/usr/include/trilinos/Ifpack_PointRelaxation.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 | /*@HEADER
// ***********************************************************************
//
// Ifpack: Object-Oriented Algebraic Preconditioner Package
// Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK_POINTRELAXATION_H
#define IFPACK_POINTRELAXATION_H
#include "Ifpack_ConfigDefs.h"
#include "Ifpack_Preconditioner.h"
#include "Epetra_Vector.h"
#include "Epetra_Time.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Import.h"
#include "Teuchos_RefCountPtr.hpp"
namespace Teuchos {
class ParameterList;
}
class Epetra_MultiVector;
class Epetra_Vector;
class Epetra_Map;
class Epetra_Comm;
class Epetra_CrsMatrix;
//! Ifpack_PointRelaxation: a class to define point relaxation preconditioners of for Epetra_RowMatrix's.
/*!
The Ifpack_PointRelaxation class enables the construction of point
relaxation
preconditioners of an Epetra_RowMatrix. Ifpack_PointRelaxation
is derived from
the Ifpack_Preconditioner class, which is itself derived from Epetra_Operator.
Therefore this object can be used as preconditioner everywhere an
ApplyInverse() method is required in the preconditioning step.
This class enables the construction of the following simple preconditioners:
- Jacobi;
- Gauss-Seidel;
- symmetric Gauss-Seidel.
<P>We now briefly describe the main features of the above preconditioners.
Consider a linear system of type
\f[
A x = b,
\f]
where \f$A\f$ is a square, real matrix, and \f$x, b\f$ are two real
vectors. We begin with the decomposition
\f[
A = D - E - F
\f]
where \f$D\f$ is the diagonal of A, \f$-E\f$ is the strict lower part, and
\f$-F\f$ is the strict upper part. It is assumed that the diagonal entries
of \f$A\f$ are different from zero.
<P>Given an starting solution \f$x_0\f$, an iteration of the (damped) Jacobi
method can be written in matrix form as follows:
\f[
x_{k+1} = \omega D^{-1}(E + F) x_k + D_{-1}b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter.
Using Ifpack_Jacobi, the user can apply the specified number of sweeps
(\f$k_{max}\f$), and the damping parameter. If only one sweep is used, then
the class simply applies the inverse of the diagonal of A to the input
vector.
<P>Given an starting solution \f$x_0\f$, an iteration of the (damped) GaussSeidel
method can be written in matrix form as follows:
\f[
(D - E) x_{k+1} = \omega F x_k + b,
\f]
for \f$k < k_{max}\f$, and \f$\omega \f$ a damping parameter. Equivalently,
the Gauss-Seidel preconditioner can be defined as
\f[
P_{GS}^{-1} = (D - E)^{-1}.
\f]
Clearly, the role of E and F can be interchanged. However,
Ifpack_GaussSeidel does not consider backward Gauss-Seidel methods.
<P>For a list of supported parameters, please refer to page \ref ifp_params.
<P>The complete list of supported parameters is reported in page \ref ifp_params. For a presentation of basic relaxation schemes, please refer to page
\ref Ifpack_PointRelaxation.
\author Marzio Sala, SNL 9214.
\date Last modified on 22-Jan-05.
*/
class Ifpack_PointRelaxation : public Ifpack_Preconditioner {
public:
//@{ \name Constructors/Destructors
//! Ifpack_PointRelaxation constructor with given Epetra_RowMatrix.
/*! Creates an instance of Ifpack_PointRelaxation class.
*
* \param
* Matrix - (In) Pointer to matrix to precondition.
*/
Ifpack_PointRelaxation(const Epetra_RowMatrix* Matrix);
//! Destructor.
virtual ~Ifpack_PointRelaxation() {}
//@}
/*! This flag can be used to apply the preconditioner to the transpose of
* the input operator.
*
* \return Integer error code, set to 0 if successful.
* Set to -1 if this implementation does not support transpose.
*/
virtual inline int SetUseTranspose(bool UseTranspose_in)
{
UseTranspose_ = UseTranspose_in;
return(0);
}
//@}
//@{ \name Mathematical functions.
//! Applies the matrix to an Epetra_MultiVector.
/*!
\param
X - (In) A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param
Y - (Out) A Epetra_MultiVector of dimension NumVectors containing the result.
\return Integer error code, set to 0 if successful.
*/
virtual inline int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
if (IsComputed() == false)
IFPACK_CHK_ERR(-3);
if (X.NumVectors() != Y.NumVectors())
IFPACK_CHK_ERR(-2);
IFPACK_CHK_ERR(Matrix_->Multiply(UseTranspose(),X,Y));
return(0);
}
//! Applies the preconditioner to X, returns the result in Y.
/*!
\param
X - (In) A Epetra_MultiVector of dimension NumVectors to be preconditioned.
\param
Y - (InOut) A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
\warning This routine is NOT AztecOO complaint.
*/
virtual int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the infinity norm of the global matrix (not implemented)
virtual double NormInf() const
{
return(-1.0);
}
//@}
//@{ \name Atribute access functions
virtual const char * Label() const
{
return(Label_.c_str());
}
//! Returns the current UseTranspose setting.
virtual bool UseTranspose() const
{
return(UseTranspose_);
}
//! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
virtual bool HasNormInf() const
{
return(false);
}
//! Returns a pointer to the Epetra_Comm communicator associated with this operator.
virtual const Epetra_Comm & Comm() const;
//! Returns the Epetra_Map object associated with the domain of this operator.
virtual const Epetra_Map & OperatorDomainMap() const;
//! Returns the Epetra_Map object associated with the range of this operator.
virtual const Epetra_Map & OperatorRangeMap() const;
virtual int Initialize();
virtual bool IsInitialized() const
{
return(IsInitialized_);
}
//! Returns \c true if the preconditioner has been successfully computed.
virtual inline bool IsComputed() const
{
return(IsComputed_);
}
//! Computes the preconditioners.
virtual int Compute();
//@}
//@{ \name Miscellaneous
virtual const Epetra_RowMatrix& Matrix() const
{
return(*Matrix_);
}
//! Computes the condition number estimates and returns the value.
virtual double Condest(const Ifpack_CondestType CT = Ifpack_Cheap,
const int MaxIters = 1550,
const double Tol = 1e-9,
Epetra_RowMatrix* Matrix = 0);
//! Returns the condition number estimate, or -1.0 if not computed.
virtual double Condest() const
{
return(Condest_);
}
//! Sets all the parameters for the preconditioner
virtual int SetParameters(Teuchos::ParameterList& List);
//! Prints object to an output stream
virtual ostream& Print(ostream & os) const;
//@}
//@{ \name Timing and flop count
//! Returns the number of calls to Initialize().
virtual int NumInitialize() const
{
return(NumInitialize_);
}
//! Returns the number of calls to Compute().
virtual int NumCompute() const
{
return(NumCompute_);
}
//! Returns the number of calls to ApplyInverse().
virtual int NumApplyInverse() const
{
return(NumApplyInverse_);
}
//! Returns the time spent in Initialize().
virtual double InitializeTime() const
{
return(InitializeTime_);
}
//! Returns the time spent in Compute().
virtual double ComputeTime() const
{
return(ComputeTime_);
}
//! Returns the time spent in ApplyInverse().
virtual double ApplyInverseTime() const
{
return(ApplyInverseTime_);
}
//! Returns the number of flops in the initialization phase.
virtual double InitializeFlops() const
{
return(0.0);
}
//! Returns the number of flops in the computation phase.
virtual double ComputeFlops() const
{
return(ComputeFlops_);
}
//! Returns the number of flops for the application of the preconditioner.
virtual double ApplyInverseFlops() const
{
return(ApplyInverseFlops_);
}
// @}
private:
// @{ Application of the preconditioner
//! Applies the Jacobi preconditioner to X, returns the result in Y.
virtual int ApplyInverseJacobi(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
//! Applies the Gauss-Seidel preconditioner to X, returns the result in Y.
virtual int ApplyInverseGS(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseGS_RowMatrix(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseGS_CrsMatrix(const Epetra_CrsMatrix* A,
const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseGS_FastCrsMatrix(const Epetra_CrsMatrix* A,
const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
//! Applies the symmetric Gauss-Seidel preconditioner to X, returns the result in Y.
virtual int ApplyInverseSGS(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseSGS_RowMatrix(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseSGS_CrsMatrix(const Epetra_CrsMatrix* A,
const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
virtual int ApplyInverseSGS_FastCrsMatrix(const Epetra_CrsMatrix* A,
const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const;
//@}
private:
//! Sets the label.
virtual void SetLabel();
//! Copy constructor (PRIVATE, should not be used)
Ifpack_PointRelaxation(const Ifpack_PointRelaxation& rhs)
{}
//! operator = (PRIVATE, should not be used)
Ifpack_PointRelaxation& operator=(const Ifpack_PointRelaxation& rhs)
{
return(*this);
}
// @{ Initializations, timing and flops
//! If \c true, the preconditioner has been computed successfully.
bool IsInitialized_;
//! If \c true, the preconditioner has been computed successfully.
bool IsComputed_;
//! Contains the number of successful calls to Initialize().
int NumInitialize_;
//! Contains the number of successful call to Compute().
int NumCompute_;
//! Contains the number of successful call to ApplyInverse().
mutable int NumApplyInverse_;
//! Contains the time for all successful calls to Initialize().
double InitializeTime_;
//! Contains the time for all successful calls to Compute().
double ComputeTime_;
//! Contains the time for all successful calls to ApplyInverse().
mutable double ApplyInverseTime_;
//! Contains the number of flops for Compute().
double ComputeFlops_;
//! Contain sthe number of flops for ApplyInverse().
mutable double ApplyInverseFlops_;
// @}
// @{ Settings
//! Number of application of the preconditioner (should be greater than 0).
int NumSweeps_;
//! Damping factor.
double DampingFactor_;
//! If true, use the tranpose of \c Matrix_.
bool UseTranspose_;
//! Contains the estimated condition number
double Condest_;
//! If true, Compute() also computes the condition number estimate.
bool ComputeCondest_;
//! Contains the label of this object.
string Label_;
int PrecType_;
double MinDiagonalValue_;
// @}
// @{ Other data
//! Number of local rows.
int NumMyRows_;
//! Number of local nonzeros.
int NumMyNonzeros_;
//! Number of global rows.
int NumGlobalRows_;
//! Number of global nonzeros.
int NumGlobalNonzeros_;
//! Pointers to the matrix to be preconditioned.
Teuchos::RefCountPtr<const Epetra_RowMatrix> Matrix_;
//! Importer for parallel GS and SGS
Teuchos::RefCountPtr<Epetra_Import> Importer_;
//! Contains the diagonal elements of \c Matrix.
mutable Teuchos::RefCountPtr<Epetra_Vector> Diagonal_;
//! Time object to track timing.
Teuchos::RefCountPtr<Epetra_Time> Time_;
//! If \c true, more than 1 processor is currently used.
bool IsParallel_;
//! If \c true, the starting solution is always the zero vector.
bool ZeroStartingSolution_;
//! Backward-Mode Gauss Seidel
bool DoBackwardGS_;
// @}
};
#endif // IFPACK_POINTRELAXATION_H
|