This file is indexed.

/usr/include/trilinos/Ifpack_BlockRelaxation.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
#ifndef IFPACK_BLOCKPRECONDITIONER_H
#define IFPACK_BLOCKPRECONDITIONER_H

#include "Ifpack_ConfigDefs.h"
#include "Ifpack_Preconditioner.h" 
#include "Ifpack_Partitioner.h"
#include "Ifpack_LinearPartitioner.h"
#include "Ifpack_GreedyPartitioner.h"
#include "Ifpack_METISPartitioner.h"
#include "Ifpack_EquationPartitioner.h"
#include "Ifpack_UserPartitioner.h"
#include "Ifpack_Graph_Epetra_RowMatrix.h"
#include "Ifpack_DenseContainer.h" 
#include "Ifpack_Utils.h" 
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_RefCountPtr.hpp"
#include "Epetra_RowMatrix.h"
#include "Epetra_MultiVector.h"
#include "Epetra_Vector.h"
#include "Epetra_Time.h"
#include "Epetra_Import.h"

static const int IFPACK_JACOBI = 0;
static const int IFPACK_GS = 1;
static const int IFPACK_SGS = 2;


//! Ifpack_BlockRelaxation: a class to define block relaxation preconditioners of Epetra_RowMatrix's.

/*! The Ifpack_BlockRelaxation class enables the construction of
  block relaxation
  preconditioners of an Epetra_RowMatrix. Ifpack_PointRelaxation 
  is derived from 
  the Ifpack_Preconditioner class, which is derived from Epetra_Operator.
  Therefore this object can be used as preconditioner everywhere an
  ApplyInverse() method is required in the preconditioning step.
 
  The class currently support:
  - block Jacobi;
  - block Gauss-Seidel;
  - symmetric block Gauss-Seidel.
  
  The idea of block relaxation method is to extend their point relaxation
  counterpart (implemented in Ifpack_PointRelaxation), by working on a
  group of equation simulteneously. Generally, larger blocks result
  in better convergence and increased robusteness.

  The user can decide:
  - the number of blocks (say, NumBlocks). If NumBlocks is equal to the
    number of rows, then the resulting scheme is equivalent to
    a point relaxation scheme;
  - how to apply the inverse of each diagonal block, by choosing a dense
    container or a sparse container. The implementation of
    block relaxation schemes requires the application of the
    inverse of each diagonal block. This can be done using LAPACK (dense 
    container), or any Ifpack_Preconditioner derived class (sparse
    container);
  - blocks can be defined using a linear decomposition, by a simple greedy
    algorithm, or by resorting to METIS.

The following is an example of usage of this preconditioner with dense
containers. First, we include the header files:
\code
#include "Ifpack_AdditiveSchwarz.h"
#include "Ifpack_BlockPreconditioner.h"
#include "Ifpack_DenseContainer.h"
\endcode

Then, we declare the preconditioner. Note that this is done through
the class Ifpack_AdditiveSchwarz (see note below in this section).
\code
// A is an Epetra_RowMatrix
// List is a Teuchos::ParameterList
Ifpack_AdditiveSchwarz<Ifpack_BlockRelaxation<Ifpack_DenseContainer> > > Prec(A);
IFPACK_CHK_ERR(Prec.SetParameters(List));
IFPACK_CHK_ERR(Prec.Initialize());
IFPACK_CHK_ERR(Prec.Compute());

// action of the preconditioner is given by ApplyInverse()
// Now use it in AztecOO, solver is an AztecOO object
solver.SetPrecOperator(&Prec);
\endcode

<P>The complete list of supported parameters is reported in page \ref ifp_params. For a presentation of basic relaxation schemes, please refer to page
\ref Ifpack_PointRelaxation.

\author Marzio Sala, SNL 9214.

\date Last modified on 25-Jan-05.
  
*/
template<typename T>
class Ifpack_BlockRelaxation : public Ifpack_Preconditioner {

public:

  //@{ \name Constructors/Destructors
  //! Ifpack_BlockRelaxation constructor with given Epetra_RowMatrix.
  /*! Creates an Ifpack_Preconditioner preconditioner. 
   *
   * \param In
   * Matrix - Pointer to matrix to be preconditioned.
   */
  Ifpack_BlockRelaxation(const Epetra_RowMatrix* Matrix);

  virtual ~Ifpack_BlockRelaxation();

  //@}

  //@{ \name Mathematical functions.

  //! Applies the matrix to an Epetra_MultiVector.
  /*! 
    \param In
    X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
    \param Out
    Y -A Epetra_MultiVector of dimension NumVectors containing the result.

    \return Integer error code, set to 0 if successful.
    */
  virtual int Apply(const Epetra_MultiVector& X, 
		    Epetra_MultiVector& Y) const;

  //! Applies the block Jacobi preconditioner to X, returns the result in Y.
  /*! 
    \param In
    X - A Epetra_MultiVector of dimension NumVectors to be preconditioned.
    \param Out
    Y -A Epetra_MultiVector of dimension NumVectors containing result.

    \return Integer error code, set to 0 if successful.

    */
  virtual int ApplyInverse(const Epetra_MultiVector& X, 
			   Epetra_MultiVector& Y) const;

  //! Returns the infinity norm of the global matrix (not implemented)
  virtual double NormInf() const
  {
    return(-1.0);
  }
  //@}

  //@{ \name Atribute access functions

  virtual int SetUseTranspose(bool UseTranspose_in)
  {
    if (UseTranspose_in)
      IFPACK_CHK_ERR(-98); // FIXME: can I work with the transpose?
    return(0);
  }

  virtual const char* Label() const;
 
  //! Returns the current UseTranspose setting.
  virtual bool UseTranspose() const
  {
    return(false);
  }

  //! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
  virtual bool HasNormInf() const
  {
    return(false);
  }

  //! Returns a pointer to the Epetra_Comm communicator associated with this operator.
  virtual const Epetra_Comm & Comm() const;

  //! Returns the Epetra_Map object associated with the domain of this operator.
  virtual const Epetra_Map & OperatorDomainMap() const;

  //! Returns the Epetra_Map object associated with the range of this operator.
  virtual const Epetra_Map & OperatorRangeMap() const;
  //@}

  //! Returns the number local blocks.
  int NumLocalBlocks() const 
  {
    return(NumLocalBlocks_);
  }

  //! Returns \c true if the preconditioner has been successfully computed.
  virtual bool IsInitialized() const
  {
    return(IsInitialized_);
  }

  //! Returns \c true if the preconditioner has been successfully computed.
  virtual bool IsComputed() const
  {
    return(IsComputed_);
  }

  //! Sets all the parameters for the preconditioner.
  virtual int SetParameters(Teuchos::ParameterList& List);

  //! Initializes the preconditioner.
  virtual int Initialize();

  //! Computes the preconditioner.
  virtual int Compute();

  virtual const Epetra_RowMatrix& Matrix() const
  {
    return(*Matrix_);
  }

  virtual double Condest(const Ifpack_CondestType CT = Ifpack_Cheap,
                         const int MaxIters = 1550,
                         const double Tol = 1e-9,
			 Epetra_RowMatrix* Matrix_in = 0)
  {
    return(-1.0);
  }

  virtual double Condest() const
  {
    return(-1.0);
  }

  std::ostream& Print(std::ostream& os) const;

  //! Returns the number of calls to Initialize().
  virtual int NumInitialize() const
  {
    return(NumInitialize_);
  }

  //! Returns the number of calls to Compute().
  virtual int NumCompute() const
  {
    return(NumCompute_);
  }

  //! Returns the number of calls to ApplyInverse().
  virtual int NumApplyInverse() const
  {
    return(NumApplyInverse_);
  }

  //! Returns the time spent in Initialize().
  virtual double InitializeTime() const
  {
    return(InitializeTime_);
  }

  //! Returns the time spent in Compute().
  virtual double ComputeTime() const
  {
    return(ComputeTime_);
  }

  //! Returns the time spent in ApplyInverse().
  virtual double ApplyInverseTime() const
  {
    return(ApplyInverseTime_);
  }

  //! Returns the number of flops in the initialization phase.
  virtual double InitializeFlops() const
  {
    if (Containers_.size() == 0)
      return(0.0);

    // the total number of flops is computed each time InitializeFlops() is
    // called. This is becase I also have to add the contribution from each
    // container.
    double total = InitializeFlops_;
    for (unsigned int i = 0 ; i < Containers_.size() ; ++i)
      total += Containers_[i]->InitializeFlops();
    return(total);
  }

  virtual double ComputeFlops() const
  {
    if (Containers_.size() == 0)
      return(0.0);
    
    double total = ComputeFlops_;
    for (unsigned int i = 0 ; i < Containers_.size() ; ++i)
      total += Containers_[i]->ComputeFlops();
    return(total);
  }

  virtual double ApplyInverseFlops() const
  {
    if (Containers_.size() == 0)
      return(0.0);

    double total = ApplyInverseFlops_;
    for (unsigned int i = 0 ; i < Containers_.size() ; ++i) {
      total += Containers_[i]->ApplyInverseFlops();
    }
    return(total);
  }

private:

  //! Copy constructor (PRIVATE, should not be used).
  Ifpack_BlockRelaxation(const Ifpack_BlockRelaxation& rhs);

  //! operator= (PRIVATE, should not be used).
  Ifpack_BlockRelaxation & operator=(const Ifpack_BlockRelaxation& rhs)
  {
    return(*this);
  }

  virtual int ApplyInverseJacobi(const Epetra_MultiVector& X, 
                                 Epetra_MultiVector& Y) const;

  virtual int DoJacobi(const Epetra_MultiVector& X, 
                                  Epetra_MultiVector& Y) const;

  virtual int ApplyInverseGS(const Epetra_MultiVector& X, 
                             Epetra_MultiVector& Y) const;

  virtual int DoGaussSeidel(Epetra_MultiVector& X, 
                            Epetra_MultiVector& Y) const;

  virtual int ApplyInverseSGS(const Epetra_MultiVector& X, 
                              Epetra_MultiVector& Y) const;

  virtual int DoSGS(const Epetra_MultiVector& X,
                    Epetra_MultiVector& Xtmp,
                    Epetra_MultiVector& Y) const;

  int ExtractSubmatrices();

  // @{ Initializations, timing and flops

  //! If true, the preconditioner has been successfully initialized.
  bool IsInitialized_;
  //! If true, the preconditioner has been successfully computed.
  bool IsComputed_;
  //! Contains the number of successful calls to Initialize().
  int NumInitialize_;
  //! Contains the number of successful call to Compute().
  int NumCompute_;
  //! Contains the number of successful call to ApplyInverse().
  mutable int NumApplyInverse_;
  //! Contains the time for all successful calls to Initialize().
  double InitializeTime_;
  //! Contains the time for all successful calls to Compute().
  double ComputeTime_;
  //! Contains the time for all successful calls to ApplyInverse().
  mutable double ApplyInverseTime_;
  //! Contains the number of flops for Initialize().
  double InitializeFlops_;
  //! Contains the number of flops for Compute().
  double ComputeFlops_;
  //! Contain sthe number of flops for ApplyInverse().
  mutable double ApplyInverseFlops_;
  // @}

  // @{ Settings
  //! Number of preconditioning sweeps.
  int NumSweeps_;
  //! Damping parameter.
  double DampingFactor_;
  //! Number of local blocks
  int NumLocalBlocks_;
  //! Parameters list to be used to solve on each subblock
  Teuchos::ParameterList List_;
  // @}

  // @{ Other data
  //! Containers_[i] contains all the necessary information to solve on each subblock.
  //! Pointers to the matrix to be preconditioned.
  Teuchos::RefCountPtr< const Epetra_RowMatrix > Matrix_;
  mutable std::vector<Teuchos::RefCountPtr<T> > Containers_;
  //! Contains information about non-overlapping partitions.
  Teuchos::RefCountPtr<Ifpack_Partitioner> Partitioner_;
  string PartitionerType_;
  int PrecType_;
  //! Label for \c this object
  string Label_;
  //! If \c true, starting solution is the zero vector.
  bool ZeroStartingSolution_;
  Teuchos::RefCountPtr<Ifpack_Graph> Graph_;
  //! Weights for overlapping Jacobi only.
  Teuchos::RefCountPtr<Epetra_Vector> W_;
  // Level of overlap among blocks (for Jacobi only).
  int OverlapLevel_;
  mutable Epetra_Time Time_;
  bool IsParallel_;
  Teuchos::RefCountPtr<Epetra_Import> Importer_;
  // @}
  
}; // class Ifpack_BlockRelaxation

//==============================================================================
template<typename T>
Ifpack_BlockRelaxation<T>::
Ifpack_BlockRelaxation(const Epetra_RowMatrix* Matrix_in) :
  IsInitialized_(false),
  IsComputed_(false),
  NumInitialize_(0),
  NumCompute_(0),
  NumApplyInverse_(0),
  InitializeTime_(0.0),
  ComputeTime_(0.0),
  ApplyInverseTime_(0.0),
  InitializeFlops_(0.0),
  ComputeFlops_(0.0),
  ApplyInverseFlops_(0.0),
  NumSweeps_(1),
  DampingFactor_(1.0),
  NumLocalBlocks_(1),
  Matrix_(Teuchos::rcp(Matrix_in,false)),
  PartitionerType_("greedy"),
  PrecType_(IFPACK_JACOBI),
  ZeroStartingSolution_(true),
  OverlapLevel_(0),
  Time_(Comm()),
  IsParallel_(false)
{
  if (Matrix_in->Comm().NumProc() != 1)
    IsParallel_ = true;
}

//==============================================================================
template<typename T>
Ifpack_BlockRelaxation<T>::~Ifpack_BlockRelaxation()
{
}

//==============================================================================
template<typename T>
const char* Ifpack_BlockRelaxation<T>::Label() const
{
  return(Label_.c_str());
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  IFPACK_RETURN(Matrix().Apply(X,Y));
}

//==============================================================================
template<typename T>
const Epetra_Comm& Ifpack_BlockRelaxation<T>::
Comm() const
{
  return(Matrix().Comm());
}

//==============================================================================
template<typename T>
const Epetra_Map& Ifpack_BlockRelaxation<T>::
OperatorDomainMap() const
{
  return(Matrix().OperatorDomainMap());
}

//==============================================================================
template<typename T>
const Epetra_Map& Ifpack_BlockRelaxation<T>::
OperatorRangeMap() const
{
  return(Matrix().OperatorRangeMap());
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::ExtractSubmatrices()
{

  if (Partitioner_ == Teuchos::null)
    IFPACK_CHK_ERR(-3);

  NumLocalBlocks_ = Partitioner_->NumLocalParts();

  Containers_.resize(NumLocalBlocks());

  for (int i = 0 ; i < NumLocalBlocks() ; ++i) {

    int rows = Partitioner_->NumRowsInPart(i);
    Containers_[i] = Teuchos::rcp( new T(rows) );
    
    //Ifpack_DenseContainer* DC = 0;
    //DC = dynamic_cast<Ifpack_DenseContainer*>(Containers_[i]);

    if (Containers_[i] == Teuchos::null)
      IFPACK_CHK_ERR(-5);
    
    IFPACK_CHK_ERR(Containers_[i]->SetParameters(List_));
    IFPACK_CHK_ERR(Containers_[i]->Initialize());
    // flops in Initialize() will be computed on-the-fly in method InitializeFlops().

    // set "global" ID of each partitioner row
    for (int j = 0 ; j < rows ; ++j) {
      int LRID = (*Partitioner_)(i,j);
      Containers_[i]->ID(j) = LRID;
    }

    IFPACK_CHK_ERR(Containers_[i]->Compute(*Matrix_));
    // flops in Compute() will be computed on-the-fly in method ComputeFlops().

  }

  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::Compute()
{

  if (!IsInitialized())
    IFPACK_CHK_ERR(Initialize());

  Time_.ResetStartTime();

  IsComputed_ = false;

  if (Matrix().NumGlobalRows() != Matrix().NumGlobalCols())
    IFPACK_CHK_ERR(-2); // only square matrices

  IFPACK_CHK_ERR(ExtractSubmatrices());
  
  if (IsParallel_ && PrecType_ != IFPACK_JACOBI) {
    // not needed by Jacobi (done by matvec)
    Importer_ = Teuchos::rcp( new Epetra_Import(Matrix().RowMatrixColMap(),
                                                Matrix().RowMatrixRowMap()) );

    if (Importer_ == Teuchos::null) IFPACK_CHK_ERR(-5);
  }
  IsComputed_ = true;
  ComputeTime_ += Time_.ElapsedTime();
  ++NumCompute_;

  return(0);

}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  if (!IsComputed())
    IFPACK_CHK_ERR(-3);

  if (X.NumVectors() != Y.NumVectors())
    IFPACK_CHK_ERR(-2);

  Time_.ResetStartTime();

  // AztecOO gives X and Y pointing to the same memory location,
  // need to create an auxiliary vector, Xcopy
  Teuchos::RefCountPtr< const Epetra_MultiVector > Xcopy;
  if (X.Pointers()[0] == Y.Pointers()[0])
    Xcopy = Teuchos::rcp( new Epetra_MultiVector(X) );
  else
    Xcopy = Teuchos::rcp( &X, false );

  switch (PrecType_) {
  case IFPACK_JACOBI:
    IFPACK_CHK_ERR(ApplyInverseJacobi(*Xcopy,Y));
    break;
  case IFPACK_GS:
    IFPACK_CHK_ERR(ApplyInverseGS(*Xcopy,Y));
    break;
  case IFPACK_SGS:
    IFPACK_CHK_ERR(ApplyInverseSGS(*Xcopy,Y));
    break;
  }

  ApplyInverseTime_ += Time_.ElapsedTime();
  ++NumApplyInverse_;

  return(0);
}

//==============================================================================
// This method in general will not work with AztecOO if used
// outside Ifpack_AdditiveSchwarz and OverlapLevel_ != 0
//
template<typename T>
int Ifpack_BlockRelaxation<T>::
ApplyInverseJacobi(const Epetra_MultiVector& X, 
                   Epetra_MultiVector& Y) const
{

  if (ZeroStartingSolution_)
    Y.PutScalar(0.0);

  // do not compute the residual in this case
  if (NumSweeps_ == 1 && ZeroStartingSolution_) {
    IFPACK_RETURN(DoJacobi(X,Y));
  }

  Epetra_MultiVector AX(Y);

  for (int j = 0; j < NumSweeps_ ; j++) {
    IFPACK_CHK_ERR(Apply(Y,AX));
    ApplyInverseFlops_ += X.NumVectors() * 2 * Matrix_->NumGlobalNonzeros();
    IFPACK_CHK_ERR(AX.Update(1.0,X,-1.0));
    ApplyInverseFlops_ += X.NumVectors() * 2 * Matrix_->NumGlobalRows();
    IFPACK_CHK_ERR(DoJacobi(AX,Y));
    // flops counted in DoJacobi()
  }


  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
DoJacobi(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{
  int NumVectors = X.NumVectors();

  if (OverlapLevel_ == 0) {

    for (int i = 0 ; i < NumLocalBlocks() ; ++i) {
     
      // may happen that a partition is empty
      if (Containers_[i]->NumRows() == 0) 
        continue;

      int LID;

      // extract RHS from X
      for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
        LID = Containers_[i]->ID(j);
        for (int k = 0 ; k < NumVectors ; ++k) {
          Containers_[i]->RHS(j,k) = X[k][LID];
        }
      }

      // apply the inverse of each block. NOTE: flops occurred
      // in ApplyInverse() of each block are summed up in method
      // ApplyInverseFlops().
      IFPACK_CHK_ERR(Containers_[i]->ApplyInverse());

      // copy back into solution vector Y
      for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
        LID = Containers_[i]->ID(j);
        for (int k = 0 ; k < NumVectors ; ++k) {
          Y[k][LID] += DampingFactor_ * Containers_[i]->LHS(j,k);
        }
      }

    }
    // NOTE: flops for ApplyInverse() of each block are summed up
    // in method ApplyInverseFlops()
    ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalRows();

  }
  else {

    for (int i = 0 ; i < NumLocalBlocks() ; ++i) {

      // may happen that a partition is empty
      if (Containers_[i]->NumRows() == 0) 
        continue;

      int LID;

      // extract RHS from X
      for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
        LID = Containers_[i]->ID(j);
        for (int k = 0 ; k < NumVectors ; ++k) {
          Containers_[i]->RHS(j,k) = (*W_)[LID] * X[k][LID];
        }
      }

      // apply the inverse of each block
      IFPACK_CHK_ERR(Containers_[i]->ApplyInverse());

      // copy back into solution vector Y
      for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
        LID = Containers_[i]->ID(j);
        for (int k = 0 ; k < NumVectors ; ++k) {
          Y[k][LID] += DampingFactor_ * (*W_)[LID] * Containers_[i]->LHS(j,k);
        }
      }

    }
    // NOTE: flops for ApplyInverse() of each block are summed up
    // in method ApplyInverseFlops()
    // NOTE: do not count for simplicity the flops due to overlapping rows
    ApplyInverseFlops_ += NumVectors * 4 * Matrix_->NumGlobalRows();
  }

  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
ApplyInverseGS(const Epetra_MultiVector& X, 
               Epetra_MultiVector& Y) const
{

  if (ZeroStartingSolution_)
    Y.PutScalar(0.0);

  Epetra_MultiVector Xcopy(X);
  for (int j = 0; j < NumSweeps_ ; j++) {
    IFPACK_CHK_ERR(DoGaussSeidel(Xcopy,Y));
    if (j != NumSweeps_ - 1)
      Xcopy = X;
  }

  return(0);

}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
DoGaussSeidel(Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{

  // cycle over all local subdomains

  int Length = Matrix().MaxNumEntries();
  std::vector<int> Indices(Length);
  std::vector<double> Values(Length);

  int NumMyRows = Matrix().NumMyRows();
  int NumVectors = X.NumVectors();

  // an additonal vector is needed by parallel computations
  // (note that applications through Ifpack_AdditiveSchwarz
  // are always seen are serial)
  Teuchos::RefCountPtr< Epetra_MultiVector > Y2;
  if (IsParallel_)
    Y2 = Teuchos::rcp( new Epetra_MultiVector(Importer_->TargetMap(), NumVectors) );
  else
    Y2 = Teuchos::rcp( &Y, false );

  double** y_ptr;
  double** y2_ptr;
  Y.ExtractView(&y_ptr);
  Y2->ExtractView(&y2_ptr);

  // data exchange is here, once per sweep
  if (IsParallel_)
    IFPACK_CHK_ERR(Y2->Import(Y,*Importer_,Insert));

  for (int i = 0 ; i < NumLocalBlocks() ; ++i) {

    // may happen that a partition is empty
    if (Containers_[i]->NumRows() == 0) 
      continue;

    int LID;

    // update from previous block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);

      int NumEntries;
      IFPACK_CHK_ERR(Matrix().ExtractMyRowCopy(LID, Length,NumEntries,
                                               &Values[0], &Indices[0]));

      for (int k = 0 ; k < NumEntries ; ++k) {
        int col = Indices[k];

          for (int kk = 0 ; kk < NumVectors ; ++kk) {
            X[kk][LID] -= Values[k] * y2_ptr[kk][col];
          }
      }
    }

    // solve with this block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        Containers_[i]->RHS(j,k) = X[k][LID];
      }
    }

    IFPACK_CHK_ERR(Containers_[i]->ApplyInverse());
    ApplyInverseFlops_ += Containers_[i]->ApplyInverseFlops();

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        y2_ptr[k][LID] += DampingFactor_ * Containers_[i]->LHS(j,k);
      }
    }

  }

  // operations for all getrow()'s
  // NOTE: flops for ApplyInverse() of each block are summed up
  // in method ApplyInverseFlops()
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalNonzeros();
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalRows();

  // Attention: this is delicate... Not all combinations
  // of Y2 and Y will always work (tough for ML it should be ok)
  if (IsParallel_)
    for (int m = 0 ; m < NumVectors ; ++m) 
      for (int i = 0 ; i < NumMyRows ; ++i)
        y_ptr[m][i] = y2_ptr[m][i];

  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
ApplyInverseSGS(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const
{

  if (ZeroStartingSolution_)
    Y.PutScalar(0.0);

  Epetra_MultiVector Xcopy(X);
  for (int j = 0; j < NumSweeps_ ; j++) {
    IFPACK_CHK_ERR(DoSGS(X,Xcopy,Y));
    if (j != NumSweeps_ - 1)
      Xcopy = X;
  }
  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::
DoSGS(const Epetra_MultiVector& X, Epetra_MultiVector& Xcopy, 
      Epetra_MultiVector& Y) const
{

  int NumMyRows = Matrix().NumMyRows();
  int NumVectors = X.NumVectors();

  int Length = Matrix().MaxNumEntries();
  std::vector<int> Indices;
  std::vector<double> Values;
  Indices.resize(Length);
  Values.resize(Length);

  // an additonal vector is needed by parallel computations
  // (note that applications through Ifpack_AdditiveSchwarz
  // are always seen are serial)
  Teuchos::RefCountPtr< Epetra_MultiVector > Y2;
  if (IsParallel_)
    Y2 = Teuchos::rcp( new Epetra_MultiVector(Importer_->TargetMap(), NumVectors) );
  else
    Y2 = Teuchos::rcp( &Y, false );

  double** y_ptr;
  double** y2_ptr;
  Y.ExtractView(&y_ptr);
  Y2->ExtractView(&y2_ptr);

  // data exchange is here, once per sweep
  if (IsParallel_)
    IFPACK_CHK_ERR(Y2->Import(Y,*Importer_,Insert));

  for (int i = 0 ; i < NumLocalBlocks() ; ++i) {

    // may happen that a partition is empty
    if (Containers_[i]->NumRows() == 0) 
      continue;

    int LID;

    // update from previous block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);

      int NumEntries;
      IFPACK_CHK_ERR(Matrix().ExtractMyRowCopy(LID, Length,NumEntries,
                                               &Values[0], &Indices[0]));

      for (int k = 0 ; k < NumEntries ; ++k) {
        int col = Indices[k];

        for (int kk = 0 ; kk < NumVectors ; ++kk) {
          Xcopy[kk][LID] -= Values[k] * y2_ptr[kk][col];
        }
      }
    }

    // solve with this block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        Containers_[i]->RHS(j,k) = Xcopy[k][LID];
      }
    }

    IFPACK_CHK_ERR(Containers_[i]->ApplyInverse());
    ApplyInverseFlops_ += Containers_[i]->ApplyInverseFlops();

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        y2_ptr[k][LID] += DampingFactor_ * Containers_[i]->LHS(j,k);
      }
    }
  }

  // operations for all getrow()'s
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalNonzeros();
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalRows();

  Xcopy = X;

  for (int i = NumLocalBlocks() - 1; i >=0 ; --i) {

    if (Containers_[i]->NumRows() == 0) 
      continue;

    int LID;

    // update from previous block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);

      int NumEntries;
      IFPACK_CHK_ERR(Matrix().ExtractMyRowCopy(LID, Length,NumEntries,
                                               &Values[0], &Indices[0]));

      for (int k = 0 ; k < NumEntries ; ++k) {
        int col = Indices[k];

          for (int kk = 0 ; kk < NumVectors ; ++kk) {
            Xcopy[kk][LID] -= Values[k] * y2_ptr[kk][col];
          }
      }
    }

    // solve with this block

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        Containers_[i]->RHS(j,k) = Xcopy[k][LID];
      }
    }

    IFPACK_CHK_ERR(Containers_[i]->ApplyInverse());
    ApplyInverseFlops_ += Containers_[i]->ApplyInverseFlops();

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      LID = Containers_[i]->ID(j);
      for (int k = 0 ; k < NumVectors ; ++k) {
        y2_ptr[k][LID] += DampingFactor_ * Containers_[i]->LHS(j,k);
      }
    }
  }

  // operations for all getrow()'s
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalNonzeros();
  ApplyInverseFlops_ += NumVectors * 2 * Matrix_->NumGlobalRows();

  // Attention: this is delicate... Not all combinations
  // of Y2 and Y will always work (tough for ML it should be ok)
  if (IsParallel_)
    for (int m = 0 ; m < NumVectors ; ++m) 
      for (int i = 0 ; i < NumMyRows ; ++i)
        y_ptr[m][i] = y2_ptr[m][i];

  return(0);
}

//==============================================================================
template<typename T>
ostream& Ifpack_BlockRelaxation<T>::Print(ostream & os) const
{

  string PT;
  if (PrecType_ == IFPACK_JACOBI)
    PT = "Jacobi";
  else if (PrecType_ == IFPACK_GS)
    PT = "Gauss-Seidel";
  else if (PrecType_ == IFPACK_SGS)
    PT = "symmetric Gauss-Seidel";

  if (!Comm().MyPID()) {
    os << endl;
    os << "================================================================================" << endl;
    os << "Ifpack_BlockRelaxation, " << PT << endl;
    os << "Sweeps = " << NumSweeps_ << endl;
    os << "Damping factor = " << DampingFactor_;
    if (ZeroStartingSolution_) 
      os << ", using zero starting solution" << endl;
    else
      os << ", using input starting solution" << endl;
    os << "Number of local blocks = " << Partitioner_->NumLocalParts() << endl;
    //os << "Condition number estimate = " << Condest_ << endl;
    os << "Global number of rows            = " << Matrix_->NumGlobalRows() << endl;
    os << endl;
    os << "Phase           # calls   Total Time (s)       Total MFlops     MFlops/s" << endl;
    os << "-----           -------   --------------       ------------     --------" << endl;
    os << "Initialize()    "   << std::setw(5) << NumInitialize() 
       << "  " << std::setw(15) << InitializeTime() 
       << "  " << std::setw(15) << 1.0e-6 * InitializeFlops();
    if (InitializeTime() != 0.0)
      os << "  " << std::setw(15) << 1.0e-6 * InitializeFlops() / InitializeTime() << endl;
    else
      os << "  " << std::setw(15) << 0.0 << endl;
    os << "Compute()       "   << std::setw(5) << NumCompute() 
       << "  " << std::setw(15) << ComputeTime()
       << "  " << std::setw(15) << 1.0e-6 * ComputeFlops();
    if (ComputeTime() != 0.0) 
      os << "  " << std::setw(15) << 1.0e-6 * ComputeFlops() / ComputeTime() << endl;
    else
      os << "  " << std::setw(15) << 0.0 << endl;
    os << "ApplyInverse()  "   << std::setw(5) << NumApplyInverse() 
       << "  " << std::setw(15) << ApplyInverseTime()
       << "  " << std::setw(15) << 1.0e-6 * ApplyInverseFlops();
    if (ApplyInverseTime() != 0.0) 
      os << "  " << std::setw(15) << 1.0e-6 * ApplyInverseFlops() / ApplyInverseTime() << endl;
    else
      os << "  " << std::setw(15) << 0.0 << endl;
    os << "================================================================================" << endl;
    os << endl;
  }

  return(os);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::SetParameters(Teuchos::ParameterList& List)
{

  string PT;
  if (PrecType_ == IFPACK_JACOBI)
    PT = "Jacobi";
  else if (PrecType_ == IFPACK_GS)
    PT = "Gauss-Seidel";
  else if (PrecType_ == IFPACK_SGS)
    PT = "symmetric Gauss-Seidel";

  PT = List.get("relaxation: type", PT);

  if (PT == "Jacobi") {
    PrecType_ = IFPACK_JACOBI;
  }
  else if (PT == "Gauss-Seidel") {
    PrecType_ = IFPACK_GS;
  }
  else if (PT == "symmetric Gauss-Seidel") {
    PrecType_ = IFPACK_SGS;
  } else {
    cerr << "Option `relaxation: type' has an incorrect value ("
      << PT << ")'" << endl;
    cerr << "(file " << __FILE__ << ", line " << __LINE__ << ")" << endl;
    exit(EXIT_FAILURE);
  }

  NumSweeps_            = List.get("relaxation: sweeps", NumSweeps_);
  DampingFactor_        = List.get("relaxation: damping factor", 
                                   DampingFactor_);
  ZeroStartingSolution_ = List.get("relaxation: zero starting solution", 
                                   ZeroStartingSolution_);
  PartitionerType_      = List.get("partitioner: type", 
                                   PartitionerType_);
  NumLocalBlocks_       = List.get("partitioner: local parts", 
                                   NumLocalBlocks_);
  // only Jacobi can work with overlap among local domains,
  OverlapLevel_         = List.get("partitioner: overlap", 
                                   OverlapLevel_);

  // check parameters
  if (PrecType_ != IFPACK_JACOBI)
    OverlapLevel_ = 0;
  if (NumLocalBlocks_ < 0)
    NumLocalBlocks_ = Matrix().NumMyRows() / (-NumLocalBlocks_);
  // other checks are performed in Partitioner_
  
  // copy the list as each subblock's constructor will
  // require it later
  List_ = List;

  // set the label
  string PT2;
  if (PrecType_ == IFPACK_JACOBI)
    PT2 = "BJ";
  else if (PrecType_ == IFPACK_GS)
    PT2 = "BGS";
  else if (PrecType_ == IFPACK_SGS)
    PT2 = "BSGS";
  Label_ = "IFPACK (" + PT2 + ", sweeps=" 
    + Ifpack_toString(NumSweeps_) + ", damping="
    + Ifpack_toString(DampingFactor_) + ", blocks="
    + Ifpack_toString(NumLocalBlocks()) + ")";

  return(0);
}

//==============================================================================
template<typename T>
int Ifpack_BlockRelaxation<T>::Initialize()
{
  IsInitialized_ = false;
  Time_.ResetStartTime();

  Graph_ = Teuchos::rcp( new Ifpack_Graph_Epetra_RowMatrix(Teuchos::rcp(&Matrix(),false)) );
  if (Graph_ == Teuchos::null) IFPACK_CHK_ERR(-5);

  if (PartitionerType_ == "linear")
    Partitioner_ = Teuchos::rcp( new Ifpack_LinearPartitioner(&*Graph_) );
  else if (PartitionerType_ == "greedy")
    Partitioner_ = Teuchos::rcp( new Ifpack_GreedyPartitioner(&*Graph_) );
  else if (PartitionerType_ == "metis")
    Partitioner_ = Teuchos::rcp( new Ifpack_METISPartitioner(&*Graph_) );
  else if (PartitionerType_ == "equation")
    Partitioner_ = Teuchos::rcp( new Ifpack_EquationPartitioner(&*Graph_) );
  else if (PartitionerType_ == "user")
    Partitioner_ = Teuchos::rcp( new Ifpack_UserPartitioner(&*Graph_) );
  else
    IFPACK_CHK_ERR(-2);

  if (Partitioner_ == Teuchos::null) IFPACK_CHK_ERR(-5);

  // need to partition the graph of A
  IFPACK_CHK_ERR(Partitioner_->SetParameters(List_));
  IFPACK_CHK_ERR(Partitioner_->Compute());

  // get actual number of partitions
  NumLocalBlocks_ = Partitioner_->NumLocalParts();

  // weight of each vertex
  W_ = Teuchos::rcp( new Epetra_Vector(Matrix().RowMatrixRowMap()) );
  W_->PutScalar(0.0);

  for (int i = 0 ; i < NumLocalBlocks() ; ++i) {

    for (int j = 0 ; j < Partitioner_->NumRowsInPart(i) ; ++j) {
      int LID = (*Partitioner_)(i,j);
      (*W_)[LID]++;
    }
  }
  W_->Reciprocal(*W_);

  InitializeTime_ += Time_.ElapsedTime();
  IsInitialized_ = true;
  ++NumInitialize_;

  return(0);
}

//==============================================================================
#endif // IFPACK_BLOCKPRECONDITIONER_H