F^{-1}_{c} \f$ for a \b specified physical cell \f${\mathcal C}\f$ from a 
                cell workset to a \b single set of points stored in a rank-2 (P,D) array;
        \li     Applies \f$ F^{-1}_{c} \f$ for \b all cells in a cell workset to \b multiple point sets
                having the same number of points, indexed by cell ordinal, and stored in a rank-3 
                (C,P,D) array (default mode).
            
                For a single point set in a rank-2 array (P,D) returns a rank-2 (P,D) array such that      
        \f[            
                \mbox{refPoints}(p,d) = \Big(F^{-1}_c(physPoint(p,*)) \Big)_d         
        \f]
                The \c whichCell argument selects the physical cell and is required to be a valid cell
                ordinal for \c cellWorkset array.
       
                For multiple point sets in a rank-3 (C,P,D) array returns a rank-3 (C,P,D) array such that 
        \f[            
                \mbox{refPoints}(c,p,d) = \Big(F^{-1}_c(physPoint(c,p,*)) \Big)_d         
        \f]
                The default value \e whichCell=-1 selects this mode.  
      
                Requires cell topology with a reference cell. See Section \ref sec_cell_topology_ref_map
                for definition of the mapping function. Presently supported cell topologies are
      
        \li     1D:   \c Line<2>
        \li     2D:   \c Triangle<3>, \c Triangle<6>, \c Quadrilateral<4>, \c Quadrilateral<9>
        \li     3D:   \c Tetrahedron<4>, \c Tetrahedron<10>, \c Hexahedron<8>, \c Hexahedron<27>
      
        \warning
                Computation of the inverse map in this method uses default selection of the initial guess
                based on cell topology:
        \li     \c Line topologies: line center (0)
        \li     \c Triangle topologies: the point (1/3, 1/3)
        \li     \c Quadrilateral topologies: the point (0, 0)
        \li     \c Tetrahedron topologies: the point (1/6, 1/6, 1/6)
        \li     \c Hexahedron topologies: the point (0, 0, 0)
        \li     \c Wedge topologies: the point (1/2, 1/2, 0)
                For some cells with extended topologies, these initial guesses may not be good enough 
                for Newton's method to converge in the allotted number of iterations. A version of this 
                method with user-supplied initial guesses is also available.
      
        \warning 
                The array \c physPoints represents an arbitrary set (or sets) of points in the physical
                frame that are not required to belong in the physical cell (cells) that define(s) the reference
                to physical mapping. As a result, the images of these points in the reference frame
                are not necessarily contained in the reference cell corresponding to the specified
                cell topology. 
      
        \param  refPoints         [out] - rank-3/2 array with dimensions (C,P,D)/(P,D) with the images of the physical points
        \param  physPoints        [in]  - rank-3/2 array with dimensions (C,P,D)/(P,D) with points in physical frame
        \param  cellWorkset       [in]  - rank-3 array with dimensions (C,N,D) with the nodes of the cell workset
        \param  whichCell         [in]  - ordinal of the cell that defines the reference-to-physical map; default is -1
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset   
      
        \todo   Implement method for non-standard (shell, beam, etc) topologies.
    */
    template<class ArrayRefPoint, class ArrayPhysPoint, class ArrayCell>
    static void mapToReferenceFrame(ArrayRefPoint        &        refPoints,
                                    const ArrayPhysPoint &        physPoints,
                                    const ArrayCell      &        cellWorkset,
                                    const shards::CellTopology &  cellTopo,
                                    const int &                   whichCell = -1);
    
    
    
    /** \brief  Computation of \f$ F^{-1}_{c} \f$, the inverse of the reference-to-physical frame map
                using user-supplied initial guess. 

                There are two use cases: 
      \li       Applies \f$ F^{-1}_{c} \f$ for a \b specified physical cell \f${\mathcal C}\f$ from a 
                cell workset to a \b single set of points stored in a rank-2 (P,D) array;
      \li       Applies \f$ F^{-1}_{c} \f$ for \b all cells in a cell workset to \b multiple point sets
                having the same number of points, indexed by cell ordinal, and stored in a rank-3 
                (C,P,D) array (default mode).
    
                For a single point set in a rank-2 array (P,D) returns a rank-2 (P,D) array such that      
      \f[            
                \mbox{refPoints}(p,d) = \Big(F^{-1}_c(physPoint(p,*)) \Big)_d         
      \f]
                The \c whichCell argument selects the physical cell and is required to be a valid cell
                ordinal for \c cellWorkset array.
      
                For multiple point sets in a rank-3 (C,P,D) array returns a rank-3 (C,P,D) array such that 
      \f[            
                \mbox{refPoints}(c,p,d) = \Big(F^{-1}_c(physPoint(c,p,*)) \Big)_d         
      \f]
                The default value \c whichCell=-1 selects this mode.  
    
                Requires cell topology with a reference cell. See Section \ref sec_cell_topology_ref_map
                for definition of the mapping function. Presently supported cell topologies are
      
      \li       1D:   \c Line<2>
      \li       2D:   \c Triangle<3>, \c Triangle<6>, \c Quadrilateral<4>, \c Quadrilateral<9>
      \li       3D:   \c Tetrahedron<4>, \c Tetrahedron<10>, \c Hexahedron<8>, \c Hexahedron<27>
      
      \warning 
                The array \c physPoints represents an arbitrary set (or sets) of points in the physical
                frame that are not required to belong in the physical cell (cells) that define(s) the reference
                to physical mapping. As a result, the images of these points in the reference frame
                are not necessarily contained in the reference cell corresponding to the specified
                cell topology. 
      
      \param  refPoints         [out] - rank-3/2 array with dimensions (C,P,D)/(P,D) with the images of the physical points
      \param  initGuess         [in]  - rank-3/2 array with dimensions (C,P,D)/(P,D) with the initial guesses for each point
      \param  physPoints        [in]  - rank-3/2 array with dimensions (C,P,D)/(P,D) with points in physical frame
      \param  cellWorkset       [in]  - rank-3 array with dimensions (C,N,D) with the nodes of the cell workset
      \param  whichCell         [in]  - ordinal of the cell that defines the reference-to-physical map; default is -1
      \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset      
      
      */
    template<class ArrayRefPoint, class ArrayInitGuess, class ArrayPhysPoint, class ArrayCell>
    static void mapToReferenceFrameInitGuess(ArrayRefPoint        &        refPoints,
                                             const ArrayInitGuess &        initGuess,
                                             const ArrayPhysPoint &        physPoints,
                                             const ArrayCell      &        cellWorkset,
                                             const shards::CellTopology &  cellTopo,
                                             const int &                   whichCell = -1);
    

    
    /** \brief  Computes parameterization maps of 1- and 2-subcells of reference cells.
      
                Applies \f$\hat{\Phi}_i\f$, the parametrization map of a subcell \f$\hat{\mathcal{S}}_i\f$ 
                from a given reference cell, to a set of points in the parametrization domain
                \e R  of \f$\hat{\mathcal{S}}_i\f$. Returns a rank-2 array with dimensions 
                (P,D) where for 1-subcells:
         \f[
                {subcellPoints}(p,*) = \hat{\Phi}_i(t_p) \quad\mbox{and}\quad
                \hat{\Phi}_i(t_p) = \left\{
                \begin{array}{ll}
                  (\hat{x}(t_p),\hat{y}(t_p),\hat{z}(t_p)) & \mbox{for 3D parent cells}\\[1.5ex] 
                  (\hat{x}(t_p),\hat{y}(t_p))              & \mbox{for 2D parent cells}                 
                \end{array} \right.
                \quad t_p \in R = [-1,1] \,;
         \f]
                 for 2-subcells:
         \f[
                {subcellPoints}(p,*) = \hat{\Phi}_i(u_p,v_p)\quad\mbox{and}\quad
                \hat{\Phi}_i(u_p,v_p) = (\hat{x}(u_p,v_p), \hat{y}(u_p,v_p), \hat{z}(u_p, v_p))
                \quad (u_p,v_p)\in R
         \f]
                and
         \f[
                R = \left\{\begin{array}{rl} 
                          \{(0,0),(1,0),(0,1)\} & \mbox{if face is Triangle} \\[1ex]
                            [-1,1]\times [-1,1] & \mbox{if face is Quadrilateral}
                    \end{array}\right.
        \f]

        \remarks 
        \li     Parametrization of 1-subcells is defined for all 2D and 3D cell topologies with reference
                cells, including special 2D and 3D topologies such as shell and beams.
        \li     Parametrization of 2-subcells is defined for all 3D cell topologies with reference cells,
                including special 3D topologies such as shells. 

                To map a set of points from a parametrization domain to a physical subcell workset, apply 
                CellTools<Scalar>::mapToPhysicalFrame to the output of this method.  This will effectively 
                apply the parametrization map \f$ \Phi_{c,i} =  F_{c}\circ\hat{\Phi}_i \f$ 
                of each subcell in the workset to \c paramPoints. Here <var>c</var> is  
                ordinal of a parent cell, relative to subcell workset, and <var>i</var> is subcell
                ordinal, relative to a reference cell, of the subcell workset. See Section 
                \ref sec_cell_topology_subcell_wset for definition of subcell workset and Section 
                \ref sec_cell_topology_subcell_map for definition of parametrization maps.

        \param  refSubcellPoints  [out] - rank-2 (P,D1) array with images of parameter space points
        \param  paramPoints       [in]  - rank-2 (P,D2) array with points in 1D or 2D parameter domain
        \param  subcellDim        [in]  - dimension of the subcell where points are mapped to
        \param  subcellOrd        [in]  - subcell ordinal
        \param  parentCell        [in]  - cell topology of the parent cell.
    */
    template<class ArraySubcellPoint, class ArrayParamPoint>
    static void mapToReferenceSubcell(ArraySubcellPoint     &       refSubcellPoints,
                                      const ArrayParamPoint &       paramPoints,
                                      const int                     subcellDim,
                                      const int                     subcellOrd,
                                      const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes constant tangent vectors to edges of 2D or 3D reference cells. 
      
                Returns rank-1 array with dimension (D), D=2 or D=3; such that
        \f[
                {refEdgeTangent}(*) = \hat{\bf t}_i = {\partial\hat{\Phi}_i(t)\over\partial t}\,,
        \f]
                where \f$\hat{\Phi}_i : R =[-1,1]\mapsto \hat{\mathcal E}_i\f$ is the parametrization map
                of the specified reference edge \f$\hat{\mathcal E}_i\f$, given by
        \f[
                \hat{\Phi}_i(t) = \left\{\begin{array}{ll}
                    (\hat{x}(t),\hat{y}(t),\hat{z}(t)) & \mbox{for 3D parent cells} \\[1ex]
                    (\hat{x}(t),\hat{y}(t))            & \mbox{for 2D parent cells} \\[1ex]
                  \end{array}\right.
        \f]
                The length of computed edge tangents is one-half the length of their associated edges:
        \f[
                |\hat{\bf t}_i | = {1\over 2} |\hat{\mathcal E}_i |\,.
        \f]
                Because the edges of all reference cells are always affine images of [-1,1],
                the edge tangent is constant vector field. 
      
        \param  refEdgeTangent    [out] - rank-1 array (D) with the edge tangent; D = cell dimension
        \param  edgeOrd           [in]  - ordinal of the edge whose tangent is computed
        \param  parentCell        [in]  - cell topology of the parent reference cell
      */
    template<class ArrayEdgeTangent>
    static void getReferenceEdgeTangent(ArrayEdgeTangent &            refEdgeTangent,
                                        const int &                   edgeOrd,
                                        const shards::CellTopology &  parentCell);

    
    
    /** \brief  Computes pairs of constant tangent vectors to faces of a 3D reference cells. 
      
                Returns 2 rank-1 arrays with dimension (D), D=3, such that       
        \f[
                {refFaceTanU}(*) = \hat{\bf t}_{i,u} = {\partial\hat{\Phi}_i(u,v)\over\partial u} = 
                \left({\partial\hat{x}(u,v)\over\partial u}, 
                      {\partial\hat{y}(u,v)\over\partial u},
                      {\partial\hat{z}(u,v)\over\partial u} \right) ;
        \f]
        \f[
                {refFaceTanV}(*) = \hat{\bf t}_{i,v} = {\partial\hat{\Phi}_i(u,v)\over \partial v} = 
                \left({\partial\hat{x}(u,v)\over\partial v}, 
                      {\partial\hat{y}(u,v)\over\partial v},
                      {\partial\hat{z}(u,v)\over\partial v} \right)\,;
        \f]
               where \f$\hat{\Phi}_i: R \mapsto \hat{\mathcal F}_i\f$  
               is the parametrization map of the specified reference face \f$\hat{\mathcal F}_i\f$ given by
        \f[
               \hat{\Phi}_i(u,v) =(\hat{x}(u,v),\hat{y}(u,v),\hat{z}(u,v))
        \f]
               and 
        \f[
                R = \left\{\begin{array}{rl} 
                    \{(0,0),(1,0),(0,1)\} & \mbox{if $\hat{\mathcal F}_i$  is Triangle} \\[1ex]
                      [-1,1]\times [-1,1] & \mbox{if $\hat{\mathcal F}_i$ is Quadrilateral} \,.
                    \end{array}\right.
        \f]
                Because the faces of all reference cells are always affine images of \e R , 
                the coordinate functions \f$\hat{x},\hat{y},\hat{z}\f$ of the parametrization map 
                are linear and the face tangents are constant vectors.  
      
        \param  refFaceTanU       [out] - rank-1 array (D) with (constant) tangent in u-direction
        \param  refFaceTanV       [out] - rank-1 array (D) with (constant) tangent in v-direction
        \param  faceOrd           [in]  - ordinal of the face whose tangents are computed
        \param  parentCell        [in]  - cell topology of the parent 3D reference cell
      */
    template<class ArrayFaceTangentU, class ArrayFaceTangentV>
    static void getReferenceFaceTangents(ArrayFaceTangentU &           refFaceTanU,
                                         ArrayFaceTangentV &           refFaceTanV,
                                         const int &                   faceOrd,
                                         const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes constant normal vectors to sides of 2D or 3D reference cells. 
      
                A side is defined as a subcell of dimension one less than that of its parent cell. 
                Therefore, sides of 2D cells are 1-subcells (edges) and sides of 3D cells
                are 2-subcells (faces).
      
                Returns rank-1 array with dimension (D), D = 2 or 3 such that
        \f[
                {refSideNormal}(*) = \hat{\bf n}_i =
                \left\{\begin{array}{rl} 
                    \displaystyle
                    \left({\partial\hat{\Phi}_i(t)\over\partial t}\right)^{\perp} 
                                                              & \mbox{for 2D parent cells} \\[2ex]
                    \displaystyle
                    {\partial\hat{\Phi}_{i}\over\partial u} \times 
                    {\partial\hat{\Phi}_{i}\over\partial v}   & \mbox{for 3D parent cells} 
                \end{array}\right.
        \f]
                where \f$ (u_1,u_2)^\perp = (u_2, -u_1)\f$, and \f$\hat{\Phi}_i: R \mapsto \hat{\mathcal S}_i\f$ 
                is the parametrization map of the specified reference side \f$\hat{\mathcal S}_i\f$ given by
        \f[
                \hat{\Phi}_i(u,v) = 
                  \left\{\begin{array}{rl}
                    (\hat{x}(t),\hat{y}(t))                   & \mbox{for 2D parent cells} \\[1ex]
                    (\hat{x}(u,v),\hat{y}(u,v),\hat{z}(u,v))  & \mbox{for 3D parent cells}
                \end{array}\right.
          
        \f]
                For sides of 2D cells \e R=[-1,1] and for sides of 3D cells 
        \f[
                R = \left\{\begin{array}{rl} 
                \{(0,0),(1,0),(0,1)\}   & \mbox{if $\hat{\mathcal S}_i$ is Triangle} \\[1ex]
                    [-1,1]\times [-1,1] & \mbox{if $\hat{\mathcal S}_i$ is Quadrilateral} \,.
                \end{array}\right.
        \f]
                For 3D cells the length of computed side normals is proportional to side area:
        \f[
                |\hat{\bf n}_i | = \left\{\begin{array}{rl} 
                    2 \mbox{Area}(\hat{\mathcal F}_i) & \mbox{if $\hat{\mathcal F}_i$  is Triangle} \\[1ex]
                      \mbox{Area}(\hat{\mathcal F}_i) & \mbox{if $\hat{\mathcal F}_i$ is Quadrilateral} \,.
                \end{array}\right.
        \f]
                For 2D cells the length of computed side normals is proportional to side length:
        \f[
                |\hat{\bf n}_i | = {1\over 2} |\hat{\mathcal F}_i |\,.
        \f]
                Because the sides of all reference cells are always affine images of \e R , 
                the coordinate functions \f$\hat{x},\hat{y},\hat{z}\f$ of the parametrization maps 
                are linear and the side normal is a constant vector.  

        \remark
              - For 3D cells the reference side normal coincides with the face normal computed by
                CellTools<Scalar>::getReferenceFaceNormal and these two methods are completely equivalent.
              - For 2D cells the reference side normal is defined by \f$\hat{{\bf n}}= \hat{\bf t}^\perp = (t_2,-t_1)\f$
                where \f$\hat{{\bf t}}=(t_1,t_2)\f$ is the tangent vector computed by 
                CellTools<Scalar>::getReferenceEdgeTangent. Therefore, the pair 
                \f$(\hat{{\bf n}},\hat{{\bf t}})\f$ is positively oriented.

        \param  refSideNormal     [out] - rank-1 array (D) with (constant) side normal
        \param  sideOrd           [in]  - ordinal of the side whose normal is computed
        \param  parentCell        [in]  - cell topology of the parent reference cell
*/
    template<class ArraySideNormal>
    static void getReferenceSideNormal(ArraySideNormal &             refSideNormal,
                                       const int &                   sideOrd,
                                       const shards::CellTopology &  parentCell);

    
    
    /** \brief  Computes constant normal vectors to faces of 3D reference cell. 
      
                Returns rank-1 array with dimension (D), D=3 such that
        \f[
                {refFaceNormal}(*) = \hat{\bf n}_i = {\partial\hat{\Phi}_{i}\over\partial u} \times 
                                     {\partial\hat{\Phi}_{i}\over\partial v}
        \f]
                where \f$\hat{\Phi}_i: R \mapsto \hat{\mathcal F}_i\f$  
                is the parametrization map of the specified reference face \f$\hat{\mathcal F}_i\f$ given by
        \f[
                \hat{\Phi}_i(u,v) =(\hat{x}(u,v),\hat{y}(u,v),\hat{z}(u,v))
        \f]
                and 
        \f[
                R = \left\{\begin{array}{rl} 
                    \{(0,0),(1,0),(0,1)\} & \mbox{if ${\mathcal F}$  is Triangle} \\[1ex]
                      [-1,1]\times [-1,1] & \mbox{if ${\mathcal F}$ is Quadrilateral} \,.
                    \end{array}\right.
        \f]
                The length of computed face normals is proportional to face area:
        \f[
                |\hat{\bf n}_i | = \left\{\begin{array}{rl} 
                    2 \mbox{Area}(\hat{\mathcal F}_i) & \mbox{if $\hat{\mathcal F}_i$  is Triangle} \\[1ex]
                      \mbox{Area}(\hat{\mathcal F}_i) & \mbox{if $\hat{\mathcal F}_i$ is Quadrilateral} \,.
                    \end{array}\right.
        \f]
                Because the faces of all reference cells are always affine images of \e R , 
                the coordinate functions \f$\hat{x},\hat{y},\hat{z}\f$ of the parametrization map 
                are linear and the face normal is a constant vector.  
         
        \remark
                The method CellTools::getReferenceFaceTangents computes the reference face tangents
                \f${\partial\hat{\Phi}_{i}/\partial u}\f$ and \f${\partial\hat{\Phi}_{i}/\partial v}\f$.
 
        \param  refFaceNormal     [out] - rank-1 array (D) with (constant) face normal
        \param  faceOrd           [in]  - ordinal of the face whose normal is computed
        \param  parentCell        [in]  - cell topology of the parent reference cell
      */
    template<class ArrayFaceNormal>
    static void getReferenceFaceNormal(ArrayFaceNormal &             refFaceNormal,
                                       const int &                   faceOrd,
                                       const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes non-normalized tangent vectors to physical edges in an edge workset 
                \f$\{\mathcal{E}_{c,i}\}_{c=0}^{N}\f$; (see \ref sec_cell_topology_subcell_wset for definition of edge worksets). 
                
                For every edge in the workset the tangents are computed at the points 
                \f${\bf x}_p = F_c(\hat{\Phi}_i(t_p))\in\mathcal{E}_{c,i}\f$ that are images of points
                from <var>R=[-1,1]</var> on edge \f$\mathcal{E}_{c,i}\f$. Returns rank-3 array with 
                dimensions (C,P,D1), D1=2 or D1=3 such that 
        \f[
                {edgeTangents}(c,p,d) = 
                    DF_c(\hat{\Phi}_i(t_p))\cdot {\partial{\hat{\Phi}}_{i}(t_p)\over\partial t}\,; \qquad t_p \in R
        \f]
                In this formula: 
        \li     \f$ DF_c \f$ is Jacobian of parent cell \f${\mathcal C}\f$ that owns physical edge \f${\mathcal E}_{c,i}\f$;
        \li     \f$ {\partial{\hat{\Phi}}_{i}/\partial t}\f$ is the (constant) tangent to reference edge
                \f$\hat{\mathcal E}_i\f$; see CellTools<Scalar>::getReferenceEdgeTangent that has the 
                same local ordinal as the edges in the workset;
        \li     \f$ \hat{\Phi}_i R\mapsto\hat{\mathcal E}_i \f$ is parametrization of reference edge \f$\hat{\mathcal E}_i\f$;

        \warning
                \c worksetJacobians must contain the values of \f$DF_c(\hat{\Phi}_i(t_p))\f$, 
                where \f$ t_p \in R=[-1,1] \f$, i.e., Jacobians of the parent cells evaluated at points 
                that are located on reference edge \f$\hat{\mathcal E}_i\f$ having the same local ordinal as
                the edges in the workset.
 
        \param  edgeTangents      [out] - rank-3 array (C,P,D1) with tangents on workset edges
        \param  worksetJacobians  [in]  - rank-4 array (C,P,D1,D1) with Jacobians evaluated at ref. edge points
        \param  worksetEdgeOrd    [in]  - edge ordinal, relative to ref. cell, of the edge workset
        \param  parentCell        [in]  - cell topology of the parent reference cell
*/
    template<class ArrayEdgeTangent, class ArrayJac>
    static void getPhysicalEdgeTangents(ArrayEdgeTangent &            edgeTangents,
                                        const ArrayJac &              worksetJacobians,
                                        const int &                   worksetEdgeOrd,
                                        const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes non-normalized tangent vector pairs to physical faces in a face workset 
                \f$\{\mathcal{F}_{c,i}\}_{c=0}^{N}\f$; (see \ref sec_cell_topology_subcell_wset for definition of face worksets). 
                
                For every face in the workset the tangents are computed at the points 
                \f${\bf x}_p = F_c(\hat{\Phi}_i(u_p,v_p))\in\mathcal{F}_{c,i}\f$ that are images of points
                from the parametrization domain \e R  on face \f$\mathcal{F}_{c,i}\f$. 
                Returns 2 rank-3 arrays with dimensions (C,P,D), D=3 such that
        \f[
                {faceTanU}(c,p,d) = DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_i\over\partial u};\qquad
                {faceTanV}(c,p,d) = DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_{i}\over\partial v}\,;
                \qquad (u_p, v_p) \in R \,.
        \f]
                In this formula:
        \li     \f$ DF_c \f$ is Jacobian of parent cell \f${\mathcal C}\f$ that owns physical face \f${\mathcal F}_{c,i}\f$;
        \li     \f$ {\partial\hat{\Phi}_i/\partial u}, {\partial\hat{\Phi}_i/\partial v}\f$ are the (constant) 
                tangents on reference face \f$\hat{\mathcal F}_i\f$; see CellTools<Scalar>::getReferenceFaceTangents; 
                that has the same local ordinal as the faces in the workset;
        \li     \f$ \hat{\Phi}_i : R\mapsto \hat{\mathcal F}_i\f$ is parametrization of reference face \f$\hat{\mathcal F}_i\f$;
        \li     \e R  is the parametrization domain for reference face \f$\hat{\mathcal F}_i\f$:
        \f[
                R = 
                  \left\{\begin{array}{rl} 
                    \{(0,0),(1,0),(0,1)\} & \mbox{if $\hat{\mathcal F}_i$ is Triangle} \\[1ex]
                      [-1,1]\times [-1,1] & \mbox{if $\hat{\mathcal F}_i$ is Quadrilateral}
                  \end{array}\right.
         \f]
      
        \warning
                \c worksetJacobians must contain the values of \f$DF_c(\hat{\Phi}_i(u_p,v_p))\f$, 
                where \f$(u_p,v_p)\in R\f$, i.e., Jacobians of the parent cells evaluated at points 
                that are located on reference face \f$\hat{\mathcal F}_i\f$ having the same local ordinal as
                the faces in the workset.

        \param  faceTanU          [out] - rank-3 array (C,P,D), image of ref. face u-tangent at workset faces
        \param  faceTanV          [out] - rank-3 array (C,P,D), image of ref. face u-tangent at workset faces
        \param  worksetJacobians  [in]  - rank-4 array (C,P,D,D) with Jacobians at ref. face points
        \param  worksetFaceOrd    [in]  - face ordinal, relative to ref. cell, of the face workset
        \param  parentCell        [in]  - cell topology of the parent reference cell
      */
    template<class ArrayFaceTangentU, class ArrayFaceTangentV, class ArrayJac>
    static void getPhysicalFaceTangents(ArrayFaceTangentU &           faceTanU,
                                        ArrayFaceTangentV &           faceTanV,
                                        const ArrayJac &              worksetJacobians,
                                        const int &                   worksetFaceOrd,
                                        const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes non-normalized normal vectors to physical sides in a side workset 
                \f$\{\mathcal{S}_{c,i}\}_{c=0}^{N}\f$. 
      
                For every side in the workset the normals are computed at the points 
                \f${\bf x}_p = F_c(\hat{\Phi}_i(P_p))\in\mathcal{S}_{c,i}\f$ that are images of points 
                from the parametrization domain \e R  on side \f$\mathcal{S}_{c,i}\f$.   
                A side is defined as a subcell of dimension one less than that of its  parent cell. 
                Therefore, sides of 2D cells are 1-subcells (edges) and sides of 3D cells are 2-subcells (faces).
      
                Returns rank-3 array with dimensions (C,P,D), D = 2 or 3, such that 
        \f[
                {sideNormals}(c,p,d) = 
                  \left\{\begin{array}{crl} 
                    \displaystyle
                    \left(DF_c(\hat{\Phi}_i(t_p))\cdot 
                    {\partial{\hat{\Phi}}_{i}(t_p)\over\partial t}\right)^{\perp} &  t_p\in R 
                                                                & \mbox{for 2D parent cells} \\[2ex]
                    \displaystyle
                    \left( DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_i\over\partial u}\right) \times
                    \left( DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_i\over\partial v}\right) \,;
                    & (u_p, v_p) \in R                          & \mbox{for 3D parent cells}
                \end{array}\right.
         \f]
                In this formula:
        \li     \f$ DF_c \f$ is Jacobian of parent cell \f${\mathcal C}\f$ that owns physical side \f${\mathcal S}_{c,i}\f$;
        \li     For 2D cells: \f$ {\partial{\hat{\Phi}}_{i}/\partial t}\f$ is the (constant) tangent to reference side (edge)
                \f$\hat{\mathcal S}_i\f$; see CellTools<Scalar>::getReferenceEdgeTangent, that has the 
                same local ordinal as the sides in the workset;
        \li     For 3D cells: \f$ {\partial\hat{\Phi}_i/\partial u}, {\partial\hat{\Phi}_i/\partial v}\f$ are the (constant) 
                tangents on reference side (face) \f$\hat{\mathcal S}_i\f$; see CellTools<Scalar>::getReferenceFaceTangents,
                that has the same local ordinal as the sides in the workset;
        \li     \f$ \hat{\Phi}_i : R\mapsto \hat{\mathcal S}_i\f$ is parametrization of reference side \f$\hat{\mathcal S}_i\f$;
        \li     \e R  is the parametrization domain for reference side \f$\hat{\mathcal S}_i\f$. For
                2D parent cells \e R=[-1,1] and for 3D parent cells
        \f[
                R = \left\{\begin{array}{rl} 
                    \{(0,0),(1,0),(0,1)\} & \mbox{if $\hat{\mathcal S}_i$ is Triangle} \\[1ex]
                    [-1,1]\times [-1,1] & \mbox{if $\hat{\mathcal S}_i$ is Quadrilateral}
                    \end{array}\right.
        \f]

        \remark
              - For 3D cells the physical side normals coincides with the face normals computed by
                CellTools<Scalar>::getPhysicalFaceNormals and these two methods are completely equivalent.
              - For 2D cells the physical side normals are defined by \f${\bf n}=(t_2,-t_1)\f$
                where \f${\bf t}=(t_1,t_2)\f$ are the physical edge tangents computed by 
                CellTools<Scalar>::getPhysicalEdgeTangents. Therefore, the pairs \f$({\bf n},{\bf t})\f$ are positively oriented.


        \warning
                \c worksetJacobians must contain the values of \f$DF_c(\hat{\Phi}_i(P_p))\f$, 
                where \f$P_p\in R\f$, i.e., Jacobians of the parent cells evaluated at points 
                that are located on reference side \f$\hat{\mathcal S}_i\f$ having the same local ordinal as
                the sides in the workset.

        \param  sideNormals       [out] - rank-3 array (C,P,D), normals at workset sides
        \param  worksetJacobians  [in]  - rank-4 array (C,P,D,D) with Jacobians at ref. side points
        \param  worksetSideOrd    [in]  - side ordinal, relative to ref. cell, of the side workset
        \param  parentCell        [in]  - cell topology of the parent reference cell
*/
    template<class ArraySideNormal, class ArrayJac>
    static void getPhysicalSideNormals(ArraySideNormal &             sideNormals,
                                       const ArrayJac &              worksetJacobians,
                                       const int &                   worksetSideOrd,
                                       const shards::CellTopology &  parentCell);
    
    
    
    /** \brief  Computes non-normalized normal vectors to physical faces in a face workset 
                \f$\{\mathcal{F}_{c,i}\}_{c=0}^{N}\f$; (see \ref sec_cell_topology_subcell_wset for definition of face worksets). 
                
                For every face in the workset the normals are computed at the points 
                \f${\bf x}_p = F_c(\hat{\Phi}_i(u_p,v_p))\in\mathcal{F}_{c,i}\f$ that are images of points
                from the parametrization domain \e R  on face \f$\mathcal{F}_{c,i}\f$.  
                Returns rank-3 array with dimensions (C,P,D), D=3, such that 
        \f[
                {faceNormals}(c,p,d) = 
                   \left( DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_i\over\partial u}\right) \times
                   \left( DF_c(\hat{\Phi}_i(u_p, v_p))\cdot {\partial\hat{\Phi}_i\over\partial v}\right) \,;
                   \qquad (u_p, v_p) \in R \,.
        \f]
                In this formula:
        \li     \f$ DF_c \f$ is Jacobian of parent cell \f${\mathcal C}\f$ that owns physical face \f${\mathcal F}_{c,i}\f$;
        \li     \f$ {\partial\hat{\Phi}_i/\partial u}, {\partial\hat{\Phi}_i/\partial v}\f$ are the (constant) 
                tangents on reference face \f$\hat{\mathcal F}_i\f$; see CellTools<Scalar>::getReferenceFaceTangents;
                that has the same local ordinal as the faces in the workset;
        \li     \f$ \hat{\Phi}_i : R\mapsto \hat{\mathcal F}_i\f$ is parametrization of reference face \f$\hat{\mathcal F}_i\f$;
        \li     \e R  is the parametrization domain for reference face \f$\hat{\mathcal F}_i\f$:
        \f[
                R = \left\{\begin{array}{rl} 
                    \{(0,0),(1,0),(0,1)\} & \mbox{if $\hat{\mathcal F}_i$ is Triangle} \\[1ex]
                      [-1,1]\times [-1,1] & \mbox{if $\hat{\mathcal F}_i$ is Quadrilateral}
                    \end{array}\right.
        \f]

        \warning
                \c worksetJacobians must contain the values of \f$DF_c(\hat{\Phi}_i(u_p,v_p))\f$, 
                where \f$(u_p,v_p)\in R\f$, i.e., Jacobians of the parent cells evaluated at points 
                that are located on reference face \f$\hat{\mathcal F}_i\f$ having the same local ordinal as
                the faces in the workset.

        \param  faceNormals       [out] - rank-3 array (C,P,D), normals at workset faces
        \param  worksetJacobians  [in]  - rank-4 array (C,P,D,D) with Jacobians at ref. face points
        \param  worksetFaceOrd    [in]  - face ordinal, relative to ref. cell, of the face workset
        \param  parentCell        [in]  - cell topology of the parent reference cell
*/
    template<class ArrayFaceNormal, class ArrayJac>
    static void getPhysicalFaceNormals(ArrayFaceNormal &             faceNormals,
                                       const ArrayJac &              worksetJacobians,
                                       const int &                   worksetFaceOrd,
                                       const shards::CellTopology &  parentCell);
    
    
    //============================================================================================//
    //                                                                                            //
    //                                        Inclusion tests                                     //
    //                                                                                            //
    //============================================================================================//
    
    /** \brief  Checks if a point belongs to a reference cell. 
      
                Requires cell topology with a reference cell.
      
        \param  point             [in]  - spatial coordinates of the point tested for inclusion
        \param  pointDim          [in]  - spatial dimension of that point
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  threshold         [in]  - "tightness" of the inclusion test
        \return 1 if the point is in the closure of the specified reference cell and 0 otherwise.
    */ 
    static int checkPointInclusion(const Scalar*                 point,
                                   const int                     pointDim,
                                   const shards::CellTopology &  cellTopo,
                                   const double &                threshold = INTREPID_THRESHOLD);
    
    
    
    /** \brief  Checks if a set of points belongs to a reference cell. 
      
                Requires cell topology with a reference cell. See Intrepid::CellTools::checkPointwiseInclusion 
                for admissible ranks and dimensions of the input point array.
      
        \param  points            [in]  - rank-1, 2 or 3 array (point, vector of points, matrix of points)
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  threshold         [in]  - "tightness" of the inclusion test
        \return 1 if all points are in the closure of the specified reference cell
                0 if at least one point is outside the closure of the reference cell 
                
    */
    template<class ArrayPoint>
    static int checkPointsetInclusion(const ArrayPoint &            points,
                                      const shards::CellTopology &  cellTopo, 
                                      const double &                threshold = INTREPID_THRESHOLD);
    
    
    
    /** \brief  Checks every point in a set for inclusion in a reference cell.  
      
                Requires cell topology with a reference cell. Admissible ranks and dimensions of the 
                input point array and the corresponding rank and dimension of the output array are as follows:
                \verbatim
                |-------------------|-------------|-------------|-------------|
                |  rank: (in)/(out) |    1/1      |     2/1     |    3/2      |
                |-------------------|-------------|-------------|-------------|
                |  points    (in)   |     (D)     |    (I, D)   |  (I, J, D)  |
                |-------------------|-------------|-------------|-------------|
                |  inRefCell (out)  |     (1)     |    (I)      |  (I, J)     |
                |------------------ |-------------|-------------|-------------|
                \endverbatim
                Example: if \c points is rank-3 array with dimensions (I, J, D), then
        \f[
               \mbox{inRefCell}(i,j) = 
                 \left\{\begin{array}{rl} 
                    1 & \mbox{if $points(i,j,*)\in\hat{\mathcal{C}}$} \\[2ex]
                    0 & \mbox{if $points(i,j,*)\notin\hat{\mathcal{C}}$} 
                 \end{array}\right.
          \f]
        \param  inRefCell         [out] - rank-1 or 2 array with results from the pointwise inclusion test
        \param  refPoints         [in]  - rank-1,2 or 3 array (point, vector of points, matrix of points)
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  threshold         [in]  - "tightness" of the inclusion test
    */
    template<class ArrayIncl, class ArrayPoint>
    static void checkPointwiseInclusion(ArrayIncl &                   inRefCell,
                                        const ArrayPoint &            points,
                                        const shards::CellTopology &  cellTopo, 
                                        const double &                threshold = INTREPID_THRESHOLD);
    
    
    
    /** \brief  Checks every point in a set or multiple sets for inclusion in physical cells from a cell workset.
      
                There are two use cases:
        \li     Checks every point from a \b single point set, stored in a rank-2 array (P,D) for inclusion
                in a \b specified physical cell \f${\mathcal C}\f$ from a cell workset.
        \li     Checks every point from \b multiple point sets indexed by a cell ordinal, and stored in a rank-3
                (C,P,D) array, for inclusion in the physical cell having the same cell ordinal, for \b all 
                cells in a cell workset. 
      
                For a single point set in a rank-2 array (P,D) and \c whichCell set to a valid cell ordinal
                relative to \c cellWorkset returns a rank-1 (P) array such that
        \f[
                \mbox{inCell}(p) = 
                  \left\{\begin{array}{rl} 
                     1 & \mbox{if $points(p,*)\in {\mathcal{C}}$} \\ [2ex]
                     0 & \mbox{if $points(p,*)\notin {\mathcal{C}}$} 
                  \end{array}\right.
        \f]
                For multiple point sets in a rank-3 array (C,P,D) and \c whichCell=-1 (default value)
                returns a rank-2 (C,P) array such that
        \f[
                \mbox{inCell}(c,p) = 
                  \left\{\begin{array}{rl} 
                      1 & \mbox{if $points(c,p,*)\in {\mathcal{C}}$} \\ [2ex]
                      0 & \mbox{if $points(c,p,*)\notin {\mathcal{C}}$} 
                \end{array}\right.
        \f]

        \param  inCell            [out] - rank-1  array with results from the pointwise inclusion test
        \param  points            [in]  - rank-2 array with dimensions (P,D) with the physical points
        \param  cellWorkset       [in]  - rank-3 array with dimensions (C,N,D) with the nodes of the cell workset
        \param  cellTopo          [in]  - cell topology of the cells stored in \c cellWorkset
        \param  whichCell         [in]  - ordinal of the cell used in the inclusion test
        \param  threshold         [in]  - tolerance for inclusion tests on the input points
      */
    template<class ArrayIncl, class ArrayPoint, class ArrayCell>
    static void checkPointwiseInclusion(ArrayIncl &                   inCell,
                                        const ArrayPoint &            points,
                                        const ArrayCell &             cellWorkset,
                                        const shards::CellTopology &  cell,
                                        const int &                   whichCell = -1, 
                                        const double &                threshold = INTREPID_THRESHOLD);
    
    
    
    /** \brief  Retrieves the Cartesian coordinates of a reference cell vertex. 
      
                Requires cell topology with a reference cell. Vertex coordinates are always returned 
                as an (x,y,z)-triple regardlesss of the actual topological cell dimension. The unused 
                coordinates are set to zero, e.g., vertex 0 of Line<2> is returned as {-1,0,0}.                
                
        \param  cell              [in]  - cell topology of the cell
        \param  vertexOrd         [in]  - vertex ordinal 
        \return pointer to array with the (x,y,z) coordinates of the specified reference vertex
      */
    static const double* getReferenceVertex(const shards::CellTopology& cell,
                                            const int                   vertexOrd);
    
    
    
    /** \brief  Retrieves the Cartesian coordinates of all vertices of a reference subcell.
      
                Returns rank-2 array with the Cartesian coordinates of the vertices of the 
                specified reference cell subcell. Requires cell topology with a reference cell.
      
        \param  subcellVertices   [out] - rank-2 (V,D) array with the Cartesian coordinates of the reference subcell vertices
        \param  subcellDim        [in]  - dimension of the subcell; 0 <= subcellDim <= parentCell dimension
        \param  subcellOrd        [in]  - ordinal of the subcell
        \param  parentCell        [in]  - topology of the cell that owns the subcell
      
        \remark When \c subcellDim = dimension of the \c parentCell this method returns the Cartesian 
                coordinates of the vertices of the reference cell itself. 
                Note that this requires \e subcellOrd=0.
      */
    template<class ArraySubcellVert>
    static void getReferenceSubcellVertices(ArraySubcellVert &          subcellVertices,
                                            const int                   subcellDim,
                                            const int                   subcellOrd,
                                            const shards::CellTopology& parentCell);
    

    
    /** \brief  Retrieves the Cartesian coordinates of a reference cell node.
      
                Returns Cartesian coordinates of a reference cell node. Requires cell topology 
                with a reference cell. Node coordinates are always returned as an (x,y,z)-triple
                regardlesss of the actual topological cell dimension. The unused coordinates are
                set to zero, e.g., node 0 of Line<2> is returned as {-1,0,0}.      
      
        \remark
               Because the nodes of a cell with a base topology coincide with its vertices, for cells
               with base topology this method is equivalent to CellTools<Scalar>::getReferenceVertex.
      
        \param  cell              [in]  - cell topology of the cell
        \param  vertexOrd         [in]  - node ordinal 
        \return pointer to array with the (x,y,z) coordinates of the specified reference vertex
      */
    static const double* getReferenceNode(const shards::CellTopology& cell,
                                          const int                   nodeOrd);
    
    
    
    /** \brief  Retrieves the Cartesian coordinates of all nodes of a reference subcell.
      
                Returns rank-2 array with the Cartesian coordinates of the nodes of the 
                specified reference cell subcell. Requires cell topology with a reference cell.
      
        \param  subcellNodes      [out] - rank-2 (N,D) array with the Cartesian coordinates of the reference subcell nodes
        \param  subcellDim        [in]  - dimension of the subcell; 0 <= subcellDim <= parentCell dimension
        \param  subcellOrd        [in]  - ordinal of the subcell
        \param  parentCell        [in]  - topology of the cell that owns the subcell
      
      \remark When \c subcellDim = dimension of the \c parentCell this method returns the Cartesian 
      coordinates of the nodes of the reference cell itself. Note that this requires \c subcellOrd=0.
      */
    template<class ArraySubcellNode>
    static void getReferenceSubcellNodes(ArraySubcellNode&          subcellNodes,
                                        const int                   subcellDim,
                                        const int                   subcellOrd,
                                        const shards::CellTopology& parentCell);
    
    
    
    /** \brief  Checks if a cell topology has reference cell
        \param  cell              [in]  - cell topology
        \return 1 if the cell topology has reference cell, 
                0 oterwise
      */
    static int hasReferenceCell(const shards::CellTopology &  cellTopo);
    
    
    
    //============================================================================================//
    //                                                                                            //
    //                                           Debug                                            //
    //                                                                                            //
    //============================================================================================//
    
    
    /** \brief  Prints the reference space coordinates of the vertices of the specified subcell
        \param  subcellDim        [in]  - dimension of the subcell where points are mapped to
        \param  subcellOrd        [in]  - subcell ordinal
        \param  parentCell        [in]  - cell topology of the parent cell.
    */
    static void printSubcellVertices(const int subcellDim,
                                     const int subcellOrd,
                                     const shards::CellTopology & parentCell);
    
    
    
    /** \brief  Prints the nodes of a subcell from a cell workset 
      
      */
    template<class ArrayCell>
    static void printWorksetSubcell(const ArrayCell &             cellWorkset,
                                    const shards::CellTopology &  parentCell,
                                    const int&                    pCellOrd,
                                    const int&                    subcellDim,
                                    const int&                    subcellOrd,
                                    const int&                    fieldWidth = 3);
    
  }; // class CellTools

} // namespace Intrepid

// include templated function definitions

#include "Intrepid_CellToolsDef.hpp"

#endif

/***************************************************************************************************
 **                                                                                               **
 **                           D O C U M E N T A T I O N   P A G E S                               **
 **                                                                                               **
 **************************************************************************************************/

/**  
\page cell_tools_page                 Cell tools

<b>Table of contents </b>

-   \ref cell_topology_sec
-   \ref cell_topology_ref_cells
  - \ref sec_cell_topology_ref_map
  - \ref sec_cell_topology_ref_map_DF
  - \ref sec_cell_topology_subcell_map
  - \ref sec_cell_topology_subcell_wset

\section cell_topology_sec            Cell topologies

The range of admissible cell shapes in Intrepid is restricted to <var>d</var>-dimensional 
<strong>polytopes</strong>, <var>d=1,2,3</var>. A polytope is defined by a set of its vertices 
\f$ \{ {\bf v}_0,\ldots {\bf v}_V\} \f$ and a <strong>base topology</strong>  <var>BT</var> that 
defines how these verices are connected into <var>k</var>-dimensional, <var>k < d</var> facets 
(k-subcells) of that polytope.  

The base topology of any polytope can be extended by augmenting the set of its vertices by 
an additional set of points \f$\{ {\bf p}_0,\ldots {\bf p}_P\} \f$. The <strong>extended topology</strong>
<var>ET</var> is defined by specifying the connectivity of the set
\f$ \{ {\bf v}_0,\ldots {\bf v}_V\}\cup \{ {\bf p}_0,\ldots {\bf p}_P\} \f$
relative to the subcells specified by its base topology <var>BT</var>.
The vertices and the extra points are collectively referred to as <strong>nodes</strong>. Thus,
a polytope with <strong>extended topology</strong> <var>ET</var> is defined by a set of nodes 
\f$\{{\bf q}_0,\ldots,{\bf q}_N\}\f$, where \f$N = V + P\f$, and a connectivity rule for these nodes.

Intrepid requires any cell to have a valid base topology. The nodes of the cell should always be 
ordered by listing its vertices <strong>first</strong>, i.e.,
\f[ 
  \{{\bf q}_0,\ldots,{\bf q}_N\} = \{ {\bf v}_0,\ldots {\bf v}_V,{\bf p}_0,\ldots {\bf p}_P\} 
  \f]
To manage cell topologies Intrepid uses the Shards package http://trilinos.sandia.gov/packages/shards .
Shards provides definitions for a standard set of base and extended cell topologies plus tools to
construct custom, user defined cell topologies, such as arbitrary polyhedral cells. For further
details see Shards documentation. 



\section cell_topology_ref_cells      Reference cells

For some cell topologies there exist simple, e.g., polynomial, mappings that allow to obtain any 
cell having that topology as an image of a single "standard" cell. We refer to such standard cells
as <strong>reference</strong> cells. 

Just like in the general case, a reference cell with a base topology <var>BT</var> is defined by a 
set of vertices, and a reference cell with extended topology <var>ET</var> is defined by a set of 
nodes that include the original vertices and some additional points. 

The actual vertex and node coordinates for the reference cells can be chosen arbitrarily; however, 
once selected they should not be changed because in many cases, e.g., in finite element reconstructions,
all calculations are done on a reference cell and then transformed to physical cells by an appropriate
pullback (see Section \ref sec_pullbacks).

In Intrepid base and extended reference cell topologies are defined using the following selections
of vertex and node coordinates:

\verbatim
|=======================|==============================================================================|
| Topology family       |    reference cell vertices/additional nodes defining extended topology       |
|=======================|==============================================================================|
| Line<2>               |                                                                              |
| Beam<2>               | {(-1,0,0),(1,0,0)}                                                           |
| ShellLine<2>          |                                                                              |
|-----------------------|------------------------------------------------------------------------------|
| Line<3>               |                                                                              |
| Beam<3>               | {(0,0,0)}                                                                    |
| ShellLine<3>          |                                                                              |
|=======================|==============================================================================|
| Triangle<3>           | {(0,0,0),(1,0,0),(0,1,0)}                                                    |
| ShellTriangle<3>      |                                                                              |
|-----------------------|------------------------------------------------------------------------------|
| Triangle<4>           | {(1/3,1/3,0)}                                                                |
|.......................|..............................................................................|
| Triangle<6>           | {(1/2,0,0),(1/2,1/2,0),(0,1/2,0)}                                            |
| ShellTriangle<6>      |                                                                              |
|=======================|==============================================================================|
| Quadrilateral<4>      | {(-1,-1,0),(1,-1,0), (1,1,0),(-1,1,0)}                                       |
| ShellQuadrilateral<4> |                                                                              |
|-----------------------|------------------------------------------------------------------------------|
| Quadrilateral<8>      | {(0,-1,0),(1,0,0),(0,1,0),(-1,0,0)}                                          |
| ShellQuadrilateral<8> |                                                                              |
|.......................|..............................................................................|
| Quadrilateral<9>      | {(0,-1,0),(1,0,0),(0,1,0),(-1,0,0),(0,0,0)}                                  |
| ShellQuadrilateral<9> |                                                                              |
|=======================|==============================================================================|
| Tetrahedron<4>        | {(0,0,0),(1,0,0),(0,1,0),(0,0,1)}                                            |
|-----------------------|------------------------------------------------------------------------------|
| Tetrahedron<8>        | {(1/2,0,0),(1/2,1/2,0),(0,1/2,0),(1/3,1/3,1/3)}                              |
| Tetrahedron<10>       | {(1/2,0,0),(1/2,1/2,0),(0,1/2,0),(0,0,1/2),(1/2,0,1/2),(0,1/2,1/2)}          |
|=======================|==============================================================================|
| Pyramid<5>            | {(-1,-1,0),(1,-1,0),(1,1,0),(-1,1,0),(0,0,1)}                                |
|-----------------------|------------------------------------------------------------------------------|
| Pyramid<13>           | {(0,-1,0),(1,0,0),(0,1,0),(-1,0,0), 1/2((-1,-1,1),(1,-1,1),(1,1,1),(-1,1,1))}|
| Pyramid<14>           | all of the above and (0,0,0)                                                 |
|=======================|==============================================================================|
| Wedge<6>              | {(0,0,-1),(1,0,-1),(0,1,-1),(0,0,1),(1,0,1),(0,1,1)}                         |
|-----------------------|------------------------------------------------------------------------------|
| Wedge<15>             | {(1/2,0,-1),(1/2,1/2,-1),(0,1/2,-1), (0,0,0),(1,0,0),(0,1,0),                |  
|                       |  (1/2,0, 1),(1/2,1/2, 1),(0,1/2, 1)                                          |
|.......................|..............................................................................|
| Wedge<18>             | All of the above plus {(1/2,0,0),(1/2,1/2,0),(0,1/2,0)}                      |
|=======================|==============================================================================|
| Hexahedron<8>         | {(-1,-1,-1),(1,-1,-1),(1,1,-1),(-1,1,-1),(-1,-1,1),(1,-1,1),(1,1,1),(-1,1,1)}|
|-----------------------|------------------------------------------------------------------------------|
| Hexahedron<20>        | {(0,-1,-1),(1,0,-1),(0,1,-1),(-1,0,-1), (0,-1,0),(1,0,0),(0,1,0),(-1,0,0),   |
|                       |  (0,-1, 1),(1,0, 1),(0,1, 1),(-1,0, 1) }                                     |
|.......................|..............................................................................|
| Hexahedron<27>        | All of the above plus center point and face midpoints:                       |
|                       | {(0,0,0), (0,0,-1),(0,0,1), (-1,0,0),(1,0,0), (0,-1,0),(0,1,0)}              |
|=======================|==============================================================================|
\endverbatim

Finite element reconstruction methods based on pullbacks (see Section \ref sec_pullbacks) are 
restricted to the above cell topologies.  


  
\subsection sec_cell_topology_ref_map      Reference-to-physical cell mapping

The mapping that takes a given reference cell to a physical cell with the same topology is defined 
using a nodal Lagrangian basis corresponding to the nodes of the reference cell. In other words, the
mapping is constructed using basis functions that are dual to the nodes of the reference cell.
Implementation details are as follows.

Assume that \f$ \hat{\mathcal{C}} \f$ is a reference cell with topology <var>T</var> and nodes
\f$\{\hat{{\bf q}}_0,\ldots,\hat{{\bf q}}_{N}\}\f$, and that \f$ \{\hat{\phi}_i\}_{i=0}^{N} \f$ is
the Lagrangian basis dual to these nodes, i.e., \f$ \hat{\phi}_i( \hat{{\bf q}}_j)=\delta_{ij} \f$.
A physical cell \f$\mathcal{C}\f$ with the same topology <var>T</var> as \f$\hat{\mathcal{C}}\f$ is  
then defined as the image of \f$ \hat{\mathcal{C}} \f$ under the mapping
\f[               
  F_\mathcal{C}(\hat{\bf x}) = \sum_{m=0}^{N}  {\bf q}_m(\mathcal{C})  \hat{\phi}_m(\hat{\bf x})          
\f]
where \f$\{{\bf q}_0(\mathcal{C}),\ldots,{\bf q}_N(\mathcal{C})\}\f$ is the set of <strong>physical nodes</strong>
that defines \f$\mathcal{C}\f$. The number of physical nodes is required to match the number of reference  
nodes in the specified cell topology <var>T</var>. The <var>i</var>-th coordinate function of the 
reference-to-physical mapping is given by
\f[        
  \big(F_{\mathcal{C}}(\hat{\bf x})\big)_i = 
              \sum_{m=0}^{N}  \big({\bf q}_m(\mathcal{C})\big)_i\hat{\phi}_m(\hat{\bf x})           
\f]
where \f$ \big({\bf q}_m(\mathcal{C})\big)_i \f$ is the <var>i</var>-th spatial coordinate of the <var>m</var>-th node.

For simplicity, unless there's a chance for confusion, the cell symbol will be ommitted from the
designations of physical points and reference-to-physical maps, i.e., we shall simply write
\f$F(\hat{\bf x})\ \mbox{and}\ {\bf q}_m\f$.

\par Summary
  
\li      \f$F(\hat{\bf x})\f$: implemented in Intrepid::CellTools::mapToPhysicalFrame 
\li      \f$F^{-1}({\bf x})\f$: implemented in Intrepid::CellTools::mapToReferenceFrame 
  
\warning Intrepid::CellTools does not check for non-degeneracy of the physical cell obtained from a
given set of physical nodes. As a result, <var>F</var> is not guaranteed to be a diffeomorphism,
i.e., it may not have a continuously differentiable inverse. In this case some 
Intrepid::CellTools methods, such as Intrepid::CellTools::setJacobianInv, 
and Intrepid::CellTools::mapToReferenceFrame will fail.
    

  
\subsection sec_cell_topology_ref_map_DF   Jacobian of the reference-to-physical cell mapping

Intrepid follows the convention that the rows of the Jacobian are the transposed gradients of the
coordinate functions of the mapping, i.e.,
\f[                    
      DF_{ij}(\hat{{\bf x}}) = \frac{\partial F_i(\hat{{\bf x}})}{\partial\hat{{\bf x}}_j}                    
\f]
In light of the definition of <var>F</var> in Section \ref sec_cell_topology_ref_map, it follows that
\f[  
      DF_{ij}(\hat{{\bf x}}) = \sum_{m=0}^{N}
                ({\bf q}_m)_i\frac{\partial\hat{\phi}_m(\hat{{\bf x}})}{\partial\hat{{\bf x}}_j} \,.       
\f]

\par Summary
  
\li     \f$DF_{ij}(\hat{{\bf x}}) \f$: implemented in Intrepid::CellTools::setJacobian
\li     \f$DF_{ij}^{-1}(\hat{{\bf x}}) \f$: implemented in Intrepid::CellTools::setJacobianInv
\li     \f$\mbox{det} DF_{ij}(\hat{{\bf x}}) \f$: implemented in  Intrepid::CellTools::setJacobianDet                      


  
\subsection sec_cell_topology_subcell_map  Parametrization of physical 1- and 2-subcells
  
Parametrization of a given physical k-subcell \f$\mathcal{S}_i\f$, k=1,2, is a map from a 
k-dimensional parametrization domain \e R to that subcell:
\f[
    \Phi : R \mapsto \mathcal{S} \,.
\f]
Parametrization domains play role similar to that of reference cells in the sense that they allow 
computation of line and surface integrals on 1- and 2-subcells (edges and faces) to be reduced to   
computation of integrals on \e R . 

Parametrization maps are supported for 1- and 2-subcells (edges and faces) that belong to physical 
cells with reference cells. The reason is that these maps are defined by the composition of  the
parametrization maps for reference edges and faces with the mapping \e F defined in \ref sec_cell_topology_ref_map.
As a result, parametrization of a given physical k-subcell requires selection of a 
<strong>parent cell</strong> that contains the subcell. 

\remark  
Because a given k-subcell may belong to more than one physical cell, its parent cell is not unique. For a single
k-subcell the choice of a parent cell is not important, however, when dealing with subcell worksets
parent cells must all have the same topology (see \ref sec_cell_topology_subcell_wset for details about
subcell worksets).
  
  
Implementation of subcell parametrization is as follows. Assume that \f$\mathcal{S}_i\f$ is a k-subcell   
with parent cell \f$\mathcal{C}\f$; \f$\mathcal{\hat{C}}\f$ is the associated reference cell and 
\e i is the local ordinal of the subcell relative to the reference cell. To this physical subcell
corresponds a reference subcell \f$\hat{\mathcal{S}}_i\f$ having the same local ordinal. Parametrization of
the reference k-subcell is a map from the k-dimensional parametrization domain \e R to that subcell:
\f[
    \hat{\Phi} : R \mapsto \hat{\mathcal{S}}_i \,.
\f]
Parametrization of \f$\mathcal{S}_i\f$ is then defined as
\f[
    \Phi = F\circ \hat{\Phi} \,,
\f]
where \e F is the reference-to-physical mapping between the parent cell and its reference cell. 
  

A 1-subcell (edge) always has \c Line<N> topology and so, the parametrization domain for edges is the standard 1-cube:
\f[
      R = [-1,1]\,.
\f]
On the other hand, faces of reference cells can have \c Triangle<N> and/or \c Quadrilateral<N> topologies. 
Thus, the parametrization domain for a 2-subcell depends on its topology and is either the standard 
2-simplex or the standard 2-cube:
\f[
      R = \left\{\begin{array}{rl} 
          \{(0,0),(1,0),(0,1)\} & \mbox{if the face is Triangle} \\[1ex]
            [-1,1]\times [-1,1] & \mbox{if the face is Quadrilateral}
          \end{array}\right.
\f]
\par Summary

-    \f$ \Phi : R \mapsto {\mathcal{S}}_i \f$ requires two steps: 
  -# Intrepid::CellTools::mapToReferenceSubcell to apply \f$\hat{\Phi}: R \mapsto \hat{\mathcal{S}}_i\f$;
  -# Intrepid::CellTools::mapToPhysicalFrame to apply \e F



\subsection sec_cell_topology_subcell_wset Subcell worksets

A subcell workset comprises of 1- or 2-subcells and associated parent cells that satisfy the 
following conditions

\li     all subcells have the same cell topology;
\li     all parent cells have the same cell topology;
\li     The parent cell topology has a reference cell;
\li     relative to that reference cell, all subcells in the workset have the same local ordinal

Therefore, a subcell workset is defined by 

-#      collecting a set of 1- or 2-subcells having the same topology
-#      selecting a parent cell for every subcell in such a way that 
  -#      all parent cells have the same cell topology
  -#      all subcells in the workset have the same local ordinal relative to the parent cell topology

  Obviously, a subcell can have multiple parent cells. For example, in a mesh consisiting of Triangle<3> cells, every
  edge is shared by 2 triangle cells. To define an edge workset we can use either one of the two traingles
  sharing the cell.

  Suppose now that the mesh comprises of Triangle<3> and Quadrilateral<4> cells and we want to define an
  edge workset. Let's say the first few edges in our workset happen to be shared by 2 triangles and so 
  we select one of them as the parent cell. Now suppose the next edge is shared by a traingle and a 
  quadrilateral. Because all parent cells in the workset must have the same cell topology we cannot use
  the quadrilateral as a parent cell and so we choose the triangle. Finally suppose that one of the candidate 
  edges for our workset is shared by 2 quadrilaterals. Because of the requirement that all parent cells
  have the same topology, we will have to reject this edge because it does not posses a potential parent cell
  with the same topology as the rest of the edges in our workset.

  A subcell workset is denoted by \f$ \{\mathcal{S}_{c,i}\}_{c=0}^N \f$, where

  \li <var>c</var> is parent cell ordinal;
  \li <var>i</var> is the local subcell ordinal (relative to the topology of the parent cell) shared
  by all subcells in the workset. 

  */