This file is indexed.

/usr/include/trilinos/Galeri_TRIANGLEGrid.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// @HEADER
// ************************************************************************
//
//           Galeri: Finite Element and Matrix Generation Package
//                 Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER

#ifndef GALERI_TRIANGLEGRID_H
#define GALERI_TRIANGLEGRID_H

#include "Galeri_AbstractGrid.h"
extern "C" {
#define ANSI_DECLARATORS
#define REAL double
#include "triangle.h"
}

namespace Galeri {
namespace FiniteElements {

class TRIANGLEGrid : public AbstractGrid 
{
public:

  // @{ Constructor and Destructor
  TRIANGLEGrid(const Epetra_Comm& Comm, 
               const int NumPoints, const double* x, const double* y,
               const double MaxArea) :
    Comm_(Comm)
  {

    if (Comm_.NumProc() != 1)
      throw(Exception(__FILE__, __LINE__,
                      "TRIANGLEGrid can be used w/ 1 processor only"));

    /* Define input points. */

    in_.numberofpoints = NumPoints;
    in_.numberofpointattributes = 1;
    in_.pointlist = (double *) malloc(in_.numberofpoints * 2 * sizeof(double));
    for (int i = 0 ; i < NumPoints ; ++i)
    {
      in_.pointlist[2 * i    ] = x[i];
      in_.pointlist[2 * i + 1] = y[i];
    }
    in_.pointattributelist = (double *) malloc(in_.numberofpoints *
                                               in_.numberofpointattributes *
                                               sizeof(double));
    // not so sure of the commands below
    in_.pointattributelist[0] = 0.0;
    in_.pointattributelist[1] = 1.0;
    in_.pointattributelist[2] = 11.0;
    in_.pointattributelist[3] = 10.0;
    in_.pointmarkerlist = (int *) malloc(in_.numberofpoints * sizeof(int));
    in_.pointmarkerlist[0] = 0;
    in_.pointmarkerlist[1] = 2;
    in_.pointmarkerlist[2] = 0;
    in_.pointmarkerlist[3] = 0;

    in_.numberofsegments = 0;
    in_.numberofholes = 0;
    in_.numberofregions = 1;
    in_.regionlist = (double *) malloc(in_.numberofregions * 4 * sizeof(double));
    in_.regionlist[0] = 1.0;
    in_.regionlist[1] = 1.0;
    in_.regionlist[2] = 1.0;            /* Regional attribute (for whole mesh). */
    in_.regionlist[3] = MaxArea;

    out_.pointlist = (double *) NULL;            /* Not needed if -N switch used. */
    out_.pointattributelist = (double *) NULL;
    out_.pointmarkerlist = (int *) NULL; /* Not needed if -N or -B switch used. */
    out_.trianglelist = (int *) NULL;          /* Not needed if -E switch used. */
    /* Not needed if -E switch used or number of triangle attributes is zero: */
    out_.triangleattributelist = (double *) NULL;
    out_.neighborlist = (int *) NULL;         /* Needed only if -n switch used. */
    /* Needed only if segments are output (-p or -c) and -P not used: */
    out_.segmentlist = (int *) NULL;
    /* Needed only if segments are output (-p or -c) and -P and -B not used: */
    out_.segmentmarkerlist = (int *) NULL;
    out_.edgelist = (int *) NULL;             /* Needed only if -e switch used. */
    out_.edgemarkerlist = (int *) NULL;   /* Needed if -e used and -B not used. */

    /* Triangulate the points.  Switches are chosen to read and write a  */
    /*   PSLG (p), preserve the convex hull (c), number everything from  */
    /*   zero (z), assign a regional attribute to each element (A), and  */
    /*   produce an edge list (e), a Voronoi diagram (v), and a triangle */
    /*   neighbor list (n).                                              */

    triangulate("apczAen", &in_, &out_, NULL);

    VertexMap_ = new Epetra_Map(NumMyVertices(), 0, Comm_);
    RowMap_    = new Epetra_Map(NumMyVertices(), 0, Comm_);

    min_h_.resize(NumMyElements());
    max_h_.resize(NumMyElements());

    for (int i = 0 ; i < NumMyVertices() ; ++i)
    {
      min_h_[i] = 1000000000.0;
      max_h_[i] = 0.0;
    }

    // computes the length of each element
    for (int ie = 0 ; ie < NumMyElements() ; ++ie)
    {
      int vertices[3];
      double x[3], y[3], z[3];
      double h_0, h_1, h_2;

      ElementVertices(ie, vertices);
      VertexCoord(3, vertices, x, y, z);

      h_0 = sqrt((x[0] - x[1]) * (x[0] - x[1]) + 
                 (y[0] - y[1]) * (y[0] - y[1]));
      h_1 = sqrt((x[1] - x[2]) * (x[1] - x[2]) + 
                 (y[1] - y[2]) * (y[1] - y[2]));
      h_2 = sqrt((x[0] - x[2]) * (x[0] - x[2]) + 
                 (y[0] - y[2]) * (y[0] - y[2]));

      if (h_0 < min_h_[ie]) min_h_[ie] = h_0;
      if (h_1 < min_h_[ie]) min_h_[ie] = h_1;
      if (h_2 < min_h_[ie]) min_h_[ie] = h_2;

      if (h_0 > max_h_[ie]) max_h_[ie] = h_0;
      if (h_1 > max_h_[ie]) max_h_[ie] = h_1;
      if (h_2 > max_h_[ie]) max_h_[ie] = h_2;
    }
  }

  ~TRIANGLEGrid()
  {
    if (in_.pointlist != NULL) free(in_.pointlist);
    if (in_.pointattributelist != NULL) free(in_.pointattributelist);
    if (in_.pointmarkerlist != NULL) free(in_.pointmarkerlist);
    if (in_.regionlist != NULL) free(in_.regionlist);
    if (out_.pointlist != NULL) free(out_.pointlist);
    if (out_.pointattributelist != NULL) free(out_.pointattributelist);
    if (VertexMap_) delete VertexMap_;
    if (RowMap_) delete RowMap_;
  }

  virtual int NumDimensions() const
  {
    return(2);
  }

  //! Returns the number of vertices contained in each element.
  virtual int NumVerticesPerElement() const
  {
    return(3);
  }

  //! Returns the number of faces contained in each element.
  virtual int NumFacesPerElement() const 
  {
    return(3);
  }

  //! Returns the number of vertices contained in each face.
  virtual int NumVerticesPerFace() const
  {
    return(2);
  }

  //! Returns a string containing the element type.
  virtual string ElementType() const
  {
    return("ML_TRIANGLE");
  }

  virtual int NumNeighborsPerElement() const
  {
    return(3);
  }

  //! Returns the number of finite elements on the calling process.
  virtual int NumMyElements() const
  {
    return(out_.numberoftriangles);
  }

  //! Returns the global number of finite elements.
  virtual int NumGlobalElements() const
  {
    return(out_.numberoftriangles);
  }

  //! Returns the number of vertices on the calling process.
  virtual int NumMyVertices() const
  {
    return(out_.numberofpoints);
  }

  //! Returns the global number of vertices.
  virtual int NumGlobalVertices() const
  {
    return(out_.numberofpoints);
  }

  //! Returns the number of boundary faces on the calling process.
  virtual int NumMyBoundaryFaces() const
  {
    return(out_.numberofsegments);
  }

  //! Returns the global number of boundary faces.
  virtual int NumGlobalBoundaryFaces() const
  {
    return(out_.numberofsegments);
  }

  //! Returns the volume of all local elements.
  virtual double MyVolume() const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  //! Returns the global volume of the grid.
  virtual double GlobalVolume() const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  //! Returns the coordinates of local vertex \c LocalVertex in vector \c coord.
  virtual void VertexCoord(const int LocalVertex, double* coord) const
  {
    coord[0] = out_.pointlist[2 * LocalVertex];
    coord[1] = out_.pointlist[2 * LocalVertex + 1];
  }

  //! Returns the coordinates of specified local vertices.
  virtual void VertexCoord(const int Length, const int* IDs, double* x, 
                           double* y, double* z) const
  {
    for (int i = 0 ; i < Length ; ++i)
    {
      int ID = IDs[i];
      x[i] = out_.pointlist[2 * ID];
      y[i] = out_.pointlist[2 * ID + 1];
      z[i] = 0.0;
    }
  }

  //! Returns the local vertex IDs of the specified local finite element.
  virtual void ElementVertices(const int LocalElement, int* elements) const
  {
    for (int j = 0; j < out_.numberofcorners; j++)
      elements[j] = out_.trianglelist[LocalElement * out_.numberofcorners + j];
  }

  //! Returns the local vertex IDs of vertices contained in the specified boundary face.
  virtual void FaceVertices(const int LocalFace, int& tag, int* IDs) const
  {
    for (int j = 0; j < 2; j++) {
      IDs[j] = out_.segmentlist[LocalFace * 2 + j];
      tag = 0;
    }
  }

  virtual void ElementNeighbors(const int LocalElement, int* elements) const
  {
    for (int j = 0 ; j < 3; ++j)
      elements[j] = out_.neighborlist[LocalElement * 3 + j];
  }

  //! Returns the patch ID of the specified face.
  virtual int FacePatch(const int LocalFace) const
  {
    return(0);
  }

  //! Returns the volume of the specified local finite element.
  virtual double ElementMinLength(const int LocalElement) const
  {
    return(min_h_[LocalElement]);
  }

  //! Returns the volume of the specified local finite element.
  virtual double ElementMaxLength(const int LocalElement) const
  {
    return(max_h_[LocalElement]);
  }

  //! Returns the volume of the specified local finite element.
  virtual double ElementVolume(const int LocalElement) const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  //! Returns the area of the specified local face.
  virtual double FaceArea(const int LocalFace) const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  // @}
  // @{ Maps and import/export

  //! Returns a reference to the map representing the vertex distribution.
  virtual const Epetra_Map& VertexMap() const
  {
    return(*VertexMap_);
  }

  //! Returns a reference to the map representing the distribution of rows.
  virtual const Epetra_Map& RowMap() const
  {
    return(*RowMap_);
  }

  //! Exports distributed object from RowMap() to VertexMap().
  virtual void ExportToVertexMap(const Epetra_DistObject& RowObject,
                                 Epetra_DistObject& VertexObject) const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  //! Exports distributed object from VertexMap() to RowMap().
  virtual void ExportToRowMap(const Epetra_DistObject& RowObject,
                              Epetra_DistObject& VertexObject) const
  {
    throw(Exception(__FILE__, __LINE__,
                    "Feature not implemented"));
  }

  //! Returns a reference to the communicator object.
  virtual const Epetra_Comm& Comm() const
  {
    return(Comm_);
  }

  // @}
private:

  const Epetra_Comm& Comm_;
  struct triangulateio in_, out_;
  Epetra_Map* VertexMap_;
  Epetra_Map* RowMap_;
  vector<double> min_h_;
  vector<double> max_h_;

}; // class TRIANGLEGrid

} // namespace FiniteElements
} // namespace Galeri
#endif