This file is indexed.

/usr/include/trilinos/Ifpack_ICT.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*@HEADER
// ***********************************************************************
// 
//       Ifpack: Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2002) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//  
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//  
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov) 
// 
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK_ICT_H
#define IFPACK_ICT_H

#include "Ifpack_ConfigDefs.h"
#include "Ifpack_CondestType.h"
#include "Ifpack_ScalingType.h"
#include "Ifpack_Preconditioner.h"
#include "Epetra_Vector.h"
#include "Epetra_CrsMatrix.h"
#include "Epetra_Time.h"
#include "Teuchos_RefCountPtr.hpp"

class Epetra_RowMatrix;
class Epetra_SerialComm;
class Epetra_Comm;
class Epetra_Map;
class Epetra_MultiVector;

namespace Teuchos {
  class ParameterList;
}

//! Ifpack_ICT: A class for constructing and using an incomplete Cholesky factorization of a given Epetra_RowMatrix.

/*! The Ifpack_ICT class computes a threshold based incomplete 
 LDL^T factorization of a given Epetra_RowMatrix.  The factorization 
 that is produced is a function of several parameters:
<ol>
  <li> Maximum number of entries per row/column in factor - The factorization will contain at most this number of nonzero
       terms in each row/column of the factorization.

  <li> Diagonal perturbation - Prior to computing the factorization, it is possible to modify the diagonal entries of the matrix
       for which the factorization will be computing.  If the absolute and relative perturbation values are zero and one,
       respectively, the
       factorization will be compute for the original user matrix A.  Otherwise, the factorization
       will computed for a matrix that differs from the original user matrix in the diagonal values only. Details can be found in \ref ifp_diag_pert.
</ol>

*/    

class Ifpack_ICT: public Ifpack_Preconditioner {
      
 public:
  //! Ifpack_ICT constuctor with variable number of indices per row.
  /*! Creates a Ifpack_ICT object and allocates storage.  
    
    \param In 
           A - User matrix to be factored.
    \param In
           Graph - Graph generated by Ifpack_IlukGraph.
  */
  Ifpack_ICT(const Epetra_RowMatrix* A);
  
  //! Ifpack_ICT Destructor
  virtual ~Ifpack_ICT();

  //! Set parameters using a Teuchos::ParameterList object.
  /* This method is only available if the Teuchos package is enabled.
     This method recognizes five parameter names: level_fill, drop_tolerance,
     absolute_threshold, relative_threshold and overlap_mode. These names are
     case insensitive. For level_fill the ParameterEntry must have type int, the 
     threshold entries must have type double and overlap_mode must have type
     Epetra_CombineMode.
  */
  int SetParameters(Teuchos::ParameterList& parameterlis);

  //! Returns a reference to the matrix to be preconditioned.
  const Epetra_RowMatrix& Matrix() const
  {
    return(A_);
  }

  //! Returns \c true is the preconditioner has been successfully initialized.
  bool IsInitialized() const
  {
    return(IsInitialized_);
  }

  //! Initialize L and U with values from user matrix A.
  /*! Copies values from the user's matrix into the nonzero pattern of L and U.
    \param In 
           A - User matrix to be factored.
    \warning The graph of A must be identical to the graph passed in to Ifpack_IlukGraph constructor.
             
   */
  int Initialize();

  //! Compute IC factor U using the specified graph, diagonal perturbation thresholds and relaxation parameters.
  /*! This function computes the RILU(k) factors L and U using the current:
    <ol>
    <li> Ifpack_IlukGraph specifying the structure of L and U.
    <li> Value for the RILU(k) relaxation parameter.
    <li> Value for the \e a \e priori diagonal threshold values.
    </ol>
    InitValues() must be called before the factorization can proceed.
   */
  int Compute();

  //! If factor is completed, this query returns true, otherwise it returns false.
  bool IsComputed() const {return(IsComputed_);};

  // Mathematical functions.
  
  //! Returns the result of a Ifpack_ICT forward/back solve on a Epetra_MultiVector X in Y.
  /*! 
    \param In
    Trans -If true, solve transpose problem.
    \param In
    X - A Epetra_MultiVector of dimension NumVectors to solve for.
    \param Out
    Y -A Epetra_MultiVector of dimension NumVectorscontaining result.
    
    \return Integer error code, set to 0 if successful.
  */
  int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

  int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;

  //! Returns the maximum over all the condition number estimate for each local ILU set of factors.
  /*! This functions computes a local condition number estimate on each processor and return the
      maximum over all processor of the estimate.
   \param In
    Trans -If true, solve transpose problem.
    \param Out
    ConditionNumberEstimate - The maximum across all processors of 
    the infinity-norm estimate of the condition number of the inverse of LDU.
  */
  double Condest(const Ifpack_CondestType CT = Ifpack_Cheap, 
                 const int MaxIters = 1550,
                 const double Tol = 1e-9,
		 Epetra_RowMatrix* Matrix_in = 0);

  double Condest() const
  {
    return(Condest_);
  }

  // Atribute access functions
    
  //! Returns the number of nonzero entries in the global graph.
  int NumGlobalNonzeros() const {return(H().NumGlobalNonzeros());};
 
  //! Returns the number of nonzero entries in the local graph.
  int NumMyNonzeros() const {return(H().NumMyNonzeros());};

  //! Returns the address of the D factor associated with this factored matrix.
  const Epetra_CrsMatrix& H() const {return(*H_);};
    
  //@{ \name Additional methods required to support the Epetra_Operator interface.

    //! If set true, transpose of this operator will be applied.
    /*! This flag allows the transpose of the given operator to be used implicitly.  Setting this flag
        affects only the Apply() and ApplyInverse() methods.  If the implementation of this interface 
	does not support transpose use, this method should return a value of -1.
      
    \param In
	   UseTranspose_in -If true, multiply by the transpose of operator, otherwise just use operator.

    \return Always returns 0.
  */
  int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);};

  //! Returns 0.0 because this class cannot compute Inf-norm.
  double NormInf() const {return(0.0);};

  //! Returns false because this class cannot compute an Inf-norm.
  bool HasNormInf() const {return(false);};

  //! Returns the current UseTranspose setting.
  bool UseTranspose() const {return(UseTranspose_);};

  //! Returns the Epetra_Map object associated with the domain of this operator.
  const Epetra_Map& OperatorDomainMap() const {return(A_.OperatorDomainMap());};

  //! Returns the Epetra_Map object associated with the range of this operator.
  const Epetra_Map& OperatorRangeMap() const{return(A_.OperatorRangeMap());};

  //! Returns the Epetra_BlockMap object associated with the range of this matrix operator.
  const Epetra_Comm& Comm() const{return(Comm_);};
  //@}

  const char* Label() const
  {
    return(Label_.c_str());
  }

  int SetLabel(const char* Label_in)
  {
    Label_ = Label_in;
    return(0);
  }
 
  //! Prints basic information on iostream. This function is used by operator<<.
  virtual ostream& Print(std::ostream& os) const;

  //! Returns the number of calls to Initialize().
  virtual int NumInitialize() const
  {
    return(NumInitialize_);
  }

  //! Returns the number of calls to Compute().
  virtual int NumCompute() const
  {
    return(NumCompute_);
  }

  //! Returns the number of calls to ApplyInverse().
  virtual int NumApplyInverse() const
  {
    return(NumApplyInverse_);
  }

  //! Returns the time spent in Initialize().
  virtual double InitializeTime() const
  {
    return(InitializeTime_);
  }

  //! Returns the time spent in Compute().
  virtual double ComputeTime() const
  {
    return(ComputeTime_);
  }

  //! Returns the time spent in ApplyInverse().
  virtual double ApplyInverseTime() const
  {
    return(ApplyInverseTime_);
  }

  //! Returns the number of flops in the initialization phase.
  virtual double InitializeFlops() const
  {
    return(0.0);
  }

  //! Returns the number of flops in all applications of Compute().
  virtual double ComputeFlops() const
  {
    return(ComputeFlops_);
  }

  //! Returns the number of flops in all applications of ApplyInverse().
  virtual double ApplyInverseFlops() const
  {
    return(ApplyInverseFlops_);
  }

  //! Returns the level-of-fill 
  /*! \note: if 1.0, then the factored matrix
      contains approximatively the same number of elements of A.
   */
  inline double LevelOfFill() const
  {
    return(LevelOfFill_);
  }

  //! Returns the absolute threshold.
  inline double AbsoluteThreshold() const
  {
    return(Athresh_);
  }

  //! Returns the relative threshold.
  inline double RelativeThreshold() const
  {
    return(Rthresh_);
  }

  //! Returns the relaxation value.
  inline double RelaxValue() const
  {
    return(Relax_);
  }

  //! Returns the drop threshold.
  inline double DropTolerance() const
  {
    return(DropTolerance_);
  }

private:
  
  //! Should not be used.
  Ifpack_ICT(const Ifpack_ICT& rhs) :
    A_(rhs.Matrix()),
    Comm_(Comm()),
    Time_(Comm())
  {}

  //! Should not be used.
  Ifpack_ICT& operator=(const Ifpack_ICT& rhs)
  {
    return(*this);
  }

  //! Destroys all data associated to the preconditioner.
  void Destroy();

  //! Reference to the matrix to be preconditioned, supposed symmetric.
  const Epetra_RowMatrix& A_;
  //! Reference to the communicator.
  const Epetra_Comm& Comm_;
  //! Contains the Cholesky factorization.
  Teuchos::RefCountPtr<Epetra_CrsMatrix> H_;
  //! Contains the estimate of the condition number, if -1.0 if not computed.
  double Condest_;
  //! Absolute threshold.
  double Athresh_;
  //! Relative threshold.
  double Rthresh_;
  //! Level of fill.
  double LevelOfFill_;
  //! During factorization, drop all values below this.
  double DropTolerance_;
  //! Relaxation value.
  double Relax_;
  //! Label of \c this object.
  string Label_;
  //! If \c true, the preconditioner has been successfully initialized.
  bool IsInitialized_;
  //! If \c true, the preconditioner has been successfully computed.
  bool IsComputed_;
  //! If \c true, use the transpose of the matrix.
  bool UseTranspose_;
  //! Number of local rows in the matrix.
  int NumMyRows_;
  //! Contains the number of successful calls to Initialize().
  int NumInitialize_;
  //! Contains the number of successful call to Compute().
  int NumCompute_;
  //! Contains the number of successful call to ApplyInverse().
  mutable int NumApplyInverse_;
  //! Contains the time for all successful calls to Initialize().
  double InitializeTime_;
  //! Contains the time for all successful calls to Compute().
  double ComputeTime_;
  //! Contains the time for all successful calls to ApplyInverse().
  mutable double ApplyInverseTime_;
  //! Contains the number of flops for Compute().
  double ComputeFlops_;
  //! Contain sthe number of flops for ApplyInverse().
  mutable double ApplyInverseFlops_;
  //! Used for timing purposes.
  mutable Epetra_Time Time_;
  //! Global number of nonzeros in L and U factors
  int GlobalNonzeros_;
  Teuchos::RefCountPtr<Epetra_SerialComm> SerialComm_;
  Teuchos::RefCountPtr<Epetra_Map> SerialMap_;
};

#endif /* IFPACK_ICT_H */