/usr/include/trilinos/GlobiPack_Brents1DMinimization_def.hpp is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | /*
// @HEADER
// ***********************************************************************
//
// GlobiPack: Collection of Scalar 1D globalizaton utilities
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Roscoe A. Bartlett (rabartl@sandia.gov)
//
// ***********************************************************************
// @HEADER
*/
#ifndef GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP
#define GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP
#include "GlobiPack_Brents1DMinimization_decl.hpp"
#include "Teuchos_TabularOutputter.hpp"
namespace GlobiPack {
// Constructor/Initializers/Accessors
template<typename Scalar>
Brents1DMinimization<Scalar>::Brents1DMinimization()
:rel_tol_(Brents1DMinimizationUtils::rel_tol_default),
bracket_tol_(Brents1DMinimizationUtils::bracket_tol_default),
max_iters_(Brents1DMinimizationUtils::max_iters_default)
{}
// Overridden from ParameterListAcceptor (simple forwarding functions)
template<typename Scalar>
void Brents1DMinimization<Scalar>::setParameterList(RCP<ParameterList> const& paramList)
{
typedef ScalarTraits<Scalar> ST;
namespace BMU = Brents1DMinimizationUtils;
using Teuchos::getParameter;
paramList->validateParametersAndSetDefaults(*this->getValidParameters());
rel_tol_ = getParameter<double>(*paramList, BMU::rel_tol_name);
bracket_tol_ = getParameter<double>(*paramList, BMU::bracket_tol_name);
max_iters_ = getParameter<int>(*paramList, BMU::max_iters_name);
TEUCHOS_ASSERT_INEQUALITY( rel_tol_, >, ST::zero() );
TEUCHOS_ASSERT_INEQUALITY( bracket_tol_, >, ST::zero() );
TEUCHOS_ASSERT_INEQUALITY( max_iters_, >=, 0 );
setMyParamList(paramList);
}
template<typename Scalar>
RCP<const ParameterList> Brents1DMinimization<Scalar>::getValidParameters() const
{
namespace BMU = Brents1DMinimizationUtils;
static RCP<const ParameterList> validPL;
if (is_null(validPL)) {
RCP<Teuchos::ParameterList>
pl = Teuchos::rcp(new Teuchos::ParameterList());
pl->set( BMU::rel_tol_name, BMU::rel_tol_default );
pl->set( BMU::bracket_tol_name, BMU::bracket_tol_default );
pl->set( BMU::max_iters_name, BMU::max_iters_default );
validPL = pl;
}
return validPL;
}
// Bracket
template<typename Scalar>
bool Brents1DMinimization<Scalar>::approxMinimize(
const MeritFunc1DBase<Scalar> &phi,
const PointEval1D<Scalar> &pointLower,
const Ptr<PointEval1D<Scalar> > &pointMiddle,
const PointEval1D<Scalar> &pointUpper,
const Ptr<int> &numIters
) const
{
using Teuchos::as;
using Teuchos::TabularOutputter;
typedef Teuchos::TabularOutputter TO;
typedef ScalarTraits<Scalar> ST;
using Teuchos::OSTab;
typedef PointEval1D<Scalar> PE1D;
using std::min;
using std::max;
#ifdef TEUCHOS_DEBUG
TEST_FOR_EXCEPT(is_null(pointMiddle));
TEUCHOS_ASSERT_INEQUALITY(pointLower.alpha, <, pointMiddle->alpha);
TEUCHOS_ASSERT_INEQUALITY(pointMiddle->alpha, <, pointUpper.alpha);
TEUCHOS_ASSERT_INEQUALITY(pointLower.phi, !=, PE1D::valNotGiven());
TEUCHOS_ASSERT_INEQUALITY(pointMiddle->phi, !=, PE1D::valNotGiven());
TEUCHOS_ASSERT_INEQUALITY(pointUpper.phi, !=, PE1D::valNotGiven());
#endif
const RCP<Teuchos::FancyOStream> out = this->getOStream();
*out << "\nStarting Brent's 1D minimization algorithm ...\n\n";
TabularOutputter tblout(out);
tblout.pushFieldSpec("itr", TO::INT);
tblout.pushFieldSpec("alpha_a", TO::DOUBLE);
tblout.pushFieldSpec("alpha_min", TO::DOUBLE);
tblout.pushFieldSpec("alpha_b", TO::DOUBLE);
tblout.pushFieldSpec("phi(alpha_min)", TO::DOUBLE);
tblout.pushFieldSpec("alpha_b - alpha_a", TO::DOUBLE);
tblout.pushFieldSpec("alpha_min - alpha_avg", TO::DOUBLE);
tblout.pushFieldSpec("tol", TO::DOUBLE);
tblout.outputHeader();
const Scalar INV_GOLD2=0.3819660112501051518; // (1/golden-ratio)^2
const Scalar TINY = ST::squareroot(ST::eps());
const Scalar alpha_l = pointLower.alpha, phi_l = pointLower.phi;
Scalar &alpha_m = pointMiddle->alpha, &phi_m = pointMiddle->phi;
const Scalar alpha_u = pointUpper.alpha, phi_u = pointUpper.phi;
Scalar d = ST::nan();
Scalar e = ST::nan();
Scalar u = ST::nan();
Scalar phi_w = min(phi_l, phi_u);
Scalar alpha_v = ST::nan();
Scalar alpha_w = ST::nan();
Scalar phi_v = ST::nan();
if (phi_w == phi_l){
alpha_w = alpha_l;
alpha_v = alpha_u;
phi_v = phi_u;
}
else {
alpha_w = alpha_u;
alpha_v = alpha_l;
phi_v = phi_l;
}
Scalar alpha_min = alpha_m;
Scalar phi_min = phi_m;
Scalar alpha_a = alpha_l;
Scalar alpha_b = alpha_u;
bool foundMin = false;
int iteration = 0;
for ( ; iteration <= max_iters_; ++iteration) {
if (iteration < 2)
e = 2.0 * (alpha_b - alpha_a);
const Scalar alpha_avg = 0.5 *(alpha_a + alpha_b);
const Scalar tol1 = rel_tol_ * ST::magnitude(alpha_min) + TINY;
const Scalar tol2 = 2.0 * tol1;
const Scalar step_diff = alpha_min - alpha_avg;
const Scalar step_diff_tol = (tol2 + bracket_tol_ * (alpha_b - alpha_a));
// 2009/02/11: rabartl: Above, I changed from (tol2-0.5*(alpha_b-alpha_a)) which is
// actually in Brent's netlib code! This gives a negative tolerence when
// the solution alpha_min is near a minimum so you will max out the iters because
// a possitive number can never be smaller than a negative number. The
// above convergence criteria makes sense to me.
tblout.outputField(iteration);
tblout.outputField(alpha_a);
tblout.outputField(alpha_min);
tblout.outputField(alpha_b);
tblout.outputField(phi_min);
tblout.outputField(alpha_b - alpha_a);
tblout.outputField(step_diff);
tblout.outputField(step_diff_tol);
tblout.nextRow();
// If the difference between current point and the middle of the shrinking
// interval [alpha_a, alpha_b] is relatively small, then terminate the
// algorithm. Also, terminate the algorithm if this difference is small
// relative to the size of alpha. Does this make sense? However, don't
// terminate on the very first iteration because we have to take at least
// one step.
if (
ST::magnitude(step_diff) <= step_diff_tol
&& iteration > 0
)
{
foundMin = true;
break;
}
// 2009/02/11: rabartl: Above, I added the iteration > 0 condition because
// the original version that I was given would terminate on the first
// first iteration if the initial guess for alpha happened to be too close
// to the midpoint of the bracketing interval! Is that crazy or what!
if (ST::magnitude(e) > tol1 || iteration < 2) {
const Scalar r = (alpha_min - alpha_w) * (phi_min - phi_v);
Scalar q = (alpha_min - alpha_v) * (phi_min - phi_w);
Scalar p = (alpha_min - alpha_v) * q - (alpha_min - alpha_w) * r;
q = 2.0 * (q - r);
if (q > ST::zero())
p = -p;
q = ST::magnitude(q);
const Scalar etemp = e;
e = d;
if ( ST::magnitude(p) >= ST::magnitude(0.5 * q * etemp)
|| p <= q * (alpha_a - alpha_min)
|| p >= q * (alpha_b - alpha_min)
)
{
e = (alpha_min >= alpha_avg ? alpha_a - alpha_min : alpha_b - alpha_min);
d = INV_GOLD2 * e;
}
else {
d = p/q;
u = alpha_min + d;
if (u - alpha_a < tol2 || alpha_b - u < tol2)
// sign(tol1,alpha_avg-alpha_min)
d = ( alpha_avg - alpha_min > ST::zero()
? ST::magnitude(tol1)
: -ST::magnitude(tol1) );
}
}
else {
e = (alpha_min >= alpha_avg ? alpha_a - alpha_min : alpha_b - alpha_min);
d = INV_GOLD2 * e;
}
u = ( ST::magnitude(d) >= tol1
? alpha_min + d
: alpha_min + (d >= 0 ? ST::magnitude(tol1) : -ST::magnitude(tol1))
);
const Scalar phi_eval_u = computeValue<Scalar>(phi, u);
if (phi_eval_u <= phi_min) {
if (u >= alpha_min)
alpha_a = alpha_min;
else
alpha_b = alpha_min;
alpha_v = alpha_w;
phi_v = phi_w;
alpha_w = alpha_min;
phi_w = phi_min;
alpha_min = u;
phi_min = phi_eval_u;
}
else {
if (u < alpha_min)
alpha_a = u;
else
alpha_b = u;
if (phi_eval_u <= phi_w || alpha_w == alpha_min) {
alpha_v = alpha_w;
phi_v = phi_w;
alpha_w = u;
phi_w = phi_eval_u;
}
else if (phi_eval_u <= phi_v || alpha_v == alpha_min || alpha_v == alpha_w) {
alpha_v = u;
phi_v = phi_eval_u;
}
}
}
alpha_m = alpha_min;
phi_m = phi_min;
if (!is_null(numIters))
*numIters = iteration;
if (foundMin) {
*out <<"\nFound the minimum alpha="<<alpha_m<<", phi(alpha)="<<phi_m<<"\n";
}
else {
*out <<"\nExceeded maximum number of iterations!\n";
}
*out << "\n";
return foundMin;
}
} // namespace GlobiPack
#endif // GLOBIPACK_BRENTS_1D_MINIMIZATION_DEF_HPP
|