/usr/include/trilinos/GlobiPack_GoldenQuadInterpBracket_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 | /*
// @HEADER
// ***********************************************************************
//
// GlobiPack: Collection of Scalar 1D globalizaton utilities
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
*/
#ifndef GLOBIPACK_GOLDEN_BRACKET_QUAD_INTERP_DEF_HPP
#define GLOBIPACK_GOLDEN_BRACKET_QUAD_INTERP_DEF_HPP
#include "GlobiPack_GoldenQuadInterpBracket_decl.hpp"
#include "Teuchos_TabularOutputter.hpp"
namespace GlobiPack {
// Constructor/Initializers/Accessors
template<typename Scalar>
GoldenQuadInterpBracket<Scalar>::GoldenQuadInterpBracket()
{}
// Overridden from ParameterListAcceptor (simple forwarding functions)
template<typename Scalar>
void GoldenQuadInterpBracket<Scalar>::setParameterList(RCP<ParameterList> const& paramList)
{
typedef ScalarTraits<Scalar> ST;
paramList->validateParametersAndSetDefaults(*this->getValidParameters());
// ToDo: Add parameters!
setMyParamList(paramList);
}
template<typename Scalar>
RCP<const ParameterList> GoldenQuadInterpBracket<Scalar>::getValidParameters() const
{
static RCP<const ParameterList> validPL;
if (is_null(validPL)) {
RCP<Teuchos::ParameterList>
pl = Teuchos::rcp(new Teuchos::ParameterList());
// ToDo: Add parameters!
validPL = pl;
}
return validPL;
}
// Bracket
template<typename Scalar>
bool GoldenQuadInterpBracket<Scalar>::bracketMinimum(
const MeritFunc1DBase<Scalar> &phi,
const Ptr<PointEval1D<Scalar> > &pointLower,
const Ptr<PointEval1D<Scalar> > &pointMiddle,
const Ptr<PointEval1D<Scalar> > &pointUpper,
const Ptr<int> &numIters
) const
{
using Teuchos::as;
using Teuchos::TabularOutputter;
typedef Teuchos::TabularOutputter TO;
typedef ScalarTraits<Scalar> ST;
using Teuchos::OSTab;
typedef PointEval1D<Scalar> PE1D;
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPT(is_null(pointLower));
TEST_FOR_EXCEPT(is_null(pointUpper));
TEST_FOR_EXCEPT(is_null(pointMiddle));
TEUCHOS_ASSERT_INEQUALITY(pointLower->alpha, <, pointMiddle->alpha);
TEUCHOS_ASSERT_INEQUALITY(pointLower->phi, !=, PE1D::valNotGiven());
TEUCHOS_ASSERT_INEQUALITY(pointMiddle->phi, !=, PE1D::valNotGiven());
#endif
const RCP<Teuchos::FancyOStream> out = this->getOStream();
// ToDo: Make these variable!
const Scalar GOLDEN_RATIO = 1.618033988749895;
const Scalar SMALL_DIV = 1e-20;
const Scalar MAX_EXTRAP_FACTOR = 100.0;
const int MAX_TOTAL_ITERS = 30;
*out << "\nStarting golden quadratic interpolating bracketing of the minimum ...\n\n";
// Repeatedly evaluate the function along the search direction until
// we know we've bracketed a minimum.
Scalar &alpha_l = pointLower->alpha, &phi_l = pointLower->phi;
Scalar &alpha_m = pointMiddle->alpha, &phi_m = pointMiddle->phi;
Scalar &alpha_u = pointUpper->alpha = ST::nan(), &phi_u = pointUpper->phi = ST::nan();
Scalar tmp = ST::nan(), q = ST::nan(), r = ST::nan();
const Scalar zero = ST::zero();
// This does a simple backtracking
alpha_u = zero;
const Scalar goldinv = 1.0/(1.0+GOLDEN_RATIO);
TabularOutputter tblout(out);
tblout.pushFieldSpec("itr", TO::INT);
tblout.pushFieldSpec("alpha_l", TO::DOUBLE);
tblout.pushFieldSpec("alpha_m", TO::DOUBLE);
tblout.pushFieldSpec("alpha_u", TO::DOUBLE);
tblout.pushFieldSpec("phi_l", TO::DOUBLE);
tblout.pushFieldSpec("phi_m", TO::DOUBLE);
tblout.pushFieldSpec("phi_u", TO::DOUBLE);
tblout.pushFieldSpec("step type ", TO::STRING);
tblout.outputHeader();
int icount = 0;
std::string stepType = "";
//
// A) Find phi_l > phi_m first
//
tblout.outputField("-");
tblout.outputField(alpha_l);
tblout.outputField(alpha_m);
tblout.outputField("-");
tblout.outputField(phi_l);
tblout.outputField(phi_m);
tblout.outputField("-");
tblout.outputField("start");
tblout.nextRow();
for (; icount < MAX_TOTAL_ITERS; ++icount) {
// ToDo: Put in a check for NAN and backtrack if you find it!
if (phi_l > phi_m) {
break;
}
stepType = "golden back";
alpha_u = alpha_m;
phi_u = phi_m;
alpha_m = goldinv * (alpha_u + GOLDEN_RATIO*alpha_l);
phi_m = computeValue<Scalar>(phi, alpha_m);
tblout.outputField(icount);
tblout.outputField(alpha_l);
tblout.outputField(alpha_m);
tblout.outputField(alpha_u);
tblout.outputField(phi_l);
tblout.outputField(phi_m);
tblout.outputField(phi_u);
tblout.outputField(stepType);
tblout.nextRow();
}
if (alpha_u == zero) {
// The following factor of gold was reduced to (GOLDEN_RATIO-1) to save
// one function evaluation near convergence.
alpha_u = alpha_m + (GOLDEN_RATIO-1.0) * (alpha_m-alpha_l);
phi_u = computeValue<Scalar>(phi, alpha_u);
}
//
// B) Quadratic interpolation iterations
//
bool bracketedMin = false;
for (; icount < MAX_TOTAL_ITERS; ++icount) {
if (phi_m < phi_u) {
bracketedMin = true;
break;
}
// find the extremum alpha_quad of a quadratic model interpolating there
// points
q = (phi_m-phi_l)*(alpha_m-alpha_u);
r = (phi_m-phi_u)*(alpha_m-alpha_l);
// avoid division by small (q-r) by bounding with signed minimum
tmp = ST::magnitude(q-r);
tmp = (tmp > SMALL_DIV ? tmp : SMALL_DIV);
tmp = (q-r >= 0 ? tmp : -tmp);
Scalar alpha_quad =
alpha_m - (q*(alpha_m-alpha_u) - r*(alpha_m-alpha_l))/(2.0*tmp);
// maximum point for which we trust the interpolation
const Scalar alpha_lim = alpha_m + MAX_EXTRAP_FACTOR * (alpha_u-alpha_m);
// now detect which interval alpha_quad is in and act accordingly
bool skipToNextIter = false;
Scalar phi_quad = ST::nan();
if ( (alpha_m-alpha_quad)*(alpha_quad-alpha_u) > zero ) { // [alpha_m, alpha_u]
phi_quad = computeValue<Scalar>(phi, alpha_quad);
if (phi_quad < phi_u) { // use points [b, alpha_quad, c]
alpha_l = alpha_m;
phi_l = phi_m;
alpha_m = alpha_quad;
phi_m = phi_quad;
skipToNextIter = true;
stepType = "alpha_quad middle";
}
else if (phi_quad > phi_m) { // use points [a, b, alpha_quad]
alpha_u = alpha_quad;
phi_u = phi_quad;
skipToNextIter = true;
stepType = "alpha_quad upper";
}
else {
alpha_quad = alpha_u + GOLDEN_RATIO*(alpha_u-alpha_m);
phi_quad = computeValue<Scalar>(phi, alpha_quad);
}
}
if (!skipToNextIter) {
if ((alpha_u-alpha_quad)*(alpha_quad-alpha_lim) > zero) { // [alpha_u, alpha_lim]
phi_quad = computeValue<Scalar>(phi, alpha_quad);
stepType = "[alpha_u, alpha_lim]";
if (phi_quad < phi_u) {
alpha_m = alpha_u;
alpha_u = alpha_quad;
alpha_quad = alpha_u + GOLDEN_RATIO*(alpha_u-alpha_m);
phi_m = phi_u;
phi_u = phi_quad;
phi_quad = computeValue<Scalar>(phi, alpha_quad);
stepType = "phi_quad < phi_u";
}
}
else if ((alpha_quad-alpha_lim)*(alpha_lim-alpha_u) >= zero ) { // [alpha_lim, inf]
alpha_quad = alpha_lim;
phi_quad = computeValue<Scalar>(phi, alpha_quad);
stepType = "[alpha_lim, inf]";
}
else { // [0,alpha_m]
alpha_quad = alpha_u + GOLDEN_RATIO*(alpha_u-alpha_m);
phi_quad = computeValue<Scalar>(phi, alpha_quad);
stepType = "[0, alpha_m]";
}
// shift to newest 3 points before loop
alpha_l = alpha_m;
phi_l = phi_m;
alpha_m = alpha_u;
phi_m = phi_u;
alpha_u = alpha_quad;
phi_u = phi_quad;
}
tblout.outputField(icount);
tblout.outputField(alpha_l);
tblout.outputField(alpha_m);
tblout.outputField(alpha_u);
tblout.outputField(phi_l);
tblout.outputField(phi_m);
tblout.outputField(phi_u);
tblout.outputField(stepType);
tblout.nextRow();
} // end for loop
if (icount >= MAX_TOTAL_ITERS) {
*out <<"\nExceeded maximum number of iterations!.\n";
}
if (!is_null(numIters)) {
*numIters = icount;
}
*out << "\n";
return bracketedMin;
}
} // namespace GlobiPack
#endif // GLOBIPACK_GOLDEN_BRACKET_QUAD_INTERP_DEF_HPP
|