This file is indexed.

/usr/include/trilinos/GlobiPack_Brents1DMinimization_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*
// @HEADER
// ***********************************************************************
// 
//    GlobiPack: Collection of Scalar 1D globalizaton utilities
//                 Copyright (2009) Sandia Corporation
// 
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
// 
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
// 
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
// 
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov) 
// 
// ***********************************************************************
// @HEADER
*/

#ifndef GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP
#define GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP


#include "GlobiPack_Brents1DMinimization_decl.hpp"
#include "Teuchos_TabularOutputter.hpp"


namespace GlobiPack {


// Constructor/Initializers/Accessors


template<typename Scalar>
Brents1DMinimization<Scalar>::Brents1DMinimization()
  :rel_tol_(Brents1DMinimizationUtils::rel_tol_default),
   bracket_tol_(Brents1DMinimizationUtils::bracket_tol_default),
   max_iters_(Brents1DMinimizationUtils::max_iters_default)
{}


// Overridden from ParameterListAcceptor (simple forwarding functions)


template<typename Scalar>
void Brents1DMinimization<Scalar>::setParameterList(RCP<ParameterList> const& paramList)
{
  typedef ScalarTraits<Scalar> ST;
  namespace BMU = Brents1DMinimizationUtils;
  using Teuchos::getParameter;
  paramList->validateParametersAndSetDefaults(*this->getValidParameters());
  rel_tol_ = getParameter<double>(*paramList, BMU::rel_tol_name);
  bracket_tol_ = getParameter<double>(*paramList, BMU::bracket_tol_name);
  max_iters_ = getParameter<int>(*paramList, BMU::max_iters_name);
  TEUCHOS_ASSERT_INEQUALITY( rel_tol_, >, ST::zero() );
  TEUCHOS_ASSERT_INEQUALITY( bracket_tol_, >, ST::zero() );
  TEUCHOS_ASSERT_INEQUALITY( max_iters_, >=, 0 );
  setMyParamList(paramList);
}


template<typename Scalar>
RCP<const ParameterList> Brents1DMinimization<Scalar>::getValidParameters() const
{
  namespace BMU = Brents1DMinimizationUtils;
  static RCP<const ParameterList> validPL;
  if (is_null(validPL)) {
    RCP<Teuchos::ParameterList>
      pl = Teuchos::rcp(new Teuchos::ParameterList());
    pl->set( BMU::rel_tol_name, BMU::rel_tol_default );
    pl->set( BMU::bracket_tol_name, BMU::bracket_tol_default );
    pl->set( BMU::max_iters_name, BMU::max_iters_default );
    validPL = pl;
  }
  return validPL;
}


// Bracket


template<typename Scalar>
bool Brents1DMinimization<Scalar>::approxMinimize(
  const MeritFunc1DBase<Scalar> &phi,
  const PointEval1D<Scalar> &pointLower,
  const Ptr<PointEval1D<Scalar> > &pointMiddle,
  const PointEval1D<Scalar> &pointUpper,
  const Ptr<int> &numIters
  ) const
{

  using Teuchos::as;
  using Teuchos::TabularOutputter;
  typedef Teuchos::TabularOutputter TO;
  typedef ScalarTraits<Scalar> ST;
  using Teuchos::OSTab;
  typedef PointEval1D<Scalar> PE1D;
  using std::min;
  using std::max;
  
#ifdef TEUCHOS_DEBUG
  TEST_FOR_EXCEPT(is_null(pointMiddle));
  TEUCHOS_ASSERT_INEQUALITY(pointLower.alpha, <, pointMiddle->alpha);
  TEUCHOS_ASSERT_INEQUALITY(pointMiddle->alpha, <, pointUpper.alpha);
  TEUCHOS_ASSERT_INEQUALITY(pointLower.phi, !=, PE1D::valNotGiven());
  TEUCHOS_ASSERT_INEQUALITY(pointMiddle->phi, !=, PE1D::valNotGiven());
  TEUCHOS_ASSERT_INEQUALITY(pointUpper.phi, !=, PE1D::valNotGiven());
#endif

  const RCP<Teuchos::FancyOStream> out = this->getOStream();

  *out << "\nStarting Brent's 1D minimization algorithm ...\n\n";
  
  TabularOutputter tblout(out);
  
  tblout.pushFieldSpec("itr", TO::INT);
  tblout.pushFieldSpec("alpha_a", TO::DOUBLE);
  tblout.pushFieldSpec("alpha_min", TO::DOUBLE);
  tblout.pushFieldSpec("alpha_b", TO::DOUBLE);
  tblout.pushFieldSpec("phi(alpha_min)", TO::DOUBLE);
  tblout.pushFieldSpec("alpha_b - alpha_a", TO::DOUBLE);
  tblout.pushFieldSpec("alpha_min - alpha_avg", TO::DOUBLE);
  tblout.pushFieldSpec("tol", TO::DOUBLE);

  tblout.outputHeader();
  
  const Scalar INV_GOLD2=0.3819660112501051518; // (1/golden-ratio)^2
  const Scalar TINY = ST::squareroot(ST::eps());
  
  const Scalar alpha_l = pointLower.alpha, phi_l = pointLower.phi;
  Scalar &alpha_m = pointMiddle->alpha, &phi_m = pointMiddle->phi;
  const Scalar alpha_u = pointUpper.alpha, phi_u = pointUpper.phi;

  Scalar d = ST::nan();
  Scalar e = ST::nan();
  Scalar u = ST::nan();
  
  Scalar phi_w = min(phi_l, phi_u);

  Scalar alpha_v = ST::nan();
  Scalar alpha_w = ST::nan();
  Scalar phi_v = ST::nan();

  if (phi_w == phi_l){  
    alpha_w  = alpha_l;
    alpha_v  = alpha_u;
    phi_v = phi_u;
  }
  else {
    alpha_w  = alpha_u;
    alpha_v  = alpha_l;
    phi_v = phi_l;
  }

  Scalar alpha_min = alpha_m;
  Scalar phi_min = phi_m;
  Scalar alpha_a = alpha_l;
  Scalar alpha_b = alpha_u;
  
  bool foundMin = false;

  int iteration = 0;

  for ( ; iteration <= max_iters_; ++iteration) {

    if (iteration < 2)
      e = 2.0 * (alpha_b - alpha_a);

    const Scalar alpha_avg = 0.5 *(alpha_a + alpha_b);
    const Scalar tol1 = rel_tol_ * ST::magnitude(alpha_min) + TINY;
    const Scalar tol2 = 2.0 * tol1;

    const Scalar step_diff = alpha_min - alpha_avg;
    const Scalar step_diff_tol = (tol2 + bracket_tol_ * (alpha_b - alpha_a));

    // 2009/02/11: rabartl: Above, I changed from (tol2-0.5*(alpha_b-alpha_a)) which is
    // actually in Brent's netlib code!  This gives a negative tolerence when
    // the solution alpha_min is near a minimum so you will max out the iters because
    // a possitive number can never be smaller than a negative number.  The
    // above convergence criteria makes sense to me.

    tblout.outputField(iteration);
    tblout.outputField(alpha_a);
    tblout.outputField(alpha_min);
    tblout.outputField(alpha_b);
    tblout.outputField(phi_min);
    tblout.outputField(alpha_b - alpha_a);
    tblout.outputField(step_diff);
    tblout.outputField(step_diff_tol);
    tblout.nextRow();

    // If the difference between current point and the middle of the shrinking
    // interval [alpha_a, alpha_b] is relatively small, then terminate the
    // algorithm.  Also, terminate the algorithm if this difference is small
    // relative to the size of alpha.  Does this make sense?  However, don't
    // terminate on the very first iteration because we have to take at least
    // one step.
    if (
      ST::magnitude(step_diff) <= step_diff_tol
      && iteration > 0
      )
    {
      foundMin = true;
      break;
    }
    // 2009/02/11: rabartl: Above, I added the iteration > 0 condition because
    // the original version that I was given would terminate on the first
    // first iteration if the initial guess for alpha happened to be too close
    // to the midpoint of the bracketing interval!  Is that crazy or what!

    if (ST::magnitude(e) > tol1 || iteration < 2) {

      const Scalar r = (alpha_min - alpha_w) * (phi_min - phi_v);
      Scalar q = (alpha_min - alpha_v) * (phi_min - phi_w);
      Scalar p = (alpha_min - alpha_v) * q - (alpha_min - alpha_w) * r;
      q = 2.0 * (q - r);
      if (q > ST::zero())
        p = -p;
      q = ST::magnitude(q);
      const Scalar etemp = e;
      e = d;

      if ( ST::magnitude(p) >= ST::magnitude(0.5 * q * etemp)
        || p <= q * (alpha_a - alpha_min)
        || p >= q * (alpha_b - alpha_min)
        )
      {
        e = (alpha_min >= alpha_avg ? alpha_a - alpha_min : alpha_b - alpha_min);
        d = INV_GOLD2 * e;
      }
      else {
        d = p/q;
        u = alpha_min + d;
        if (u - alpha_a < tol2 || alpha_b - u < tol2) 
           // sign(tol1,alpha_avg-alpha_min)
          d = ( alpha_avg - alpha_min > ST::zero()
            ? ST::magnitude(tol1)
            : -ST::magnitude(tol1) );
      }

    }
    else {

      e = (alpha_min >= alpha_avg ? alpha_a - alpha_min : alpha_b - alpha_min);
      d = INV_GOLD2 * e;

    }
    
    u = ( ST::magnitude(d) >= tol1
      ? alpha_min + d
      : alpha_min + (d >= 0 ? ST::magnitude(tol1) : -ST::magnitude(tol1))
      ); 
    
    const Scalar phi_eval_u = computeValue<Scalar>(phi, u);

    if (phi_eval_u <= phi_min) {

      if (u >= alpha_min)
        alpha_a = alpha_min;
      else
        alpha_b = alpha_min;

      alpha_v = alpha_w;
      phi_v = phi_w;
      alpha_w = alpha_min;
      phi_w = phi_min;
      alpha_min = u;
      phi_min = phi_eval_u;

    }
    else {

      if (u < alpha_min)
        alpha_a = u;
      else
        alpha_b = u;

      if (phi_eval_u <= phi_w || alpha_w == alpha_min) {
        alpha_v = alpha_w;
        phi_v = phi_w;
        alpha_w = u;
        phi_w = phi_eval_u;
      }
      else if (phi_eval_u <= phi_v || alpha_v == alpha_min || alpha_v == alpha_w) {
        alpha_v = u;
        phi_v = phi_eval_u;
      }

    }
  }

  alpha_m = alpha_min;
  phi_m = phi_min;
  if (!is_null(numIters))
    *numIters = iteration;
  
  if (foundMin) {
    *out <<"\nFound the minimum alpha="<<alpha_m<<", phi(alpha)="<<phi_m<<"\n";
  }
  else {
    *out <<"\nExceeded maximum number of iterations!\n";
  }

  *out << "\n";

  return foundMin;

}


} // namespace GlobiPack


#endif // GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP