This file is indexed.

/usr/include/trilinos/Galeri_TriangleRectangleGrid.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
// @HEADER
// ************************************************************************
//
//           Galeri: Finite Element and Matrix Generation Package
//                 Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER

#ifndef GALERI_TRIANGLERECTANGLEGRID_H
#define GALERI_TRIANGLERECTANGLEGRID_H

#include "Epetra_Comm.h"
#include "Epetra_Map.h"
#include "Epetra_DistObject.h"
#include "Epetra_Import.h"
#include "Epetra_Export.h"
#include "Epetra_IntSerialDenseMatrix.h"
#include "Teuchos_RefCountPtr.hpp"
#include "Galeri_Workspace.h"
#include "Galeri_AbstractGrid.h"
#include <vector>
#include <algorithm>

using namespace Teuchos;

namespace Galeri {
namespace FiniteElements {

/*!
 * \class TriangleRectangleGrid
 *
 * \brief Creates a grid composed by triangles, the domain is a rectangle.
 *
 * This class defined, on-the-fly, the triangulation of a 2D rectangular
 * domain. The elements are all triangles. For parallel run, the rectangle
 * is subdivided along the X- and Y-axis, as specified by the user.
 *
 * \author Marzio Sala, SNL 9214.
 *
 * \date Last updated on 03-Apr-05.
 */
class TriangleRectangleGrid : public AbstractGrid
{

public:

  //! Constructor.
  /*! 
   * \param Comm - (In) Communicator object.
   *
   * \param nx - (In) number of elements along the X-axis.
   *
   * \param ny - (In) number of elements along the Y-axis.
   *
   * \param mx - (In) Number of subdomains along the X-axis.
   *
   * \param my - (In) Number of subdomains along the Y-axis.
   *
   * \param lx - (In) Length of the rectangle along the X-axis.
   *
   * \param ly - (In) Length of the rectangle along the Y-axis.
   *
   * \note The total number of processors must equal mx * my.
   */
  TriangleRectangleGrid(const Epetra_Comm& Comm, const int nx, const int ny, 
                        const int mx, const int my,
                        const double lx = 1.0, const double ly = 1.0) :
    Comm_(Comm),
    nx_(nx),
    ny_(ny),
    lx_(lx),
    ly_(ly),
    mx_(mx),
    my_(my)
  {
    // check input
    if (lx <= 0.0 || ly <= 0.0 )
    {
      cerr << "Invalid length, lx = " << lx << ", ly = " << ly << endl;
      cerr << "File " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    if (mx * my != Comm.NumProc())
    {
      cerr << "Incorrect processor subdivision, mx = " << mx
           << ", my = " << my << endl;
      cerr << "(file " << __FILE__ << ", line " << __LINE__ << endl;
      throw(-1);
    }

    int px, py;
    GetProcessorXY(px, py);

    NumGlobalElements_ = 2 * nx_ * ny_;
    NumGlobalVertices_ = (nx_ + 1) * (ny_ + 1);

    NumMyElementsX_ = nx_ / mx_;
    NumMyElementsY_ = ny_ / my_;
    if (px == mx_ - 1) NumMyElementsX_ += nx_ % mx_;
    if (py == my_ - 1) NumMyElementsY_ += ny_ % my_;
    NumMyElements_ = 2 * NumMyElementsX_ * NumMyElementsY_;

    NumMyVerticesX_ = NumMyElementsX_ + 1;
    NumMyVerticesY_ = NumMyElementsY_ + 1;
    NumMyVertices_ = NumMyVerticesX_ * NumMyVerticesY_;

    deltax_ = lx_ / nx_;
    deltay_ = ly_ / ny_;

    CreateElementMap();
    CreateVertexMap();
    CreateBoundaryFaces();
    CreateRowMap();

    Importer_ = rcp(new Epetra_Import(VertexMap(), RowMap()));
  }

  virtual ~TriangleRectangleGrid() {}

  virtual int NumDimensions() const
  {
    return(2);
  }

  virtual int NumVerticesPerElement() const
  {
    return(3);
  }

  virtual int NumFacesPerElement() const
  {
    return(3);
  }

  virtual int NumVerticesPerFace() const
  {
    return(2);
  }

  //! Returns \c GALERI_TRIANGLE
  virtual string ElementType() const
  {
    return("GALERI_TRIANGLE");
  }

  virtual const Epetra_Comm& Comm() const
  {
    return(Comm_);
  }

  virtual int NumMyElements() const
  {
    return(NumMyElements_);
  }

  virtual int NumGlobalElements() const
  {
    return(NumGlobalElements_);
  }

  virtual int NumMyVertices() const
  {
    return(NumMyVertices_);
  }

  virtual int NumGlobalVertices() const
  {
    return(NumGlobalVertices_);
  }

  virtual int NumMyBoundaryFaces() const
  {
    return(NumMyBoundaryFaces_);
  }

  virtual int NumGlobalBoundaryFaces() const
  {
    return(NumGlobalBoundaryFaces_);
  }

  virtual void VertexCoord(const int LocalID, double* coord) const
  {
    int GlobalID = VertexMap_->GID(LocalID);

    int ix, iy;
    GetVertexXY(GlobalID, ix, iy);

    coord[0] = DeltaX() * ix;
    coord[1] = DeltaY() * iy;
    coord[2] = 0.0;
  }

  virtual void VertexCoord(const int Length, const int* IDs, 
                           double* x, double* y, double* z) const
  {
    for (int i = 0 ; i < Length ; ++i)
    {
      int ID = VertexMap_->GID(IDs[i]);

      int ix, iy;
      GetVertexXY(ID, ix, iy);

      x[i] = DeltaX() * ix;
      y[i] = DeltaY() * iy;
      z[i] = 0.0;
    }
  }

  virtual void ElementVertices(const int LocalID, int* elements) const
  {
    IL_ElementVertices(LocalID, elements, false);
  }

  virtual double ElementMinLength(const int LocalElement) const
  {
    if (DeltaX() < DeltaY())
      return DeltaX();
    else
      return(DeltaY());
  }

  virtual double ElementMaxLength(const int LocalElement) const
  {
    return(sqrt(DeltaX() * DeltaX() + DeltaY()*DeltaY()));
  }

  virtual const RefCountPtr<Epetra_Map> RCPVertexMap() const
  {
    return(VertexMap_);
  }

  virtual const RefCountPtr<Epetra_Map> RCPElementMap() const
  {
    return(ElementMap_);
  }

  virtual const Epetra_Map& VertexMap() const
  {
    return(*(VertexMap_.get()));
  }

  virtual const Epetra_Map& ElementMap() const
  {
    return(*(ElementMap_.get()));
  }

  virtual const Epetra_Map& RowMap() const
  {
    return(*(RowMap_.get()));
  }

  virtual const Epetra_Import& Importer() const
  {
    return(*(Importer_.get()));
  }

  virtual int ElementTag(const int ID) const
  {
    return(1);
  }

  virtual int VertexTag(const int ID) const
  {
    return(1);
  }

  virtual double ElementVolume() const
  {
    return(DeltaX() * DeltaY());
  }

  virtual void FaceVertices(const int LocalFace, int& tag, int* IDs) const
  {
    for (int i = 0 ; i < 2 ; ++i)
      IDs[i] = BF_(LocalFace, i);
    tag = BF_(LocalFace, 2);
  }

  inline int FacePatch(const int LocalFace) const
  {
    return(BF_(LocalFace, 2));
  }

  inline int NumMyElementsX() const
  {
    return(NumMyElementsX_);
  }

  inline int NumMyElementsY() const
  {
    return(NumMyElementsY_);
  }

  inline int NumMyVerticesX() const
  {
    return(NumMyVerticesX_);
  }

  inline int NumMyVerticesY() const
  {
    return(NumMyVerticesY_);
  }

  inline int NumGlobalElementsX() const
  {
    return(nx_);
  }

  inline int NumGlobalElementsY() const
  {
    return(ny_);
  }

  inline int NumGlobalVerticesX() const
  {
    return(nx_ + 1);
  }

  inline int NumGlobalVerticesY() const
  {
    return(ny_ + 1);
  }

  inline double LengthX() const
  {
    return(lx_);
  }

  inline double LengthY() const
  {
    return(ly_);
  }

  inline double DeltaX() const
  {
    return(deltax_);
  }

  inline double DeltaY() const
  {
    return(deltay_);
  }
  
  virtual double ElementVolume(const int LocalElement) const
  {
    return(DeltaX() * DeltaY());
  }

  virtual double FaceArea(const int LocalFace) const
  {
    int patch = BF_(LocalFace, 2);

    if (patch == GALERI_LEFT || patch == GALERI_RIGHT)
      return(DeltaY());
    else
      return(DeltaX());
  }

  virtual double MyVolume() const
  {
    return(LengthX() * LengthY());
  }

  virtual double GlobalVolume() const
  {
    return(LengthX() * LengthY());
  }

  int NumDomainsX() const
  {
    return(mx_);
  }

  int NumDomainsY() const
  {
    return(my_);
  }

  void ExportToVertexMap(const Epetra_DistObject& RowObject,
                         Epetra_DistObject& VertexObject) const
  {
    VertexObject.Import(RowObject, Importer(), Insert);
  }

  void ExportToRowMap(const Epetra_DistObject& VertexObject,
                            Epetra_DistObject& RowObject) const
  {
    RowObject.Export(VertexObject, Importer(), Insert);
  }

   int NumNeighborsPerElement() const
   {
     return(3);
   }

   void ElementNeighbors(int, int*) const
   {
     cerr << "ElementNeighbors() not yet implemented" << endl;
     throw(-1);
   }

private:

  inline void GetVertexXY(const int& GlobalID, int& ix, int& iy) const
  {
    // FIXME: add NumGlobalVerticesXY();
    iy = GlobalID / NumGlobalVerticesX();
    ix = GlobalID % NumGlobalVerticesX();
  }

  inline void GetElementXY(const int& GlobalID, int& ix, int& iy) const
  {
    iy = GlobalID / NumGlobalElementsX();
    ix = GlobalID % NumGlobalElementsX();
  }

  inline void GetLocalElementXY(const int& LocalID, int& ix, int& iy) const
  {
    iy = LocalID / NumMyElementsX();
    ix = LocalID % NumMyElementsX();
  }

  inline void GetProcessorXY(int& ix, int& iy) const
  {
    iy = Comm().MyPID() / mx_;
    ix = Comm().MyPID() % mx_;
  }

  inline void IL_ElementVertices(const int LocalID, int* elements,
                                 const bool ReturnGlobal = false) const
  {
    int ix, iy;
    GetLocalElementXY(LocalID / 2, ix, iy);

    if (LocalID % 2 == 0)
    {
      elements[0] = ix + iy * NumMyVerticesX();
      elements[1] = elements[0] + 1;
      elements[2] = elements[0] + NumMyVerticesX();
    }
    else
    {
      elements[0] = ix + iy * NumMyVerticesX() + 1;
      elements[1] = elements[0] + NumMyVerticesX();
      elements[2] = elements[1] - 1;
    }
  }

  void CreateElementMap()
  {
    ElementMap_ = rcp(new Epetra_Map(-1, NumMyElements(), 0, Comm()));
    return;
  }

  void CreateBoundaryFaces()
  {

    /* I decompose the square in the following way:

                  ML_TOP  
             +--------------+
	     |              |
   ML_LEFT   |              |  ML_RIGHT 
	     |              |
	     +--------------+
	         ML_BOTTOM
    */

    int px, py;
    GetProcessorXY(px, py);

    NumMyBoundaryFaces_ = 0;
    if (px == 0)
      NumMyBoundaryFaces_ += NumMyElementsY();
    if (px == mx_ - 1)
      NumMyBoundaryFaces_ += NumMyElementsY();
    if (py == 0)
      NumMyBoundaryFaces_ += NumMyElementsX();
    if (py == my_ - 1)
      NumMyBoundaryFaces_ += NumMyElementsX();

    BF_.Shape(NumMyBoundaryFaces(), 3);

    int count = 0;

    int nx = NumMyVerticesX();
    int ny = NumMyVerticesY();

    // GALERI_BOTTOM
    if (py == 0)
    {
      for (int ix = 0 ; ix < NumMyElementsX() ; ix++) 
      {
        BF_(count, 0) = ix;
        BF_(count, 1) = ix + 1;
        ++count;
      }
    }
  
    // GALERI_RIGHT
    if (px == mx_ - 1)
    {
      for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
      {
        BF_(count, 0) = nx * (iy + 1) -1;
        BF_(count, 1) = nx * (iy + 1) + nx - 1;
        ++count;
      }
    }
    
    // GALERI_TOP
    if (py == my_ - 1)
    {
      for (int ix = 0 ; ix < NumMyElementsX() ; ix++)
      {
        BF_(count, 0) = nx * (ny - 1) + ix;
        BF_(count, 1) = nx * (ny - 1) + ix + 1;
        ++count;
      }
    }

    // GALERI_LEFT
    if (px == 0)
    {
      for (int iy = 0 ; iy < NumMyElementsY() ; iy++) 
      {
        BF_(count, 0) = iy * nx;
        BF_(count, 1) = iy + 1 * nx;
        ++count;
      }
    }

    if (count != NumMyBoundaryFaces())
    {
      cerr << "Internal error, count != NumMyBoundaryFaces(), "
           << count << " vs. " << NumMyBoundaryFaces() << endl;
      cerr << "File " << __FILE__<< ", line " << __LINE__ << endl;
      throw(-1);
    }

    return;
  }

  void CreateVertexMap()
  {
    vector<int> itmp(NumMyVertices());

    int count = 0;
    int px, py;
    GetProcessorXY(px, py);
    int startx = px * (NumGlobalElementsX() / NumDomainsX());
    int starty = py * (NumGlobalElementsY() / NumDomainsY());
    int endx = startx + NumMyVerticesX();
    int endy = starty + NumMyVerticesY();

    for (int iy = starty ; iy < endy ; ++iy)
    {
      for (int ix = startx ; ix < endx ; ++ix)
      {
        itmp[count++] = ix + iy * NumGlobalVerticesX();
      }
    }
    assert (count == NumMyVertices());

    VertexMap_ = rcp(new Epetra_Map(-1, NumMyVertices(), &itmp[0], 0, Comm()));

    return;
  }

  void CreateRowMap()
  {
    int modx = NumGlobalVerticesX() / NumDomainsX(); 
    int resx = NumGlobalVerticesX() % NumDomainsX();
    int mody = NumGlobalVerticesY() / NumDomainsY(); 
    int resy = NumGlobalVerticesY() % NumDomainsY();

    int startx, starty, endx, endy;
    int xpid = Comm().MyPID() % NumDomainsX();
    int ypid = Comm().MyPID() / NumDomainsX();

    startx = xpid * modx;
    endx   = (xpid + 1) * modx;
    if (xpid == NumDomainsX() - 1) endx += resx;

    starty = ypid * mody;
    endy   = (ypid + 1) * mody;
    if (ypid == NumDomainsY() - 1) endy += resy;

    int size = (endx - startx) * (endy - starty);

    int count = 0;
    vector<int> itmp(size);
    for (int j = starty ; j < endy ; ++j) 
    {
      for (int i = startx ; i < endx ; ++i) 
      {
        itmp[count++] = i + j * NumGlobalVerticesX();
      }
    }

    RowMap_ = rcp(new Epetra_Map(-1, count, &itmp[0], 0, Comm()));

    return;
  }

  const Epetra_Comm& Comm_;

  int NumMyVertices_;
  int NumMyVerticesX_;
  int NumMyVerticesY_;
  int NumGlobalVertices_;
  int NumMyElements_;
  int NumMyElementsX_;
  int NumMyElementsY_;
  int NumGlobalElements_;
  int NumMyBoundaryFaces_;
  int NumGlobalBoundaryFaces_;

  int nx_;
  int ny_;
  double lx_;
  double ly_;
  int mx_;
  int my_;
  double deltax_;
  double deltay_;

  RefCountPtr<Epetra_Map> VertexMap_;
  RefCountPtr<Epetra_Map> ElementMap_;
  RefCountPtr<Epetra_Map> RowMap_;
  RefCountPtr<Epetra_Import> Importer_;

  Epetra_IntSerialDenseMatrix BF_;
};

} // namespace FiniteElements
} // namespace Galeri
#endif