/usr/include/trilinos/Ifpack_Hypre.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 | /*@HEADER
// ***********************************************************************
//
// Ifpack: Object-Oriented Algebraic Preconditioner Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef IFPACK_HYPRE_H
#define IFPACK_HYPRE_H
#include "Ifpack_ConfigDefs.h"
#ifdef HAVE_HYPRE
#include "HYPRE_IJ_mv.h"
#include "HYPRE_parcsr_ls.h"
#include "krylov.h"
#include "_hypre_parcsr_mv.h"
#include "_hypre_IJ_mv.h"
#include "HYPRE_parcsr_mv.h"
#include "HYPRE.h"
#include "Ifpack_Preconditioner.h"
#include "Ifpack_Condest.h"
#include "Ifpack_ScalingType.h"
#include "Epetra_CompObject.h"
#include "Epetra_MultiVector.h"
#include "Epetra_Vector.h"
#include "Epetra_CrsGraph.h"
#include "Epetra_CrsMatrix.h"
#include "Epetra_BlockMap.h"
#include "Epetra_Map.h"
#include "Epetra_Object.h"
#include "Epetra_Comm.h"
#include "Epetra_CrsMatrix.h"
#include "Epetra_Time.h"
#include "Teuchos_RefCountPtr.hpp"
#include "Epetra_MpiComm.h"
#ifndef HYPRE_ENUMS
#define HYPRE_ENUMS
//! This enumerated type defines the allowed solvers and preconditioners in Hypre. Some can be used as both solver and preconditioner.
enum Hypre_Solver{
BoomerAMG,
ParaSails,
Euclid,
AMS,
Hybrid,
PCG,
GMRES,
FlexGMRES,
LGMRES,
BiCGSTAB
};
//! This enumerated type defines the two options for applying inverse, either solve or apply the preconditioner.
enum Hypre_Chooser{
Solver,
Preconditioner
};
#endif //HYPRE_ENUMS
//! This class is used to help with passing parameters in the SetParameter() function. Use this class to call Hypre's internal parameters.
class FunctionParameter{
public:
//! Single int constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, int), int param1) :
chooser_(chooser),
option_(0),
int_func_(funct_name),
int_param1_(param1) {}
//! Single double constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, double), double param1):
chooser_(chooser),
option_(1),
double_func_(funct_name),
double_param1_(param1) {}
//! Single double, single int constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, double, int), double param1, int param2):
chooser_(chooser),
option_(2),
double_int_func_(funct_name),
int_param1_(param2),
double_param1_(param1) {}
//! Two ints constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, int, int), int param1, int param2):
chooser_(chooser),
option_(3),
int_int_func_(funct_name),
int_param1_(param1),
int_param2_(param2) {}
//! Int pointer constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, int*), int *param1):
chooser_(chooser),
option_(4),
int_star_func_(funct_name),
int_star_param_(param1) {}
//! Double pointer constructor.
FunctionParameter(Hypre_Chooser chooser, int (*funct_name)(HYPRE_Solver, double*), double* param1):
chooser_(chooser),
option_(5),
double_star_func_(funct_name),
double_star_param_(param1) {}
//! Only method of this class. Calls the function pointer with the passed in HYPRE_Solver
int CallFunction(HYPRE_Solver solver, HYPRE_Solver precond){
if(chooser_ == Solver){
if(option_ == 0){
return int_func_(solver, int_param1_);
} else if(option_ == 1){
return double_func_(solver, double_param1_);
} else if(option_ == 2){
return double_int_func_(solver, double_param1_, int_param1_);
} else if (option_ == 3){
return int_int_func_(solver, int_param1_, int_param2_);
} else if (option_ == 4){
return int_star_func_(solver, int_star_param_);
} else {
return double_star_func_(solver, double_star_param_);
}
} else {
if(option_ == 0){
return int_func_(precond, int_param1_);
} else if(option_ == 1){
return double_func_(precond, double_param1_);
} else if(option_ == 2){
return double_int_func_(precond, double_param1_, int_param1_);
} else if(option_ == 3) {
return int_int_func_(precond, int_param1_, int_param2_);
} else if(option_ == 4) {
return int_star_func_(precond, int_star_param_);
} else {
return double_star_func_(precond, double_star_param_);
}
}
}
private:
Hypre_Chooser chooser_;
int option_;
int (*int_func_)(HYPRE_Solver, int);
int (*double_func_)(HYPRE_Solver, double);
int (*double_int_func_)(HYPRE_Solver, double, int);
int (*int_int_func_)(HYPRE_Solver, int, int);
int (*int_star_func_)(HYPRE_Solver, int*);
int (*double_star_func_)(HYPRE_Solver, double*);
int int_param1_;
int int_param2_;
double double_param1_;
int *int_star_param_;
double *double_star_param_;
};
namespace Teuchos {
class ParameterList;
}
//! Ifpack_Hypre: A class for constructing and using an ILU factorization of a given Epetra_RowMatrix, using the Hypre library by Lawrence Livermore National Laboratories.
/*!
Class Ifpack_Hypre: A class for using methods of Hypre with Epetra objects.
*/
class Ifpack_Hypre: public Ifpack_Preconditioner {
public:
// @{ Constructors and destructors.
//! Constructor
Ifpack_Hypre(Epetra_RowMatrix* A);
//! Destructor
~Ifpack_Hypre(){ Destroy();}
// @}
// @{ Construction methods
//! Initialize the preconditioner, does not touch matrix values.
int Initialize();
//! Returns \c true if the preconditioner has been successfully initialized.
bool IsInitialized() const{ return(IsInitialized_);}
//! Compute ILU factors L and U using the specified graph, diagonal perturbation thresholds and relaxation parameters.
/*! This function computes the ILU(k) factors.
*/
int Compute();
//! If factor is completed, this query returns true, otherwise it returns false.
bool IsComputed() const{ return(IsComputed_);}
//! Set parameters using a Teuchos::ParameterList object.
/* This method is only available if the Teuchos package is enabled.
This method recognizes six parameter names: Solver,
Preconditioner, SolveOrPrecondition, SetPreconditioner, NumFunctions and Functions. These names are
case sensitive. Solver requires an enumerated parameter of type Hypre_Solver. Preconditioner is similar
except requires the type be a preconditioner. The options are listed below:
Solvers Preconditioners
BoomerAMG BoomerAMG
AMS ParaSails
Hybrid AMS
PCG (Default) Euclid (Default)
GMRES
FlexGMRES
LGMRES
BiCGSTAB
SolveOrPrecondition takes enumerated type Hypre_Chooser, Solver will solve the system, Preconditioner will apply the preconditioner.
SetPreconditioner takes a boolean, true means the solver will use the preconditioner.
NumFunctions takes an int that describes how many parameters will be passed into Functions. (This needs to be correct.)
Functions takes an array of Ref Counted Pointers to an object called FunctionParameter. This class is implemented in Ifpack_Hypre.h.
The object takes whether it is Solver or Preconditioner that we are setting a parameter for.
The function in Hypre that sets the parameter, and the parameters for that function. An example is below:
RCP<FunctionParameter> functs[2];
functs[0] = rcp(new FunctionParameter(Solver, &HYPRE_PCGSetMaxIter, 1000)); // max iterations
functs[1] = rcp(new FunctionParameter(Solver, &HYPRE_PCGSetTol, 1e-7)); // conv. tolerance
list.set("NumFunctions", 2);
list.set<RCP<FunctionParameter>*>("Functions", functs);
NOTE: SetParameters() must be called to use ApplyInverse(), the solvers will not be created otherwise. An empty list is acceptable to use defaults.
*/
int SetParameters(Teuchos::ParameterList& parameterlist);
//! Set a parameter that takes a single int.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set maximum iterations would be &HYPRE_BoomerAMGSetMaxIter
\param parameter (In) -The integer parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, int), int parameter);
//! Set a parameter that takes a single double.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set tolerance would be &HYPRE_BoomerAMGSetTol
\param parameter (In) -The double parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, double), double parameter);
//! Set a parameter that takes a double then an int.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set relaxation weight for a given level would be &HYPRE_BoomerAMGSetLevelRelaxWt
\param parameter1 (In) -The double parameter being set.
\param parameter2 (In) - The integer parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, double, int), double parameter1, int parameter2);
//! Set a parameter that takes two int parameters.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set relaxation type for a given level would be &HYPRE_BoomerAMGSetCycleRelaxType
\param parameter1 (In) -The first integer parameter being set.
\param parameter2 (In) - The second integer parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, int, int), int parameter1, int parameter2);
//! Set a parameter that takes a double*.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set relaxation weight would be &HYPRE_BoomerAMGSetRelaxWeight
\param parameter (In) -The double* parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, double*), double* parameter);
//! Set a parameter that takes an int*.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type set to Solver or Preconditioner, whatever the parameter is setting for.
\param *pt2Func (In) -The function that sets the parameter. It must set parameters for the type of solver or preconditioner that was created.
An example is if the solver is BoomerAMG, the function to set grid relax type would be &HYPRE_BoomerAMGSetGridRelaxType
\param parameter (In) -The int* parameter being set.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, int (*pt2Func)(HYPRE_Solver, int*), int* parameter);
//! Sets the solver that is used by the Solve() and ApplyInverse() methods. Until this is called, the default solver is PCG.
/*!
\param chooser (In) - A Hypre_Chooser enumerated type. If Solver, then we are selecting which solver, if Preconditioner, we are choosing which preconditioner to use.
\param Solver (In) -A Hypre_Solver enumerated type to select the solver or preconditioner. Options for solver are:
BoomerAMG, AMS, Hybrid, PCG, GMRES, FlexGMRES, LGMRES, and BiCGSTAB. See Hypre Ref Manual for more info on the solvers.
Options for Preconditioner are: BoomerAMG, ParaSails, Euclid, and AMS.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser, Hypre_Solver Solver);
//! Sets the solver to use the selected preconditioner.
/*!
\param UsePreconditioner (In) -A boolean, true use preconditioner, false do not use the supplied preconditioner with the solver.
The solver and preconditioner must have been selected and the solver must be one of the following solvers:
Hybrid, PCG, GMRES, FlexGMRES, LGMRES, BiCGSTAB.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(bool UsePreconditioner){ UsePreconditioner = UsePreconditioner_; return 0;}
//! Choose to solve the problem or apply the preconditioner.
/*!
\param chooser (In) -A Hypre_Chooser enumerated type, either Solver or Preconditioner.
The chosen type must have been selected before this method is called.
\return Integer error code, set to 0 if successful.
*/
int SetParameter(Hypre_Chooser chooser) { SolveOrPrec_ = chooser; return 0;}
//! Call all the function pointers stored in this object.
int CallFunctions() const;
//! If set true, transpose of this operator will be applied.
/*! This flag allows the transpose of the given operator to be used implicitly. Setting this flag
affects only the Apply() and ApplyInverse() methods. If the implementation of this interface
does not support transpose use, this method should return a value of -1.
\param
UseTranspose_in - (In) If true, multiply by the transpose of operator, otherwise just use operator.
\return Always returns 0.
*/
int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);};
// @}
// @{ Mathematical functions.
// Applies the matrix to X, returns the result in Y.
int Apply(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const{ return(Multiply(false,X,Y));}
//! Returns the result of a Epetra_Operator multiplied with an Epetra_MultiVector X in Y.
/*! In this implementation, we use the Hypre matrix to multiply with so that the map is the same
as what is expected in solving methods.
\param
trans - (In) If true, use the transpose operation.
X - (In) A Epetra_MultiVector of dimension NumVectors to mulitply with.
\param Out
Y - (Out) A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int Multiply(bool Trans, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
/*! In this implementation, we use several existing attributes to determine how virtual
method ApplyInverse() should call the concrete method Solve(). We pass in the UpperTriangular(),
the Epetra_CrsMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
be accounted for when doing a triangular solve.
\param
X - (In) A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y - (Out) A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Computes the estimated condition number and returns the value.
double Condest(const Ifpack_CondestType CT = Ifpack_Cheap,
const int MaxIters = 1550,
const double Tol = 1e-9,
Epetra_RowMatrix* Matrix_in = 0);
//! Returns the computed estimated condition number, or -1.0 if not computed.
double Condest() const{ return(Condest_);}
// @}
// @{ Query methods
//! Returns a character string describing the operator
const char* Label() const {return(Label_);}
//! Sets label for \c this object.
int SetLabel(const char* Label_in)
{
strcpy(Label_,Label_in);
return(0);
}
//! Returns a reference to the map that should be used for domain.
const Epetra_Map& OperatorDomainMap() const{ return *MySimpleMap_;}
//! Returns a reference to the map that should be used for range.
const Epetra_Map& OperatorRangeMap() const{ return *MySimpleMap_;}
//! Returns 0.0 because this class cannot compute Inf-norm.
double NormInf() const {return(0.0);};
//! Returns false because this class cannot compute an Inf-norm.
bool HasNormInf() const {return(false);};
//! Returns the current UseTranspose setting.
bool UseTranspose() const {return(UseTranspose_);};
//! Returns the Epetra_BlockMap object associated with the range of this matrix operator.
const Epetra_Comm & Comm() const{return(A_->Comm());};
//! Returns a reference to the matrix to be preconditioned.
const Epetra_RowMatrix& Matrix() const{ return(*A_);}
//! Returns the Hypre matrix that was created upon construction.
const HYPRE_IJMatrix& HypreMatrix()
{
if(IsInitialized() == false)
Initialize();
return(HypreA_);
}
//! Prints on stream basic information about \c this object.
virtual ostream& Print(ostream& os) const;
//! Returns the number of calls to Initialize().
virtual int NumInitialize() const{ return(NumInitialize_);}
//! Returns the number of calls to Compute().
virtual int NumCompute() const{ return(NumCompute_);}
//! Returns the number of calls to ApplyInverse().
virtual int NumApplyInverse() const{ return(NumApplyInverse_);}
//! Returns the time spent in Initialize().
virtual double InitializeTime() const{ return(InitializeTime_);}
//! Returns the time spent in Compute().
virtual double ComputeTime() const{ return(ComputeTime_);}
//! Returns the time spent in ApplyInverse().
virtual double ApplyInverseTime() const{ return(ApplyInverseTime_);}
//! Returns the number of flops in the initialization phase.
virtual double InitializeFlops() const{ return(0.0);}
//! Returns the number of flops in the compute phase.
virtual double ComputeFlops() const{ return(ComputeFlops_);}
//! Returns the number of flops in the apply inverse phase.
virtual double ApplyInverseFlops() const{ return(ApplyInverseFlops_);}
private:
// @}
// @{ Private methods
//! Copy constructor (should never be used)
Ifpack_Hypre(const Ifpack_Hypre& RHS) : Time_(RHS.Comm()){}
//! operator= (should never be used)
Ifpack_Hypre& operator=(const Ifpack_Hypre& RHS){ return(*this);}
//! Destroys all internal data
void Destroy();
//! Returns the MPI communicator used in the Epetra matrix
MPI_Comm GetMpiComm() const
{ return (dynamic_cast<const Epetra_MpiComm*>(&A_->Comm()))->GetMpiComm();}
//! Returns the result of a Ifpack_ILU forward/back solve on a Epetra_MultiVector X in Y.
/*!
\param In
Trans -If true, solve transpose problem.
\param
X - (In) A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y - (Out) A Epetra_MultiVector of dimension NumVectorscontaining result.
\return Integer error code, set to 0 if successful.
*/
int Solve(bool Trans, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the number of global matrix rows.
int NumGlobalRows() const {return(A_->NumGlobalRows());};
//! Returns the number of global matrix columns.
int NumGlobalCols() const {return(A_->NumGlobalCols());};
//! Returns the number of local matrix rows.
int NumMyRows() const {return(A_->NumMyRows());};
//! Returns the number of local matrix columns.
int NumMyCols() const {return(A_->NumMyCols());};
//! Sets the solver type to be the passed in solver type.
int SetSolverType(Hypre_Solver solver);
//! Sets the preconditioner type to be the passed in type.
int SetPrecondType(Hypre_Solver precond);
//! Create the solver.
int CreateSolver();
//! Create the Preconditioner.
int CreatePrecond();
//! Add a function to be called in Compute()
int AddFunToList(Teuchos::RCP<FunctionParameter> NewFun);
//! Create a BoomerAMG solver.
int Hypre_BoomerAMGCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_BoomerAMGCreate(solver);}
//! Create a ParaSails solver.
int Hypre_ParaSailsCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParaSailsCreate(comm, solver);}
//! Create a Euclid solver.
int Hypre_EuclidCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_EuclidCreate(comm, solver);}
//! Create an AMS solver.
int Hypre_AMSCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_AMSCreate(solver);}
//! Create a Hybrid solver.
int Hypre_ParCSRHybridCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRHybridCreate(solver);}
//! Create a PCG solver.
int Hypre_ParCSRPCGCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRPCGCreate(comm, solver);}
//! Create a GMRES solver.
int Hypre_ParCSRGMRESCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRGMRESCreate(comm, solver);}
//! Create a FlexGMRES solver.
int Hypre_ParCSRFlexGMRESCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRFlexGMRESCreate(comm, solver);}
//! Create a LGMRES solver.
int Hypre_ParCSRLGMRESCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRLGMRESCreate(comm, solver);}
//! Create a BiCGSTAB solver.
int Hypre_ParCSRBiCGSTABCreate(MPI_Comm comm, HYPRE_Solver *solver)
{ return HYPRE_ParCSRBiCGSTABCreate(comm, solver);}
// @}
// @{ Internal data
//! Pointer to the Epetra_RowMatrix to factorize
Teuchos::RefCountPtr<Epetra_RowMatrix> A_;
//! This objects copy of the ParameterList
Teuchos::ParameterList List_;
//! Needed to support Epetra_Operator abstract class
bool UseTranspose_;
//! A condition estimate for the preconditioner, -1 until Compute()
double Condest_;
//! If \c true, the preconditioner has been successfully initialized.
bool IsInitialized_;
//! If \c true, the preconditioner has been successfully computed.
bool IsComputed_;
//! Label of \c this object.
char Label_[160];
//! Contains the number of successful calls to Initialize().
int NumInitialize_;
//! Contains the number of successful call to Compute().
int NumCompute_;
//! Contains the number of successful call to ApplyInverse().
mutable int NumApplyInverse_;
//! Contains the time for all successful calls to Initialize().
double InitializeTime_;
//! Contains the time for all successful calls to Compute().
double ComputeTime_;
//! Contains the time for all successful calls to ApplyInverse().
mutable double ApplyInverseTime_;
//! Contains the number of flops for Compute().
double ComputeFlops_;
//! Contain sthe number of flops for ApplyInverse().
mutable double ApplyInverseFlops_;
//! Used for timing issues
mutable Epetra_Time Time_;
//! The Hypre matrix created in initialize()
mutable HYPRE_IJMatrix HypreA_;
//! Pointer to the CSR (same matrix)
mutable HYPRE_ParCSRMatrix ParMatrix_;
//! The Hypre Vector for input
mutable HYPRE_IJVector XHypre_;
//! The Hypre Vector for output
mutable HYPRE_IJVector YHypre_;
mutable HYPRE_ParVector ParX_;
mutable HYPRE_ParVector ParY_;
mutable hypre_ParVector *XVec_;
mutable hypre_ParVector *YVec_;
mutable hypre_Vector *XLocal_;
mutable hypre_Vector *YLocal_;
//! The Hypre Solver if doing a solve
mutable HYPRE_Solver Solver_;
//! The Hypre Solver if applying preconditioner
mutable HYPRE_Solver Preconditioner_;
// The following are pointers to functions to use the solver and preconditioner.
int (Ifpack_Hypre::*SolverCreatePtr_)(MPI_Comm, HYPRE_Solver*);
int (*SolverDestroyPtr_)(HYPRE_Solver);
int (*SolverSetupPtr_)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
int (*SolverSolvePtr_)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
int (*SolverPrecondPtr_)(HYPRE_Solver, HYPRE_PtrToParSolverFcn, HYPRE_PtrToParSolverFcn, HYPRE_Solver);
int (Ifpack_Hypre::*PrecondCreatePtr_)(MPI_Comm, HYPRE_Solver*);
int (*PrecondDestroyPtr_)(HYPRE_Solver);
int (*PrecondSetupPtr_)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
int (*PrecondSolvePtr_)(HYPRE_Solver, HYPRE_ParCSRMatrix, HYPRE_ParVector, HYPRE_ParVector);
bool *IsSolverSetup_;
bool *IsPrecondSetup_;
//! Is the system to be solved or apply preconditioner
Hypre_Chooser SolveOrPrec_;
//! This is a linear map used the way it is in Hypre
Teuchos::RefCountPtr<Epetra_Map> MySimpleMap_;
//! Counter of the number of parameters set
int NumFunsToCall_;
//! Which solver was chosen
Hypre_Solver SolverType_;
//! Which preconditioner was chosen
Hypre_Solver PrecondType_;
//! Should the preconditioner be used in the solver
bool UsePreconditioner_;
//! This contains a list of function pointers that will be called in compute
std::vector<Teuchos::RCP<FunctionParameter> > FunsToCall_;
//! true if the row map of provided matrix is in form that Hypre likes
bool NiceRowMap_;
};
#endif // HAVE_HYPRE
#endif /* IFPACK_HYPRE_H */
|