This file is indexed.

/usr/include/trilinos/Ifpack_DenseContainer.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*@HEADER
// ***********************************************************************
//
//       Ifpack: Object-Oriented Algebraic Preconditioner Package
//                 Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/

#ifndef IFPACK_DENSECONTAINER_H
#define IFPACK_DENSECONTAINER_H

#include "Ifpack_ConfigDefs.h"
#include "Ifpack_Container.h"
#include "Epetra_SerialDenseMatrix.h"
#include "Epetra_SerialDenseSolver.h"
#include "Epetra_IntSerialDenseVector.h"
class Epetra_RowMatrix;

//! Ifpack_DenseContainer: a class to define containers for dense matrices.
/*!

<P>To understand what an IFPACK container is, please refer to the documentation 
of the pure virtual class Ifpack_Container. Currently, containers are
used by class Ifpack_BlockRelaxation.

<P>Using block methods, one needs to store all diagonal blocks and
to be also to apply the inverse of each diagonal block. Using
class Ifpack_DenseContainer, one can store the blocks as dense
matrices, which can be advantageous when the 
blocks are small. Otherwise,
class Ifpack_SparseContainer is probably more appropriate.

<P>A typical use of a container is as follows:
\code
#include "Ifpack_DenseContainer.h"
...

// local matrix of (5,5), with two vectors for solution and rhs.
Ifpack_Container* Container = new
  Ifpack_DenseContainer(5,5);
  
// assign local rows 1, 5, 12, 13, 16 to this container
Container(0) = 1;
Container(1) = 5;
Container(2) = 12;
Container(3) = 13;
Container(4) = 16;

// Now extract the submatrix corresponding to rows and columns:
// 1. initialize the container.
Container.Initialize();
// 2. extract matrix values from an Epetra_RowMatrix A,
// and compute LU factors of the submatrix identified by rows
// and columns 1, 5, 12, 13 and 16 using LAPACK
Container.Compute(A);

// We can set the RHS as follows:
Container.RHS(0) = 1.0;
Container.RHS(1) = 2.0;
Container.RHS(2) = 3.0;
Container.RHS(3) = 4.0;
Container.RHS(4) = 5.0;

// The linear system with the submatrix is solved as follows:
Container.ApplyInverse().
\endcode

A call to Compute() computes the LU factorization of the
linear system matrix, using LAPACK (more precisely, by calling
the corresponding routines in Epetra_SerialDenseSolver). 
The default behavior is 
to store the matrix factors by overwriting the linear system matrix
itself. This way, method Apply() fails, as the original matrix
does no longer exists. An alternative is to call
\c KeepNonFactoredMatrix(true), which forces Ifpack_DenseContainer to
maintain in memory a copy of the non-factored matrix.

\author Marzio Sala, SNL 9214.

\date Last update Nov-04.
*/

class Ifpack_DenseContainer : public Ifpack_Container {

public:

  //@{ Constructors/Destructors

  //! Default constructor
  Ifpack_DenseContainer(const int NumRows_in, const int NumVectors_in = 1) :
    NumRows_(NumRows_in),
    NumVectors_(NumVectors_in),
    KeepNonFactoredMatrix_(false),
    IsInitialized_(false),
    IsComputed_(false),
    ComputeFlops_(0.0),
    ApplyFlops_(0.0),
    ApplyInverseFlops_(0.0)
  {}

  //! Copy constructor
  Ifpack_DenseContainer(const Ifpack_DenseContainer& rhs) :
    NumRows_(rhs.NumRows()),
    NumVectors_(rhs.NumVectors()),
    KeepNonFactoredMatrix_(rhs.KeepNonFactoredMatrix()),
    IsInitialized_(rhs.IsInitialized()),
    IsComputed_(rhs.IsComputed())
  {
    Matrix_ = rhs.Matrix();
    if (KeepNonFactoredMatrix_)
      NonFactoredMatrix_ = rhs.NonFactoredMatrix();
    LHS_ = rhs.LHS();
    RHS_ = rhs.RHS();
    ID_ = rhs.ID();
  }
    
  //! Destructor.
  virtual ~Ifpack_DenseContainer()
  {}
  //@}

  //@{ Overloaded operators.

  //! Operator=
  Ifpack_DenseContainer& operator=(const Ifpack_DenseContainer& rhs)
  {
    if (&rhs == this)
      return(*this);

    NumRows_ = rhs.NumRows();
    NumVectors_ = rhs.NumVectors();
    IsComputed_ = rhs.IsComputed();
    KeepNonFactoredMatrix_ = rhs.KeepNonFactoredMatrix();
    Matrix_ = rhs.Matrix();
    if (KeepNonFactoredMatrix_)
      NonFactoredMatrix_ = rhs.NonFactoredMatrix();
    LHS_ = rhs.LHS();
    RHS_ = rhs.RHS();
    ID_ = rhs.ID();

    return(*this);
  }

  //@}

  //@{ Get/Set methods.

  //! Returns the number of rows of the matrix and LHS/RHS.
  virtual int NumRows() const;

  //! Returns the number of vectors in LHS/RHS.
  virtual int NumVectors() const
  {
    return(NumVectors_);
  }

  //! Sets the number of vectors for LHS/RHS.
  virtual int SetNumVectors(const int NumVectors_in)
  {
    if (NumVectors_ == NumVectors_in) 
      return(0);

    NumVectors_ = NumVectors_in;
    IFPACK_CHK_ERR(RHS_.Reshape(NumRows_,NumVectors_));
    IFPACK_CHK_ERR(RHS_.Reshape(NumRows_,NumVectors_));
    // zero out vector elements
    for (int i = 0 ; i < NumRows_ ; ++i)
      for (int j = 0 ; j < NumVectors_ ; ++j) {
	LHS_(i,j) = 0.0;
	RHS_(i,j) = 0.0;
      }

    return(0);
  }

  //! Returns the i-th component of the vector Vector of LHS.
  virtual double& LHS(const int i, const int Vector = 0);
  
  //! Returns the i-th component of the vector Vector of RHS.
  virtual double& RHS(const int i, const int Vector = 0);

  //! Returns the ID associated to local row i. 
  /*!
   * The set of (local) rows assigned to this container is defined
   * by calling ID(i) = j, where i (from 0 to NumRows()) indicates
   * the container-row, and j indicates the local row in the calling
   * process.
   *
   * This is usually used to recorder the local row ID (on calling process)
   * of the i-th row in the container.
   */
  virtual int& ID(const int i);

  //! Set the matrix element (row,col) to \c value.
  virtual int SetMatrixElement(const int row, const int col,
			       const double value);

  //! Sets all necessary parameters.
  virtual int SetParameters(Teuchos::ParameterList& List)
  {
    return(0);
  }

  //! Returns \c true is the container has been successfully initialized.
  virtual bool IsInitialized() const
  {
    return(IsInitialized_);
  }

  //! Returns \c true is the container has been successfully computed.
  virtual bool IsComputed() const
  {
    return(IsComputed_);
  }

  //! Returns the label of \e this container.
  virtual const char* Label() const
  {
    return(Label_.c_str());
  }

  //! If \c flag is \c true, keeps a copy of the non-factored matrix.
  virtual int SetKeepNonFactoredMatrix(const bool flag)
  {
    KeepNonFactoredMatrix_ = flag;
    return(0);
  }

  //! Returns KeepNonFactoredMatrix_.
  virtual bool KeepNonFactoredMatrix() const
  {
    return(KeepNonFactoredMatrix_);
  }

  //! Returns the dense vector containing the LHS.
  virtual const Epetra_SerialDenseMatrix& LHS() const
  {
    return(LHS_);
  }

  //! Returns the dense vector containing the RHS.
  virtual const Epetra_SerialDenseMatrix& RHS() const
  {
    return(RHS_);
  }

  //! Returns the dense matrix or its factors.
  virtual const Epetra_SerialDenseMatrix& Matrix() const
  {
    return(Matrix_);
  }

  //! Returns the non-factored dense matrix (only if stored).
  virtual const Epetra_SerialDenseMatrix& NonFactoredMatrix() const
  {
    return(NonFactoredMatrix_);
  }

  //! Returns the integer dense vector of IDs.
  virtual const Epetra_IntSerialDenseVector& ID() const
  {
    return(ID_);
  }

  //@}

  //@{ Mathematical methods.
  //! Initialize the container.
  virtual int Initialize();

  //! Finalizes the linear system matrix and prepares for the application of the inverse.
  virtual int Compute(const Epetra_RowMatrix& Matrix_in);

  //! Apply the matrix to RHS, results are stored in LHS.
  virtual int Apply();

  //! Apply the inverse of the matrix to RHS, results are stored in LHS.
  virtual int ApplyInverse();

  //@}

  virtual double InitializeFlops() const
  {
    return(0.0);
  }

  virtual double ComputeFlops() const
  {
    return(ComputeFlops_);
  }

  virtual double ApplyFlops() const
  {
    return(ApplyFlops_);
  }

  virtual double ApplyInverseFlops() const
  {
    return(ApplyInverseFlops_);
  }

  //! Prints basic information on iostream. This function is used by operator<<.
  virtual ostream& Print(std::ostream& os) const;

private:
  
  //! Extract the submatrices identified by the ID set int ID().
  virtual int Extract(const Epetra_RowMatrix& Matrix_in);

  //! Number of rows in the container.
  int NumRows_; 
  //! Number of vectors in the container.
  int NumVectors_;
  //! Dense matrix, that contains the non-factored matrix.
  Epetra_SerialDenseMatrix NonFactoredMatrix_;
  //! Dense matrix.
  Epetra_SerialDenseMatrix Matrix_;
  //! Dense vector representing the LHS.
  Epetra_SerialDenseMatrix LHS_;
  //! Dense vector representing the RHS.
  Epetra_SerialDenseMatrix RHS_;
  //! Dense solver (solution will be get using LAPACK).
  Epetra_SerialDenseSolver Solver_;
  //! Sets of local rows.
  Epetra_IntSerialDenseVector ID_;
  //! If \c true, keeps a copy of the non-factored matrix.
  bool KeepNonFactoredMatrix_;
  //! If \c true, the container has been successfully initialized.
  bool IsInitialized_;
  //! If \c true, the container has been successfully computed.
  bool IsComputed_;
  //! Label for \c this object
  string Label_;

  //! Flops in Compute().
  double ComputeFlops_;
  //! Flops in Apply().
  double ApplyFlops_;
  //! Flops in ApplyInverse().
  double ApplyInverseFlops_;
};

#endif