/usr/include/trilinos/Galeri_GalerkinVariational.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | // @HEADER
// ************************************************************************
//
// Galeri: Finite Element and Matrix Generation Package
// Copyright (2006) ETHZ/Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
//
// Questions about Galeri? Contact Marzio Sala (marzio.sala _AT_ gmail.com)
//
// ************************************************************************
// @HEADER
#ifndef GALERI_GALERKINVARIATIONAL_H
#define GALERI_GALERKINVARIATIONAL_H
/*!
* \file Galeri_GalerkinVariational.h
*/
#include "Galeri_Workspace.h"
#include "Galeri_AbstractVariational.h"
namespace Galeri {
namespace FiniteElements {
/*!
* \class GalerkinVariational
*
* \brief Defines a pure Galerkin variational form of a scalar PDE.
*
* This class defines a pure Galerkin variational form of a second order,
* symmetric scalar PDE, discretized using Lagrange finite elements. The class is
* templated with an AbstractQuadrature class, which will be used to
* specify the quadrature formula, and the values of test and basis functions
* at the quadrature node. The constructor requires function pointers, that
* specify the values of the coefficients.
*
* \author Marzio Sala, SNL 9214.
*
* \date Last updated on Apr-05.
*/
template<class T>
class GalerkinVariational : public AbstractVariational, public T
{
public:
//! Constructor.
GalerkinVariational(const int NumQuadratureNodes,
double (*diff)(const double&, const double&, const double&),
double (*source)(const double&, const double&, const double&),
double (*force)(const double&, const double&, const double&),
double (*bc)(const double&, const double&, const double&, const int&),
int (*bc_type)(const int&)):
T(NumQuadratureNodes),
diff_(diff),
source_(source),
force_(force),
bc_(bc),
bc_type_(bc_type)
{}
//! Destructor.
~GalerkinVariational() {}
//! Evaluates the diffusion coefficient at point (x, y, z).
inline double diff(const double x, const double y, const double z) const
{
return (diff_(x, y, z));
}
//! Evaluates the source term at point (x, y, z).
inline double source(const double x, const double y, const double z) const
{
return (source_(x, y, z));
}
//! Evaluates the force term at point (x, y, z).
inline double force(const double x, const double y, const double z) const
{
return (force_(x, y, z));
}
//! Integrates the variational form and the right-hand side.
virtual int IntegrateOverElement(const AbstractVariational& Variational,
const double* x, const double* y, const double* z,
const double* data,
double* ElementMatrix, double* ElementRHS) const
{
double xq, yq, zq;
int size = T::NumPhiFunctions();
//double h = data[0];
// zero out local matrix and rhs
for (int i = 0 ; i < size * size ; i++) ElementMatrix[i] = 0.0;
for (int i = 0 ; i < size ; i++) ElementRHS[i] = 0.0;
// cycle over all quadrature nodes
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq);
T::ComputeJacobian(ii,x, y, z);
T::ComputeDerivatives(ii);
for (int i = 0 ; i < T::NumPhiFunctions() ; ++i)
{
for (int j = 0 ; j < T::NumPsiFunctions() ; ++j)
{
ElementMatrix[j + size * i] +=
T::QuadrWeight(ii) * T::DetJacobian(ii) *
Variational.LHS(T::Phi(i), T::Psi(j), T::PhiX(i), T::PsiX(j),
T::PhiY(i), T::PsiY(j), T::PhiZ(i), T::PsiZ(j),
xq, yq, zq);
}
ElementRHS[i] += T::QuadrWeight(ii) * T::DetJacobian(ii) *
Variational.RHS(T::Psi(i), T::PsiX(i), T::PsiY(i), T::PsiZ(i),
xq, yq, zq);
}
}
return 0;
}
//! Computes the norm of the numerical solution over an element.
virtual int ElementNorm(const double* LocalSol, const double* x,
const double* y, const double* z, double* Norm) const
{
double xq, yq, zq;
//double exact[4];
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii,x, y, z, xq, yq, zq );
T::ComputeJacobian(ii,x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
double sol = 0.0, sol_derx = 0.0;
double sol_dery = 0.0, sol_derz = 0.0;
for (int k = 0 ; k < T::NumPhiFunctions() ; ++k)
{
sol += T::Phi(k) * LocalSol[k];
sol_derx += T::PhiX(k) * LocalSol[k];
sol_dery += T::PhiY(k) * LocalSol[k];
sol_derz += T::PhiZ(k) * LocalSol[k];
}
Norm[0] += GlobalWeight*sol*sol;
Norm[1] += GlobalWeight*(sol_derx*sol_derx +
sol_dery*sol_dery +
sol_derz*sol_derz);
}
return 0;
}
//! Computes the norm of the exact solution over an element.
virtual int ElementNorm(int (*ExactSolution)(double, double, double, double *),
const double* x, const double* y, const double* z,
double* Norm) const
{
double xq, yq, zq;
double exact[4];
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
T::ComputeJacobian(ii, x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
(*ExactSolution)(xq, yq, zq, exact);
Norm[0] += GlobalWeight * exact[0] * exact[0];
Norm[1] += GlobalWeight * (exact[1] * exact[1] +
exact[2] * exact[2] +
exact[3] * exact[3]);
}
return 0;
}
//! Computes the norm of the error over an element.
virtual int ElementNorm(const double* LocalSol,
int (*ExactSolution)(double, double, double, double *),
const double* x, const double* y, const double* z, double * Norm) const
{
double xq, yq, zq;
double exact[4];
for (int ii = 0 ; ii < T::NumQuadrNodes() ; ii++)
{
T::ComputeQuadrNodes(ii, x, y, z, xq, yq, zq );
T::ComputeJacobian(ii, x, y, z);
T::ComputeDerivatives(ii);
double GlobalWeight = T::QuadrWeight(ii) * T::DetJacobian(ii);
double diff = 0.0, diff_derx = 0.0;
double diff_dery = 0.0, diff_derz = 0.0;
for (int k = 0 ; k < T::NumPhiFunctions() ; ++k)
{
diff += T::Phi(k) * LocalSol[k];
diff_derx += T::PhiX(k) * LocalSol[k];
diff_dery += T::PhiY(k) * LocalSol[k];
diff_derz += T::PhiZ(k) * LocalSol[k];
}
(*ExactSolution)(xq, yq, zq,exact);
diff -= exact[0];
diff_derx -= exact[1];
diff_dery -= exact[2];
diff_derz -= exact[3];
Norm[0] += GlobalWeight * diff * diff;
Norm[1] += GlobalWeight * (diff_derx * diff_derx +
diff_dery * diff_dery +
diff_derz * diff_derz);
}
return(0);
}
//! Evaluates the left-hand side at point (x, y, z).
inline double LHS(const double Phi, const double Psi,
const double PhiX, const double PsiX,
const double PhiY, const double PsiY,
const double PhiZ, const double PsiZ,
const double x, const double y, const double z) const
{
return(diff(x,y,z) * PhiX * PsiX +
diff(x,y,z) * PhiY * PsiY +
diff(x,y,z) * PhiZ * PsiZ +
source(x,y,z) * Phi * Psi);
}
//! Evaluates the right-hand side at point (x, y, z).
inline double RHS(const double Psi, const double PsiX,
const double PsiY, const double PsiZ,
const double x, const double y, const double z) const
{
return(force(x,y,z)*Psi);
}
//! Returns the boundary condition type of the specified patch.
int BC(const int PatchID) const
{
return(bc_type_(PatchID));
}
//! Returns the value of the boundary condition at point (x, y, z).
double BC(const double x, const double y, const double z, const int PatchID) const
{
return(bc_(x, y, z, PatchID));
}
private:
double (*diff_)(const double& x, const double& y, const double& z);
double (*source_)(const double& x, const double& y, const double& z);
double (*force_)(const double& x, const double& y, const double& z);
double (*bc_)(const double& x, const double& y, const double& z, const int& Patch);
int (*bc_type_)(const int& Patch);
};
} // namespace FiniteElements
} // namespace Galeri
#endif
|