/usr/include/trilinos/Epetra_VbrMatrix.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 | //@HEADER
/*
************************************************************************
Epetra: Linear Algebra Services Package
Copyright (2001) Sandia Corporation
Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.
This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
Questions? Contact Michael A. Heroux (maherou@sandia.gov)
************************************************************************
*/
//@HEADER
#ifndef EPETRA_VBRMATRIX_H
#define EPETRA_VBRMATRIX_H
#include <Epetra_ConfigDefs.h>
#include <Epetra_DistObject.h>
#include <Epetra_CompObject.h>
#include <Epetra_BLAS.h>
#include <Epetra_RowMatrix.h>
#include <Epetra_Operator.h>
#include <Epetra_CrsGraph.h>
#include <Epetra_SerialDenseMatrix.h>
class Epetra_BlockMap;
class Epetra_Map;
class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;
//! Epetra_VbrMatrix: A class for the construction and use of real-valued double-precision variable block-row sparse matrices.
/*! The Epetra_VbrMatrix class is a sparse variable block row matrix object. This matrix can be
used in a parallel setting, with data distribution described by Epetra_Map attributes.
The structure or graph of the matrix is defined by an Epetra_CrsGraph attribute.
In addition to coefficient access, the primary operations provided by Epetra_VbrMatrix are matrix
times vector and matrix times multi-vector multiplication.
<p>
<b>Creating and filling Epetra_VbrMatrix objects</b>
Constructing Epetra_VbrMatrix objects is a multi-step process. The basic steps are as follows:
<ol>
<li> Create Epetra_VbrMatrix instance via one of the constructors:
<ul>
<li>Constructor that accepts one Epetra_Map object, a row-map defining the distribution of matrix rows.
<li>Constructor that accepts two Epetra_Map objects. (The second map is a column-map, and describes the set
of column-indices that appear in each processor's portion of the matrix. Generally these are
overlapping sets -- column-indices may appear on more than one processor.)
<li>Constructor that accepts an Epetra_CrsGraph object, defining the non-zero structure of the matrix.
</ul>
<li> Input coefficient values (more detail on this below).
<li> Complete construction by calling FillComplete.
</ol>
Note that even after FillComplete() has been called, it is possible to update existing matrix
entries but it is \e not possible to create new entries.
<p>
<b>Using Epetra_VbrMatrix as an Epetra_RowMatrix</b>
Although Epetra_VbrMatrix does inherit from Epetra_RowMatrix,
a design flaw in the inheritance structure of Epetra prohibits the use of
an Epetra_VbrMatrix object as an Epetra_RowMatrix in some important situations. Therefore we recommend the
use of the Epetra_VbrRowMatrix class to wrap an Epetra_VbrMatrix object for use as an Epetra_RowMatrix. The
Epetra_VbrRowMatrix object does not duplicate data in the Epetra_VbrMatrix object, but uses it to satisfy the
Epetra_RowMatrix interface.
<b>Epetra_Map attributes</b>
Epetra_VbrMatrix objects have four Epetra_Map attributes, which are held by the Epetra_CrsGraph attribute.
The Epetra_Map attributes can be obtained via these accessor methods:
<ul>
<li>RowMap() Describes the numbering and distribution of the rows of the matrix. The row-map exists and is valid
for the entire life of the matrix. The set of matrix rows is defined by the row-map and may not be changed. Rows
may not be inserted or deleted by the user. The only change that may be made is that the user can replace the
row-map with a compatible row-map (which is the same except for re-numbering) by calling the ReplaceRowMap() method.
<li>ColMap() Describes the set of column-indices that appear in the rows in each processor's portion of the matrix.
Unless provided by the user at construction time, a valid column-map doesn't exist until FillComplete() is called.
<li>RangeMap() Describes the range of the matrix operator. e.g., for a matrix-vector product operation, the result
vector's map must be compatible with the range-map of this matrix. The range-map is usually the same as the row-map.
The range-map is set equal to the row-map at matrix creation time, but may be specified by the user when
FillComplete() is called.
<li>DomainMap() Describes the domain of the matrix operator. The domain-map can be specified by the user when
FillComplete() is called. Until then, it is set equal to the row-map.
</ul>
It is important to note that while the row-map and the range-map are often the same, the column-map and the domain-map
are almost never the same. The set of entries in a distributed column-map almost always form overlapping sets, with
entries being associated with more than one processor. A domain-map, on the other hand, must be a 1-to-1 map, with
entries being associated with only a single processor.
<b>Local versus Global Indices</b>
Epetra_VbrMatrix has query functions IndicesAreLocal() and IndicesAreGlobal(), which are used to determine whether the
underlying Epetra_CrsGraph attribute's column-indices have been transformed into a local index space or not. (This
transformation occurs when the method Epetra_CrsGraph::FillComplete() is called, which happens when
the method Epetra_VbrMatrix::FillComplete() is called.) The state of the indices in the
graph determines the behavior of many Epetra_VbrMatrix methods. If an Epetra_VbrMatrix instance is constructed using
one of the constructors that does not accept a pre-existing Epetra_CrsGraph object, then an Epetra_CrsGraph attribute
is created internally and its indices remain untransformed (IndicesAreGlobal()==true) until Epetra_VbrMatrix::FillComplete()
is called. The query function Epetra_VbrMatrix::Filled() returns true if Epetra_VbrMatrix::FillComplete() has been
called.
<b>Inputting coefficient values</b>
The process for inputting block-entry coefficients is as follows:
<ol>
<li>Indicate that values for a specified row are about to be provided by calling one of these methods
which specify a block-row and a list of block-column-indices:
<ul>
<li>BeginInsertGlobalValues()
<li>BeginInsertMyValues()
<li>BeginReplaceGlobalValues()
<li>BeginReplaceMyValues()
<li>BeginSumIntoGlobalValues()
<li>BeginSumIntoMyValues()
</ul>
<li>Loop over the list of block-column-indices and pass each block-entry to the matrix using the
method SubmitBlockEntry().
<li>Complete the process for the specified block-row by calling the method EndSubmitEntries().
</ol>
Note that the 'GlobalValues' methods have the precondition that IndicesAreGlobal() must be true, and
the 'MyValues' methods have the precondition that IndicesAreLocal() must be true. Furthermore, the
'SumInto' and 'Replace' methods may only be used to update matrix entries which already exist, and
the 'Insert' methods may only be used if IndicesAreContiguous() is false.
<b> Counting Floating Point Operations </b>
Each Epetra_VbrMatrix object keeps track of the number of \e serial floating point operations
performed using the specified object as the \e this argument to the function. The Flops()
function returns this number as a double precision number. Using this information, in
conjunction with the Epetra_Time class, one can get accurate parallel performance
numbers. The ResetFlops() function resets the floating point counter.
*/
class EPETRA_LIB_DLL_EXPORT Epetra_VbrMatrix : public Epetra_DistObject,
public Epetra_CompObject,
public Epetra_BLAS,
public virtual Epetra_RowMatrix {
public:
//! @name Constructors/Destructor
//@{
//! Epetra_VbrMatrix constuctor with variable number of indices per row.
/*! Creates a Epetra_VbrMatrix object and allocates storage.
\param In
CV - A Epetra_DataAccess enumerated type set to Copy or View.
\param In
RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
\param In
NumBlockEntriesPerRow - An integer array of length NumRows
such that NumBlockEntriesPerRow[i] indicates the (approximate) number of Block entries in the ith row.
*/
Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, int *NumBlockEntriesPerRow);
//! Epetra_VbrMatrix constuctor with fixed number of indices per row.
/*! Creates a Epetra_VbrMatrix object and allocates storage.
\param In
CV - A Epetra_DataAccess enumerated type set to Copy or View.
\param In
RowMap - An Epetra_BlockMap listing the block rows that this processor will contribute to.
\param In
NumBlockEntriesPerRow - An integer that indicates the (approximate) number of Block entries in the each Block row.
Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
*/
Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, int NumBlockEntriesPerRow);
//! Epetra_VbrMatrix constuctor with variable number of indices per row.
/*! Creates a Epetra_VbrMatrix object and allocates storage.
\param In
CV - A Epetra_DataAccess enumerated type set to Copy or View.
\param In
RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
\param In
ColMap - A Epetra_BlockMap.
\param In
NumBlockEntriesPerRow - An integer array of length NumRows
such that NumBlockEntriesPerRow[i] indicates the (approximate) number of Block entries in the ith row.
*/
Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, const Epetra_BlockMap& ColMap, int *NumBlockEntriesPerRow);
//! Epetra_VbrMatrix constuctor with fixed number of indices per row.
/*! Creates a Epetra_VbrMatrix object and allocates storage.
\param In
CV - A Epetra_DataAccess enumerated type set to Copy or View.
\param In
RowMap - A Epetra_BlockMap listing the block rows that this processor will contribute to.
\param In
ColMap - An Epetra_BlockMap listing the block columns that this processor will contribute to.
\param In
NumBlockEntriesPerRow - An integer that indicates the (approximate) number of Block entries in the each Block row.
Note that it is possible to use 0 for this value and let fill occur during the insertion phase.
*/
Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_BlockMap& RowMap, const Epetra_BlockMap& ColMap, int NumBlockEntriesPerRow);
//! Construct a matrix using an existing Epetra_CrsGraph object.
/*! Allows the nonzero structure from another matrix, or a structure that was
constructed independently, to be used for this matrix.
\param In
CV - A Epetra_DataAccess enumerated type set to Copy or View.
\param In
Graph - A Epetra_CrsGraph object, extracted from another Epetra matrix object or constructed directly from
using the Epetra_CrsGraph constructors.
*/
Epetra_VbrMatrix(Epetra_DataAccess CV, const Epetra_CrsGraph & Graph);
//! Copy constructor.
Epetra_VbrMatrix(const Epetra_VbrMatrix & Matrix);
//! Epetra_VbrMatrix Destructor
virtual ~Epetra_VbrMatrix();
//@}
//! @name Insertion/Replace/SumInto methods
//@{
Epetra_VbrMatrix& operator=(const Epetra_VbrMatrix& src);
//! Initialize all values in graph of the matrix with constant value.
/*!
\param In
ScalarConstant - Value to use.
\return Integer error code, set to 0 if successful.
*/
int PutScalar(double ScalarConstant);
//! Multiply all values in the matrix by a constant value (in place: A <- ScalarConstant * A).
/*!
\param In
ScalarConstant - Value to use.
\return Integer error code, set to 0 if successful.
*/
int Scale(double ScalarConstant);
//! Initiate insertion of a list of elements in a given global row of the matrix, values are inserted via SubmitEntry().
/*!
\param In
BlockRow - Block Row number (in global coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Global column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginInsertGlobalValues(int BlockRow,
int NumBlockEntries,
int * BlockIndices);
//! Initiate insertion of a list of elements in a given local row of the matrix, values are inserted via SubmitEntry().
/*!
\param In
BlockRow - Block Row number (in local coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Local column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginInsertMyValues(int BlockRow, int NumBlockEntries, int * BlockIndices);
//! Initiate replacement of current values with this list of entries for a given global row of the matrix, values are replaced via SubmitEntry()
/*!
\param In
Row - Block Row number (in global coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Global column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginReplaceGlobalValues(int BlockRow, int NumBlockEntries, int *BlockIndices);
//! Initiate replacement of current values with this list of entries for a given local row of the matrix, values are replaced via SubmitEntry()
/*!
\param In
Row - Block Row number (in local coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Local column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginReplaceMyValues(int BlockRow, int NumBlockEntries, int *BlockIndices);
//! Initiate summing into current values with this list of entries for a given global row of the matrix, values are replaced via SubmitEntry()
/*!
\param In
Row - Block Row number (in global coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Global column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginSumIntoGlobalValues(int BlockRow, int NumBlockEntries, int *BlockIndices);
//! Initiate summing into current values with this list of entries for a given local row of the matrix, values are replaced via SubmitEntry()
/*!
\param In
Row - Block Row number (in local coordinates) to put elements.
\param In
NumBlockEntries - Number of entries.
\param In
Indices - Local column indices corresponding to values.
\return Integer error code, set to 0 if successful.
*/
int BeginSumIntoMyValues(int BlockRow, int NumBlockEntries, int *BlockIndices);
//! Submit a block entry to the indicated block row and column specified in the Begin routine.
/* Submit a block entry that will recorded in the block row that was initiated by one of the
Begin routines listed above. Once a one of the following routines: BeginInsertGlobalValues(),
BeginInsertMyValues(), BeginReplaceGlobalValues(), BeginReplaceMyValues(), BeginSumIntoGlobalValues(),
BeginSumIntoMyValues(), you \e must call SubmitBlockEntry() NumBlockEntries times to register the values
corresponding to the block indices passed in to the Begin routine. If the Epetra_VbrMatrix constuctor
was called in Copy mode, the values will be copied. However, no copying will be done until the EndSubmitEntries()
function is call to complete submission of the current block row. If the constructor was called in View mode, all
block entries passed via SubmitBlockEntry() will not be copied, but a pointer will be set to point to the argument Values
that was passed in by the user.
For performance reasons, SubmitBlockEntry() does minimal processing of data. Any processing that can be
delayed is performed in EndSubmitEntries().
\param In
Values - The starting address of the values.
\param In
LDA - The stride between successive columns of Values.
\param In
NumRows - The number of rows passed in.
\param In
NumCols - The number of columns passed in.
\return Integer error code, set to 0 if successful.
*/
int SubmitBlockEntry(double *Values, int LDA, int NumRows, int NumCols);
//! Submit a block entry to the indicated block row and column specified in the Begin routine.
/* Submit a block entry that will recorded in the block row that was initiated by one of the
Begin routines listed above. Once a one of the following routines: BeginInsertGlobalValues(),
BeginInsertMyValues(), BeginReplaceGlobalValues(), BeginReplaceMyValues(), BeginSumIntoGlobalValues(),
BeginSumIntoMyValues(), you \e must call SubmitBlockEntry() NumBlockEntries times to register the values
corresponding to the block indices passed in to the Begin routine. If the Epetra_VbrMatrix constuctor
was called in Copy mode, the values will be copied. However, no copying will be done until the EndSubmitEntries()
function is call to complete submission of the current block row. If the constructor was called in View mode, all
block entries passed via SubmitBlockEntry() will not be copied, but a pointer will be set to point to the argument Values
that was passed in by the user.
For performance reasons, SubmitBlockEntry() does minimal processing of data. Any processing that can be
delayed is performed in EndSubmitEntries().
\param In
Mat - Preformed dense matrix block.
\return Integer error code, set to 0 if successful.
*/
int SubmitBlockEntry( Epetra_SerialDenseMatrix &Mat );
//! Completes processing of all data passed in for the current block row.
/*! This function completes the processing of all block entries submitted via SubmitBlockEntry().
It also checks to make sure that SubmitBlockEntry was called the correct number of times as
specified by the Begin routine that initiated the entry process.
*/
int EndSubmitEntries();
//! Replaces diagonal values of the with those in the user-provided vector.
/*! This routine is meant to allow replacement of {\bf existing} diagonal values.
If a diagonal value does not exist for a given row, the corresponding value in
the input Epetra_Vector will be ignored and the return code will be set to 1.
The Epetra_Map associated with the input Epetra_Vector must be compatible with
the RowMap of the matrix.
\param Diagonal (In) - New values to be placed in the main diagonal.
\return Integer error code, set to 0 if successful, 1 of one or more diagonal entries not present in matrix.
*/
int ReplaceDiagonalValues(const Epetra_Vector & Diagonal);
//! Signal that data entry is complete, perform transformations to local index space.
/* This version of FillComplete assumes that the domain and range
distributions are identical to the matrix row distributions.
\return error code, 0 if successful. Returns a positive warning code of 3
if the matrix is rectangular (meaning that the other overloading of
FillComplete should have been called, with differen domain-map and
range-map specified).
*/
int FillComplete();
//! Signal that data entry is complete, perform transformations to local index space.
/* This version of FillComplete requires the explicit specification of the domain
and range distribution maps. These maps are used for importing and exporting vector
and multi-vector elements that are needed for distributed matrix computations. For
example, to compute y = Ax in parallel, we would specify the DomainMap as the distribution
of the vector x and the RangeMap as the distribution of the vector y.
\param In
DomainMap - Map that describes the distribution of vector and multi-vectors in the
matrix domain.
\param In
RangeMap - Map that describes the distribution of vector and multi-vectors in the
matrix range.
\return error code, 0 if successful. positive warning code of 2 if it is detected that the
matrix-graph got out of sync since this matrix was constructed (for instance if
graph.FillComplete() was called by another matrix that shares the graph)
*/
int FillComplete(const Epetra_BlockMap& DomainMap, const Epetra_BlockMap& RangeMap);
//! If FillComplete() has been called, this query returns true, otherwise it returns false.
bool Filled() const {return(Graph_->Filled());};
//@}
//! @name Extraction methods
//@{
//! Copy the block indices into user-provided array, set pointers for rest of data for specified global block row.
/*!
This function provides the lightest weight approach to accessing a global block row when the matrix may be
be stored in local or global index space. In other words, this function will always work because the block
indices are returned in user-provided space. All other array arguments are independent of whether or not
indices are local or global. Other than the BlockIndices array, all other array argument are returned as
pointers to internal data.
\param In
BlockRow - Global block row to extract.
\param In
MaxNumBlockEntries - Length of user-provided BlockIndices array.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries actually extracted.
\param Out
BlockIndices - Extracted global column indices for the corresponding block entries.
\param Out
Values - Pointer to list of pointers to block entries. Note that the actual values are not copied.
\return Integer error code, set to 0 if successful.
*/
int ExtractGlobalBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices,
Epetra_SerialDenseMatrix ** & Values) const;
//! Copy the block indices into user-provided array, set pointers for rest of data for specified local block row.
/*!
This function provides the lightest weight approach to accessing a local block row when the matrix may be
be stored in local or global index space. In other words, this function will always work because the block
indices are returned in user-provided space. All other array arguments are independent of whether or not
indices are local or global. Other than the BlockIndices array, all other array argument are returned as
pointers to internal data.
\param In
BlockRow - Local block row to extract.
\param In
MaxNumBlockEntries - Length of user-provided BlockIndices array.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries actually extracted.
\param Out
BlockIndices - Extracted local column indices for the corresponding block entries.
\param Out
Values - Pointer to list of pointers to block entries. Note that the actual values are not copied.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices,
Epetra_SerialDenseMatrix** & Values) const;
//! Initiates a copy of the specified global row in user-provided arrays.
/*!
\param In
BlockRow - Global block row to extract.
\param In
MaxNumBlockEntries - Length of user-provided BlockIndices, ColDims, and LDAs arrays.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries actually extracted.
\param Out
BlockIndices - Extracted global column indices for the corresponding block entries.
\param Out
ColDim - List of column dimensions for each corresponding block entry that will be extracted.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractGlobalBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices, int * ColDims) const;
//! Initiates a copy of the specified local row in user-provided arrays.
/*!
\param In
BlockRow - Local block row to extract.
\param In
MaxNumBlockEntries - Length of user-provided BlockIndices, ColDims, and LDAs arrays.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries actually extracted.
\param Out
BlockIndices - Extracted local column indices for the corresponding block entries.
\param Out
ColDim - List of column dimensions for each corresponding block entry that will be extracted.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractMyBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices, int * ColDims) const;
//! Extract a copy of an entry from the block row specified by one of the BeginExtract routines.
/*! Once BeginExtractGlobalBlockRowCopy() or BeginExtractMyBlockRowCopy() is called, you can extract
the block entries of specified block row one-entry-at-a-time. The entries will be extracted
in an order corresponding to the BlockIndices list that was returned by the BeginExtract routine.
\param In
SizeOfValues - Amount of memory associated with Values. This must be at least as big as
LDA*NumCol, where NumCol is the column dimension of the block entry being copied
\param InOut
Values - Starting location where the block entry will be copied.
\param In
LDA - Specifies the stride that will be used when copying columns into Values.
\param In
SumInto - If set to true, the block entry values will be summed into existing values.
*/
int ExtractEntryCopy(int SizeOfValues, double * Values, int LDA, bool SumInto) const;
//! Initiates a view of the specified global row, only works if matrix indices are in global mode.
/*!
\param In
BlockRow - Global block row to view.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries to be viewed.
\param Out
BlockIndices - Pointer to global column indices for the corresponding block entries.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractGlobalBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
int * & BlockIndices) const;
//! Initiates a view of the specified local row, only works if matrix indices are in local mode.
/*!
\param In
BlockRow - Local block row to view.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries to be viewed.
\param Out
BlockIndices - Pointer to local column indices for the corresponding block entries.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractMyBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
int * & BlockIndices) const;
//! Returns a pointer to the current block entry.
/*! After a call to BeginExtractGlobal() or BlockRowViewBeginExtractMyBlockRowView(),
ExtractEntryView() can be called up to NumBlockEntries times to get each block entry in the
specified block row.
\param InOut
entry - A pointer that will be set to the current block entry.
*/
int ExtractEntryView(Epetra_SerialDenseMatrix* & entry) const;
//! Initiates a view of the specified global row, only works if matrix indices are in global mode.
/*!
\param In
BlockRow - Global block row to view.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries to be viewed.
\param Out
BlockIndices - Pointer to global column indices for the corresponding block entries.
\param Out
Values - Pointer to an array of pointers to the block entries in the specified block row.
\return Integer error code, set to 0 if successful.
*/
int ExtractGlobalBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
int * & BlockIndices,
Epetra_SerialDenseMatrix** & Values) const;
//! Initiates a view of the specified local row, only works if matrix indices are in local mode.
/*!
\param In
BlockRow - Local block row to view.
\param Out
RowDim - Number of equations in the requested block row.
\param Out
NumBlockEntries - Number of nonzero entries to be viewed.
\param Out
BlockIndices - Pointer to local column indices for the corresponding block entries.
\param Out
Values - Pointer to an array of pointers to the block entries in the specified block row.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
int * & BlockIndices,
Epetra_SerialDenseMatrix** & Values) const;
//! Returns a copy of the main diagonal in a user-provided vector.
/*!
\param Out
Diagonal - Extracted main diagonal.
\return Integer error code, set to 0 if successful.
*/
int ExtractDiagonalCopy(Epetra_Vector & Diagonal) const;
//! Initiates a copy of the block diagonal entries to user-provided arrays.
/*!
\param In
MaxNumBlockDiagonalEntries - Length of user-provided RowColDims array.
\param Out
NumBlockDiagonalEntries - Number of block diagonal entries that can actually be extracted.
\param Out
RowColDim - List of row and column dimension for corresponding block diagonal entries.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractBlockDiagonalCopy(int MaxNumBlockDiagonalEntries,
int & NumBlockDiagonalEntries, int * RowColDims ) const;
//! Extract a copy of a block diagonal entry from the matrix.
/*! Once BeginExtractBlockDiagonalCopy() is called, you can extract
the block diagonal entries one-entry-at-a-time. The entries will be extracted
in ascending order.
\param In
SizeOfValues - Amount of memory associated with Values. This must be at least as big as
LDA*NumCol, where NumCol is the column dimension of the block entry being copied
\param InOut
Values - Starting location where the block entry will be copied.
\param In
LDA - Specifies the stride that will be used when copying columns into Values.
\param In
SumInto - If set to true, the block entry values will be summed into existing values.
*/
int ExtractBlockDiagonalEntryCopy(int SizeOfValues, double * Values, int LDA, bool SumInto) const;
//! Initiates a view of the block diagonal entries.
/*!
\param Out
NumBlockDiagonalEntries - Number of block diagonal entries that can be viewed.
\param Out
RowColDim - Pointer to list of row and column dimension for corresponding block diagonal entries.
\return Integer error code, set to 0 if successful.
*/
int BeginExtractBlockDiagonalView(int & NumBlockDiagonalEntries, int * & RowColDims ) const;
//! Extract a view of a block diagonal entry from the matrix.
/*! Once BeginExtractBlockDiagonalView() is called, you can extract a view of
the block diagonal entries one-entry-at-a-time. The views will be extracted
in ascending order.
\param Out
Values - Pointer to internal copy of block entry.
\param Out
LDA - Column stride of Values.
*/
int ExtractBlockDiagonalEntryView(double * & Values, int & LDA) const;
//@}
//! @name Computational methods
//@{
//! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_Vector x in y.
/*!
\param In
TransA - If true, multiply by the transpose of matrix, otherwise just use matrix.
\param In
x - A Epetra_Vector to multiply by.
\param Out
y - A Epetra_Vector containing result.
\return Integer error code, set to 0 if successful.
*/
int Multiply1(bool TransA, const Epetra_Vector& x, Epetra_Vector& y) const;
//! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_MultiVector X in Y.
/*!
\param In
TransA -If true, multiply by the transpose of matrix, otherwise just use matrix.
\param In
X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Out
Y -A Epetra_MultiVector of dimension NumVectorscontaining result.
\return Integer error code, set to 0 if successful.
*/
int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the result of a solve using the Epetra_VbrMatrix on a Epetra_Vector x in y.
/*!
\param In
Upper -If true, solve Ux = y, otherwise solve Lx = y.
\param In
Trans -If true, solve transpose problem.
\param In
UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
\param In
x -A Epetra_Vector to solve for.
\param Out
y -A Epetra_Vector containing result.
\return Integer error code, set to 0 if successful.
*/
int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_Vector& x, Epetra_Vector& y) const;
//! Returns the result of a Epetra_VbrMatrix multiplied by a Epetra_MultiVector X in Y.
/*!
\param In
Upper -If true, solve Ux = y, otherwise solve Lx = y.
\param In
Trans -If true, solve transpose problem.
\param In
UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
\param In
X - A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Computes the sum of absolute values of the rows of the Epetra_VbrMatrix, results returned in x.
/*! The vector x will return such that x[i] will contain the inverse of sum of the absolute values of the
\e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A. Using the resulting vector from this function as input to LeftScale()
will make the infinity norm of the resulting matrix exactly 1.
\param Out
x -A Epetra_Vector containing the row sums of the \e this matrix.
\warning It is assumed that the distribution of x is the same as the rows of \e this.
\return Integer error code, set to 0 if successful.
*/
int InvRowSums(Epetra_Vector& x) const;
//! Scales the Epetra_VbrMatrix on the left with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
and j denotes the column number of A.
\param In
x -A Epetra_Vector to solve for.
\return Integer error code, set to 0 if successful.
*/
int LeftScale(const Epetra_Vector& x);
//! Computes the sum of absolute values of the columns of the Epetra_VbrMatrix, results returned in x.
/*! The vector x will return such that x[j] will contain the inverse of sum of the absolute values of the
\e this matrix will be sca such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A. Using the resulting vector from this function as input to
RighttScale() will make the one norm of the resulting matrix exactly 1.
\param Out
x -A Epetra_Vector containing the column sums of the \e this matrix.
\warning It is assumed that the distribution of x is the same as the rows of \e this.
\return Integer error code, set to 0 if successful.
*/
int InvColSums(Epetra_Vector& x) const ;
//! Scales the Epetra_VbrMatrix on the right with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A.
\param In
x -The Epetra_Vector used for scaling \e this.
\return Integer error code, set to 0 if successful.
*/
int RightScale(const Epetra_Vector& x);
//@}
//! @name Matrix Properties Query Methods
//@{
//! Eliminates memory that is used for construction. Make consecutive row index sections contiguous.
int OptimizeStorage();
//! If OptimizeStorage() has been called, this query returns true, otherwise it returns false.
bool StorageOptimized() const {return(StorageOptimized_);};
//! If matrix indices has not been transformed to local, this query returns true, otherwise it returns false.
bool IndicesAreGlobal() const {return(Graph_->IndicesAreGlobal());};
//! If matrix indices has been transformed to local, this query returns true, otherwise it returns false.
bool IndicesAreLocal() const {return(Graph_->IndicesAreLocal());};
//! If matrix indices are packed into single array (done in OptimizeStorage()) return true, otherwise false.
bool IndicesAreContiguous() const {return(Graph_->IndicesAreContiguous());};
//! If matrix is lower triangular in local index space, this query returns true, otherwise it returns false.
bool LowerTriangular() const {return(Graph_->LowerTriangular());};
//! If matrix is upper triangular in local index space, this query returns true, otherwise it returns false.
bool UpperTriangular() const {return(Graph_->UpperTriangular());};
//! If matrix has no diagonal entries based on global row/column index comparisons, this query returns true, otherwise it returns false.
bool NoDiagonal() const {return(Graph_->NoDiagonal());};
//@}
//! @name Atribute access functions
//@{
//! Returns the infinity norm of the global matrix.
/* Returns the quantity \f$ \| A \|_\infty\f$ such that
\f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f].
\warning The NormInf() method will not properly calculate the infinity norm for a matrix that has entries that are
replicated on multiple processors. */
double NormInf() const;
//! Returns the one norm of the global matrix.
/* Returns the quantity \f$ \| A \|_1\f$ such that
\f[\| A \|_1 = \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
\warning The NormOne() method will not properly calculate the one norm for a matrix that has entries that are
*/
double NormOne() const;
//! Returns the frobenius norm of the global matrix.
/* Returns the quantity \f[ \| A \|_{Frobenius} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n\|a_{ij}\|^2}\f]
\warning the NormFrobenius() method will not properly calculate the frobenius norm for a matrix that
has entries which are replicated on multiple processors. In that case, the returned
norm will be larger than the true norm.
*/
double NormFrobenius() const;
//! Returns the maximum row dimension of all block entries on this processor.
int MaxRowDim() const {return(Graph_->MaxRowDim());};
//! Returns the maximum column dimension of all block entries on this processor.
int MaxColDim() const {return(Graph_->MaxColDim());};
//! Returns the maximum row dimension of all block entries across all processors.
int GlobalMaxRowDim() const {return(Graph_->GlobalMaxRowDim());};
//! Returns the maximum column dimension of all block entries across all processors.
int GlobalMaxColDim() const {return(Graph_->GlobalMaxColDim());};
//! Returns the number of matrix rows owned by the calling processor.
int NumMyRows() const {return(Graph_->NumMyRows());};
//! Returns the number of matrix columns owned by the calling processor.
int NumMyCols() const {return(Graph_->NumMyCols());};
//! Returns the number of nonzero entriesowned by the calling processor .
int NumMyNonzeros() const {return(Graph_->NumMyNonzeros());};
//! Returns the number of global matrix rows.
int NumGlobalRows() const {return(Graph_->NumGlobalRows());};
//! Returns the number of global matrix columns.
int NumGlobalCols() const {return(Graph_->NumGlobalCols());};
//! Returns the number of nonzero entries in the global matrix.
/*
Note that if maps are defined such that some nonzeros appear on
multiple processors, then those nonzeros will be counted multiple
times. If the user wishes to assemble a matrix from overlapping
submatrices, they can use Epetra_FEVbrMatrix.
*/
int NumGlobalNonzeros() const {return(Graph_->NumGlobalNonzeros());};
//! Returns the number of Block matrix rows owned by the calling processor.
int NumMyBlockRows() const {return(Graph_->NumMyBlockRows());};
//! Returns the number of Block matrix columns owned by the calling processor.
int NumMyBlockCols() const {return(Graph_->NumMyBlockCols());};
//! Returns the number of nonzero block entries in the calling processor's portion of the matrix.
int NumMyBlockEntries() const {return(Graph_->NumMyEntries());};
//! Returns the number of local nonzero block diagonal entries, based on global row/column index comparisons.
int NumMyBlockDiagonals() const {return(Graph_->NumMyBlockDiagonals());};
//! Returns the number of local nonzero diagonal entries, based on global row/column index comparisons.
int NumMyDiagonals() const {return(Graph_->NumMyDiagonals());};
//! Returns the number of global Block matrix rows.
int NumGlobalBlockRows() const {return(Graph_->NumGlobalBlockRows());};
//! Returns the number of global Block matrix columns.
int NumGlobalBlockCols() const {return(Graph_->NumGlobalBlockCols());};
//! Returns the number of nonzero block entries in the global matrix.
int NumGlobalBlockEntries() const {return(Graph_->NumGlobalEntries());};
//! Returns the number of global nonzero block diagonal entries, based on global row/column index comparisions.
int NumGlobalBlockDiagonals() const {return(Graph_->NumGlobalBlockDiagonals());};
//! Returns the number of global nonzero diagonal entries, based on global row/column index comparisions.
int NumGlobalDiagonals() const {return(Graph_->NumGlobalDiagonals());};
//! Returns the current number of nonzero Block entries in specified global row on this processor.
int NumGlobalBlockEntries(int Row) const {return(Graph_->NumGlobalIndices(Row));};
//! Returns the allocated number of nonzero Block entries in specified global row on this processor.
int NumAllocatedGlobalBlockEntries(int Row) const{return(Graph_->NumAllocatedGlobalIndices(Row));};
//! Returns the maximum number of nonzero entries across all rows on this processor.
int MaxNumBlockEntries() const {return(Graph_->MaxNumIndices());};
//! Returns the maximum number of nonzero entries across all rows on this processor.
int GlobalMaxNumBlockEntries() const {return(Graph_->GlobalMaxNumIndices());};
//! Returns the current number of nonzero Block entries in specified local row on this processor.
int NumMyBlockEntries(int Row) const {return(Graph_->NumMyIndices(Row));};
//! Returns the allocated number of nonzero Block entries in specified local row on this processor.
int NumAllocatedMyBlockEntries(int Row) const {return(Graph_->NumAllocatedMyIndices(Row));};
//! Returns the maximum number of nonzero entries across all block rows on this processor.
/*! Let ki = the number of nonzero values in the ith block row of the VbrMatrix object. For example,
if the ith block row had 5 block entries and the size of each entry was 4-by-4, ki would be 80.
Then this function return the max over all ki for all row on this processor.
*/
int MaxNumNonzeros() const {return(Graph_->MaxNumNonzeros());};
//! Returns the maximum number of nonzero entries across all block rows on \e all processors.
/*! This function returns the max over all processor of MaxNumNonzeros().
*/
int GlobalMaxNumNonzeros() const {return(Graph_->GlobalMaxNumNonzeros());};
//! Returns the index base for row and column indices for this graph.
int IndexBase() const {return(Graph_->IndexBase());};
//! Returns a pointer to the Epetra_CrsGraph object associated with this matrix.
const Epetra_CrsGraph & Graph() const {return(*Graph_);};
//! Returns the Epetra_Import object that contains the import operations for distributed operations.
const Epetra_Import * Importer() const {return(Graph_->Importer());};
//! Returns the Epetra_Export object that contains the export operations for distributed operations.
const Epetra_Export * Exporter() const {return(Graph_->Exporter());};
//! Returns the Epetra_BlockMap object associated with the domain of this matrix operator.
const Epetra_BlockMap & DomainMap() const {return(Graph_->DomainMap());};
//! Returns the Epetra_BlockMap object associated with the range of this matrix operator.
const Epetra_BlockMap & RangeMap() const {return(Graph_->RangeMap());};
//! Returns the RowMap object as an Epetra_BlockMap (the Epetra_Map base class) needed for implementing Epetra_RowMatrix.
const Epetra_BlockMap & RowMap() const {return(Graph_->RowMap());};
//! Returns the ColMap as an Epetra_BlockMap (the Epetra_Map base class) needed for implementing Epetra_RowMatrix.
const Epetra_BlockMap & ColMap() const {return(Graph_->ColMap());};
//! Fills a matrix with rows from a source matrix based on the specified importer.
//! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
const Epetra_Comm & Comm() const {return(Graph_->Comm());};
//@}
//! @name Local/Global ID methods
//@{
//! Returns the local row index for given global row index, returns -1 if no local row for this global row.
int LRID( int GRID_in) const {return(Graph_->LRID(GRID_in));};
//! Returns the global row index for give local row index, returns IndexBase-1 if we don't have this local row.
int GRID( int LRID_in) const {return(Graph_->GRID(LRID_in));};
//! Returns the local column index for given global column index, returns -1 if no local column for this global column.
int LCID( int GCID_in) const {return(Graph_->LCID(GCID_in));};
//! Returns the global column index for give local column index, returns IndexBase-1 if we don't have this local column.
int GCID( int LCID_in) const {return(Graph_->GCID(LCID_in));};
//! Returns true if the GRID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyGRID(int GRID_in) const {return(Graph_->MyGRID(GRID_in));};
//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyLRID(int LRID_in) const {return(Graph_->MyLRID(LRID_in));};
//! Returns true if the GCID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyGCID(int GCID_in) const {return(Graph_->MyGCID(GCID_in));};
//! Returns true if the LRID passed in belongs to the calling processor in this map, otherwise returns false.
bool MyLCID(int LCID_in) const {return(Graph_->MyLCID(LCID_in));};
//! Returns true of GID is owned by the calling processor, otherwise it returns false.
bool MyGlobalBlockRow(int GID) const {return(Graph_->MyGlobalRow(GID));};
//@}
//! @name I/O Methods
//@{
//! Print method
virtual void Print(ostream & os) const;
//@}
//! @name Additional methods required to support the Epetra_Operator interface
//@{
//! Returns a character string describing the operator
const char * Label() const {return(Epetra_Object::Label());};
//! If set true, transpose of this operator will be applied.
/*! This flag allows the transpose of the given operator to be used implicitly. Setting this flag
affects only the Apply() and ApplyInverse() methods. If the implementation of this interface
does not support transpose use, this method should return a value of -1.
\param In
UseTranspose -If true, multiply by the transpose of operator, otherwise just use operator.
\return Always returns 0.
*/
int SetUseTranspose(bool UseTranspose_in) {UseTranspose_ = UseTranspose_in; return(0);};
//! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
/*!
\param In
X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
/*! In this implementation, we use several existing attributes to determine how virtual
method ApplyInverse() should call the concrete method Solve(). We pass in the UpperTriangular(),
the Epetra_VbrMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
be accounted for when doing a triangular solve.
\param In
X - A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int ApplyInverse(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns true because this class can compute an Inf-norm.
bool HasNormInf() const {return(true);};
//! Returns the current UseTranspose setting.
bool UseTranspose() const {return(UseTranspose_);};
//! Returns the Epetra_Map object associated with the domain of this matrix operator.
const Epetra_Map & OperatorDomainMap() const
{
if (!HavePointObjects_) GeneratePointObjects();
if (UseTranspose()) return(*OperatorRangeMap_);
else return(*OperatorDomainMap_);
}
//! Returns the Epetra_Map object associated with the range of this matrix operator.
const Epetra_Map & OperatorRangeMap() const
{
if (!HavePointObjects_) GeneratePointObjects();
if (UseTranspose()) return(*OperatorDomainMap_);
else return(*OperatorRangeMap_);
}
//@}
//! @name Additional methods required to implement RowMatrix interface
//@{
//! Returns a copy of the specified global row in user-provided arrays.
/*!
\param In
GlobalRow - Global row to extract.
\param In
Length - Length of Values and Indices.
\param Out
NumEntries - Number of nonzero entries extracted.
\param Out
Values - Extracted values for this row.
\param Out
Indices - Extracted global column indices for the corresponding values.
\return Integer error code, set to 0 if successful.
*/
int ExtractGlobalRowCopy(int GlobalRow, int Length, int & NumEntries, double *Values, int * Indices) const;
//! Returns a copy of the specified local row in user-provided arrays.
/*!
\param In
MyRow - Local row to extract.
\param In
Length - Length of Values and Indices.
\param Out
NumEntries - Number of nonzero entries extracted.
\param Out
Values - Extracted values for this row.
\param Out
Indices - Extracted local column indices for the corresponding values.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyRowCopy(int MyRow, int Length, int & NumEntries, double *Values, int * Indices) const;
//! Return the current number of values stored for the specified local row.
/*!
\param In
MyRow - Local row.
\param Out
NumEntries - Number of nonzero values.
\return Integer error code, set to 0 if successful.
*/
int NumMyRowEntries(int MyRow, int & NumEntries) const;
//! Returns the maximum of NumMyRowEntries() over all rows.
int MaxNumEntries() const;
//! Map() method inherited from Epetra_DistObject
const Epetra_BlockMap& Map() const { return Epetra_DistObject::Map(); }
//! Returns the EpetraMap object associated with the rows of this matrix.
const Epetra_Map & RowMatrixRowMap() const
{ if (!HavePointObjects_) GeneratePointObjects(); return(*RowMatrixRowMap_); };
//! Returns the Epetra_Map object associated with columns of this matrix.
const Epetra_Map & RowMatrixColMap() const
{ if (!HavePointObjects_) GeneratePointObjects(); return(*RowMatrixColMap_); };
//! Returns the Epetra_Import object that contains the import operations for distributed operations.
const Epetra_Import * RowMatrixImporter() const
{ if (!HavePointObjects_) GeneratePointObjects(); return(RowMatrixImporter_); };
//@}
//! @name Deprecated methods: These methods still work, but will be removed in a future version
//@{
//! Use BlockColMap() instead.
const Epetra_BlockMap & BlockImportMap() const {return(Graph_->ImportMap());};
//! Use FillComplete() instead.
int TransformToLocal();
//! Use FillComplete(const Epetra_BlockMap& DomainMap, const Epetra_BlockMap& RangeMap) instead.
int TransformToLocal(const Epetra_BlockMap* DomainMap, const Epetra_BlockMap* RangeMap);
//@}
protected:
void DeleteMemory();
bool Allocated() const {return(Allocated_);};
int SetAllocated(bool Flag) {Allocated_ = Flag; return(0);};
Epetra_SerialDenseMatrix *** Values() const {return(Entries_);};
// Internal utilities
int DoMultiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
int DoSolve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
void InitializeDefaults();
int Allocate();
int BeginInsertValues(int BlockRow, int NumBlockEntries,
int * BlockIndices, bool IndicesAreLocal);
int BeginReplaceValues(int BlockRow, int NumBlockEntries,
int *BlockIndices, bool IndicesAreLocal);
int BeginSumIntoValues(int BlockRow, int NumBlockEntries,
int *BlockIndices, bool IndicesAreLocal);
int SetupForSubmits(int BlockRow, int NumBlockEntries, int * BlockIndices,
bool IndicesAreLocal, Epetra_CombineMode SubmitMode);
int EndReplaceSumIntoValues();
int EndInsertValues();
int CopyMat(double * A, int LDA, int NumRows, int NumCols,
double * B, int LDB, bool SumInto) const;
int BeginExtractBlockRowCopy(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices, int * ColDims,
bool IndicesAreLocal) const;
int SetupForExtracts(int BlockRow, int & RowDim, int NumBlockEntries,
bool ExtractView, bool IndicesAreLocal) const;
int ExtractBlockDimsCopy(int NumBlockEntries, int * ColDims) const;
int ExtractBlockRowPointers(int BlockRow, int MaxNumBlockEntries,
int & RowDim, int & NumBlockEntries,
int * BlockIndices,
Epetra_SerialDenseMatrix ** & Values,
bool IndicesAreLocal) const;
int BeginExtractBlockRowView(int BlockRow, int & RowDim, int & NumBlockEntries,
int * & BlockIndices,
bool IndicesAreLocal) const;
int CopyMatDiag(double * A, int LDA, int NumRows, int NumCols,
double * Diagonal) const;
int ReplaceMatDiag(double * A, int LDA, int NumRows, int NumCols,
double * Diagonal);
//This BlockRowMultiply accepts Alpha and Beta arguments. It is called
//from within the 'solve' methods.
void BlockRowMultiply(bool TransA, int RowDim, int NumEntries,
int * BlockIndices, int RowOff,
int * FirstPointInElementList, int * ElementSizeList,
double Alpha, Epetra_SerialDenseMatrix** As,
double ** X, double Beta, double ** Y, int NumVectors) const;
//This BlockRowMultiply doesn't accept Alpha and Beta arguments, instead it
//assumes that they are both 1.0. It is called from within the 'Multiply'
//methods.
void BlockRowMultiply(bool TransA, int RowDim, int NumEntries,
int * BlockIndices, int RowOff,
int * FirstPointInElementList,
int * ElementSizeList,
Epetra_SerialDenseMatrix** As,
double ** X, double ** Y, int NumVectors) const;
//
// Assumes Alpha=Beta=1 and works only on storage optimized matrices
//
void FastBlockRowMultiply(bool TransA, int RowDim, int NumEntries,
int * BlockIndices, int RowOff,
int * FirstPointInElementList,
int * ElementSizeList,
Epetra_SerialDenseMatrix** As,
double ** X, double ** Y, int NumVectors) const;
int InverseSums(bool DoRows, Epetra_Vector& x) const;
int Scale(bool DoRows, const Epetra_Vector& x);
void BlockRowNormInf(int RowDim, int NumEntries,
Epetra_SerialDenseMatrix** As,
double * Y) const;
void BlockRowNormOne(int RowDim, int NumEntries, int * BlockRowIndices,
Epetra_SerialDenseMatrix** As,
int * ColFirstPointInElementList, double * x) const;
void SetStaticGraph(bool Flag) {StaticGraph_ = Flag;};
int CheckSizes(const Epetra_SrcDistObject& A);
int CopyAndPermute(const Epetra_SrcDistObject & Source,
int NumSameIDs,
int NumPermuteIDs,
int * PermuteToLIDs,
int *PermuteFromLIDs,
const Epetra_OffsetIndex * Indexor);
int PackAndPrepare(const Epetra_SrcDistObject & Source,
int NumExportIDs,
int * ExportLIDs,
int & LenExports,
char * & Exports,
int & SizeOfPacket,
int * Sizes,
bool & VarSizes,
Epetra_Distributor & Distor);
int UnpackAndCombine(const Epetra_SrcDistObject & Source,
int NumImportIDs,
int * ImportLIDs,
int LenImports,
char * Imports,
int & SizeOfPacket,
Epetra_Distributor & Distor,
Epetra_CombineMode CombineMode,
const Epetra_OffsetIndex * Indexor);
//! Sort column entries, row-by-row, in ascending order.
int SortEntries();
//! If SortEntries() has been called, this query returns true, otherwise it returns false.
bool Sorted() const {return(Graph_->Sorted());};
//! Add entries that have the same column index. Remove redundant entries from list.
int MergeRedundantEntries();
//! If MergeRedundantEntries() has been called, this query returns true, otherwise it returns false.
bool NoRedundancies() const {return(Graph_->NoRedundancies());};
bool StaticGraph() const {return(StaticGraph_);};
int GeneratePointObjects() const;
int BlockMap2PointMap(const Epetra_BlockMap & BlockMap, Epetra_Map * & PointMap) const;
int UpdateOperatorXY(const Epetra_MultiVector& X, const Epetra_MultiVector& Y) const;
Epetra_CrsGraph * Graph_;
bool Allocated_;
bool StaticGraph_;
bool UseTranspose_;
bool constructedWithFilledGraph_;
bool matrixFillCompleteCalled_;
bool StorageOptimized_;
int NumMyBlockRows_;
Epetra_DataAccess CV_;
int * NumBlockEntriesPerRow_;
int * NumAllocatedBlockEntriesPerRow_;
int ** Indices_;
int * ElementSizeList_;
int * FirstPointInElementList_;
Epetra_SerialDenseMatrix ***Entries_;
double *All_Values_Orig_;
double *All_Values_;
mutable double NormInf_;
mutable double NormOne_;
mutable double NormFrob_;
mutable Epetra_MultiVector * ImportVector_;
mutable Epetra_MultiVector * ExportVector_;
// State variables needed for constructing matrix entry-by-entry
mutable int *TempRowDims_;
mutable Epetra_SerialDenseMatrix **TempEntries_;
mutable int LenTemps_;
mutable int CurBlockRow_;
mutable int CurNumBlockEntries_;
mutable int * CurBlockIndices_;
mutable int CurEntry_;
mutable bool CurIndicesAreLocal_;
mutable Epetra_CombineMode CurSubmitMode_;
// State variables needed for extracting entries
mutable int CurExtractBlockRow_;
mutable int CurExtractEntry_;
mutable int CurExtractNumBlockEntries_;
mutable bool CurExtractIndicesAreLocal_;
mutable bool CurExtractView_;
mutable int CurRowDim_;
// State variable for extracting block diagonal entries
mutable int CurBlockDiag_;
// Maps and importer that support the Epetra_RowMatrix interface
mutable Epetra_Map * RowMatrixRowMap_;
mutable Epetra_Map * RowMatrixColMap_;
mutable Epetra_Import * RowMatrixImporter_;
// Maps that support the Epetra_Operator interface
mutable Epetra_Map * OperatorDomainMap_;
mutable Epetra_Map * OperatorRangeMap_;
mutable Epetra_MultiVector * OperatorX_;
mutable Epetra_MultiVector * OperatorY_;
// bool to indicate if above four point maps and importer have already been created
mutable bool HavePointObjects_;
bool squareFillCompleteCalled_;
};
#endif /* EPETRA_VBRMATRIX_H */
|