/usr/include/trilinos/Galeri_TRIANGLEGrid.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | // @HEADER
// ************************************************************************
//
// Galeri: Finite Element and Matrix Generation Package
// Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER
#ifndef GALERI_TRIANGLEGRID_H
#define GALERI_TRIANGLEGRID_H
#include "Galeri_AbstractGrid.h"
extern "C" {
#define ANSI_DECLARATORS
#define REAL double
#include "triangle.h"
}
namespace Galeri {
namespace FiniteElements {
class TRIANGLEGrid : public AbstractGrid
{
public:
// @{ Constructor and Destructor
TRIANGLEGrid(const Epetra_Comm& Comm,
const int NumPoints, const double* x, const double* y,
const double MaxArea) :
Comm_(Comm)
{
if (Comm_.NumProc() != 1)
throw(Exception(__FILE__, __LINE__,
"TRIANGLEGrid can be used w/ 1 processor only"));
/* Define input points. */
in_.numberofpoints = NumPoints;
in_.numberofpointattributes = 1;
in_.pointlist = (double *) malloc(in_.numberofpoints * 2 * sizeof(double));
for (int i = 0 ; i < NumPoints ; ++i)
{
in_.pointlist[2 * i ] = x[i];
in_.pointlist[2 * i + 1] = y[i];
}
in_.pointattributelist = (double *) malloc(in_.numberofpoints *
in_.numberofpointattributes *
sizeof(double));
// not so sure of the commands below
in_.pointattributelist[0] = 0.0;
in_.pointattributelist[1] = 1.0;
in_.pointattributelist[2] = 11.0;
in_.pointattributelist[3] = 10.0;
in_.pointmarkerlist = (int *) malloc(in_.numberofpoints * sizeof(int));
in_.pointmarkerlist[0] = 0;
in_.pointmarkerlist[1] = 2;
in_.pointmarkerlist[2] = 0;
in_.pointmarkerlist[3] = 0;
in_.numberofsegments = 0;
in_.numberofholes = 0;
in_.numberofregions = 1;
in_.regionlist = (double *) malloc(in_.numberofregions * 4 * sizeof(double));
in_.regionlist[0] = 1.0;
in_.regionlist[1] = 1.0;
in_.regionlist[2] = 1.0; /* Regional attribute (for whole mesh). */
in_.regionlist[3] = MaxArea;
out_.pointlist = (double *) NULL; /* Not needed if -N switch used. */
out_.pointattributelist = (double *) NULL;
out_.pointmarkerlist = (int *) NULL; /* Not needed if -N or -B switch used. */
out_.trianglelist = (int *) NULL; /* Not needed if -E switch used. */
/* Not needed if -E switch used or number of triangle attributes is zero: */
out_.triangleattributelist = (double *) NULL;
out_.neighborlist = (int *) NULL; /* Needed only if -n switch used. */
/* Needed only if segments are output (-p or -c) and -P not used: */
out_.segmentlist = (int *) NULL;
/* Needed only if segments are output (-p or -c) and -P and -B not used: */
out_.segmentmarkerlist = (int *) NULL;
out_.edgelist = (int *) NULL; /* Needed only if -e switch used. */
out_.edgemarkerlist = (int *) NULL; /* Needed if -e used and -B not used. */
/* Triangulate the points. Switches are chosen to read and write a */
/* PSLG (p), preserve the convex hull (c), number everything from */
/* zero (z), assign a regional attribute to each element (A), and */
/* produce an edge list (e), a Voronoi diagram (v), and a triangle */
/* neighbor list (n). */
triangulate("apczAen", &in_, &out_, NULL);
VertexMap_ = new Epetra_Map(NumMyVertices(), 0, Comm_);
RowMap_ = new Epetra_Map(NumMyVertices(), 0, Comm_);
min_h_.resize(NumMyElements());
max_h_.resize(NumMyElements());
for (int i = 0 ; i < NumMyVertices() ; ++i)
{
min_h_[i] = 1000000000.0;
max_h_[i] = 0.0;
}
// computes the length of each element
for (int ie = 0 ; ie < NumMyElements() ; ++ie)
{
int vertices[3];
double x[3], y[3], z[3];
double h_0, h_1, h_2;
ElementVertices(ie, vertices);
VertexCoord(3, vertices, x, y, z);
h_0 = sqrt((x[0] - x[1]) * (x[0] - x[1]) +
(y[0] - y[1]) * (y[0] - y[1]));
h_1 = sqrt((x[1] - x[2]) * (x[1] - x[2]) +
(y[1] - y[2]) * (y[1] - y[2]));
h_2 = sqrt((x[0] - x[2]) * (x[0] - x[2]) +
(y[0] - y[2]) * (y[0] - y[2]));
if (h_0 < min_h_[ie]) min_h_[ie] = h_0;
if (h_1 < min_h_[ie]) min_h_[ie] = h_1;
if (h_2 < min_h_[ie]) min_h_[ie] = h_2;
if (h_0 > max_h_[ie]) max_h_[ie] = h_0;
if (h_1 > max_h_[ie]) max_h_[ie] = h_1;
if (h_2 > max_h_[ie]) max_h_[ie] = h_2;
}
}
~TRIANGLEGrid()
{
if (in_.pointlist != NULL) free(in_.pointlist);
if (in_.pointattributelist != NULL) free(in_.pointattributelist);
if (in_.pointmarkerlist != NULL) free(in_.pointmarkerlist);
if (in_.regionlist != NULL) free(in_.regionlist);
if (out_.pointlist != NULL) free(out_.pointlist);
if (out_.pointattributelist != NULL) free(out_.pointattributelist);
if (VertexMap_) delete VertexMap_;
if (RowMap_) delete RowMap_;
}
virtual int NumDimensions() const
{
return(2);
}
//! Returns the number of vertices contained in each element.
virtual int NumVerticesPerElement() const
{
return(3);
}
//! Returns the number of faces contained in each element.
virtual int NumFacesPerElement() const
{
return(3);
}
//! Returns the number of vertices contained in each face.
virtual int NumVerticesPerFace() const
{
return(2);
}
//! Returns a string containing the element type.
virtual string ElementType() const
{
return("ML_TRIANGLE");
}
virtual int NumNeighborsPerElement() const
{
return(3);
}
//! Returns the number of finite elements on the calling process.
virtual int NumMyElements() const
{
return(out_.numberoftriangles);
}
//! Returns the global number of finite elements.
virtual int NumGlobalElements() const
{
return(out_.numberoftriangles);
}
//! Returns the number of vertices on the calling process.
virtual int NumMyVertices() const
{
return(out_.numberofpoints);
}
//! Returns the global number of vertices.
virtual int NumGlobalVertices() const
{
return(out_.numberofpoints);
}
//! Returns the number of boundary faces on the calling process.
virtual int NumMyBoundaryFaces() const
{
return(out_.numberofsegments);
}
//! Returns the global number of boundary faces.
virtual int NumGlobalBoundaryFaces() const
{
return(out_.numberofsegments);
}
//! Returns the volume of all local elements.
virtual double MyVolume() const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
//! Returns the global volume of the grid.
virtual double GlobalVolume() const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
//! Returns the coordinates of local vertex \c LocalVertex in vector \c coord.
virtual void VertexCoord(const int LocalVertex, double* coord) const
{
coord[0] = out_.pointlist[2 * LocalVertex];
coord[1] = out_.pointlist[2 * LocalVertex + 1];
}
//! Returns the coordinates of specified local vertices.
virtual void VertexCoord(const int Length, const int* IDs, double* x,
double* y, double* z) const
{
for (int i = 0 ; i < Length ; ++i)
{
int ID = IDs[i];
x[i] = out_.pointlist[2 * ID];
y[i] = out_.pointlist[2 * ID + 1];
z[i] = 0.0;
}
}
//! Returns the local vertex IDs of the specified local finite element.
virtual void ElementVertices(const int LocalElement, int* elements) const
{
for (int j = 0; j < out_.numberofcorners; j++)
elements[j] = out_.trianglelist[LocalElement * out_.numberofcorners + j];
}
//! Returns the local vertex IDs of vertices contained in the specified boundary face.
virtual void FaceVertices(const int LocalFace, int& tag, int* IDs) const
{
for (int j = 0; j < 2; j++) {
IDs[j] = out_.segmentlist[LocalFace * 2 + j];
tag = 0;
}
}
virtual void ElementNeighbors(const int LocalElement, int* elements) const
{
for (int j = 0 ; j < 3; ++j)
elements[j] = out_.neighborlist[LocalElement * 3 + j];
}
//! Returns the patch ID of the specified face.
virtual int FacePatch(const int LocalFace) const
{
return(0);
}
//! Returns the volume of the specified local finite element.
virtual double ElementMinLength(const int LocalElement) const
{
return(min_h_[LocalElement]);
}
//! Returns the volume of the specified local finite element.
virtual double ElementMaxLength(const int LocalElement) const
{
return(max_h_[LocalElement]);
}
//! Returns the volume of the specified local finite element.
virtual double ElementVolume(const int LocalElement) const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
//! Returns the area of the specified local face.
virtual double FaceArea(const int LocalFace) const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
// @}
// @{ Maps and import/export
//! Returns a reference to the map representing the vertex distribution.
virtual const Epetra_Map& VertexMap() const
{
return(*VertexMap_);
}
//! Returns a reference to the map representing the distribution of rows.
virtual const Epetra_Map& RowMap() const
{
return(*RowMap_);
}
//! Exports distributed object from RowMap() to VertexMap().
virtual void ExportToVertexMap(const Epetra_DistObject& RowObject,
Epetra_DistObject& VertexObject) const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
//! Exports distributed object from VertexMap() to RowMap().
virtual void ExportToRowMap(const Epetra_DistObject& RowObject,
Epetra_DistObject& VertexObject) const
{
throw(Exception(__FILE__, __LINE__,
"Feature not implemented"));
}
//! Returns a reference to the communicator object.
virtual const Epetra_Comm& Comm() const
{
return(Comm_);
}
// @}
private:
const Epetra_Comm& Comm_;
struct triangulateio in_, out_;
Epetra_Map* VertexMap_;
Epetra_Map* RowMap_;
vector<double> min_h_;
vector<double> max_h_;
}; // class TRIANGLEGrid
} // namespace FiniteElements
} // namespace Galeri
#endif
|