This file is indexed.

/usr/include/trilinos/Epetra_SerialDenseMatrix.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//@HEADER
/*
************************************************************************

              Epetra: Linear Algebra Services Package 
                Copyright (2001) Sandia Corporation

Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.

This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
 
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.
 
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
Questions? Contact Michael A. Heroux (maherou@sandia.gov) 

************************************************************************
*/
//@HEADER

#ifndef EPETRA_SERIALDENSEMATRIX_H
#define EPETRA_SERIALDENSEMATRIX_H

#include "Epetra_ConfigDefs.h"
#include "Epetra_Object.h" 
#include "Epetra_CompObject.h"
#include "Epetra_BLAS.h"
#include "Epetra_SerialDenseOperator.h"
class Epetra_SerialSymDenseMatrix;
class Epetra_VbrMatrix;

//! Epetra_SerialDenseMatrix: A class for constructing and using real double precision general dense matrices.

/*! The Epetra_SerialDenseMatrix class enables the construction and use of real-valued, general, 
    double-precision dense matrices.  It is built on the BLAS, and derives from the Epetra_BLAS. 

The Epetra_SerialDenseMatrix class is intended to provide very basic support for dense rectangular matrices.


<b>Constructing Epetra_SerialDenseMatrix Objects</b>

There are four Epetra_SerialDenseMatrix constructors.  The first constructs a zero-sized object which should be made
to appropriate length using the Shape() or Reshape() functions and then filled with the [] or () operators. 
The second constructs an object sized to the dimensions specified, which should be filled with the [] or () operators.
The third is a constructor that accepts user
data as a 2D array, and the fourth is a copy constructor. The third constructor has
two data access modes (specified by the Epetra_DataAccess argument):
<ol>
  <li> Copy mode - Allocates memory and makes a copy of the user-provided data. In this case, the
       user data is not needed after construction.
  <li> View mode - Creates a "view" of the user data. In this case, the
       user data is required to remain intact for the life of the object.
</ol>

\warning View mode is \e extremely dangerous from a data hiding perspective.
Therefore, we strongly encourage users to develop code using Copy mode first and 
only use the View mode in a secondary optimization phase.

<b>Extracting Data from Epetra_SerialDenseMatrix Objects</b>

Once a Epetra_SerialDenseMatrix is constructed, it is possible to view the data via access functions.

\warning Use of these access functions cam be \e extremely dangerous from a data hiding perspective.


<b>Vector and Utility Functions</b>

Once a Epetra_SerialDenseMatrix is constructed, several mathematical functions can be applied to
the object.  Specifically:
<ul>
  <li> Multiplication.
  <li> Norms.
</ul>

<b>Counting floating point operations </b>
The Epetra_SerialDenseMatrix class has Epetra_CompObject as a base class.  Thus, floating point operations 
are counted and accumulated in the Epetra_Flop object (if any) that was set using the SetFlopCounter()
method in the Epetra_CompObject base class.

*/


//=========================================================================
class EPETRA_LIB_DLL_EXPORT Epetra_SerialDenseMatrix : public Epetra_CompObject, public Epetra_Object, public Epetra_SerialDenseOperator, public Epetra_BLAS {

  public:
  
    //! @name Constructor/Destructor Methods
  //@{ 
  //! Default constructor; defines a zero size object.
  /*!
    Epetra_SerialDenseMatrix objects defined by the default constructor should be sized with the 
    Shape() or Reshape functions.  
    Values should be defined by using the [] or () operators.
   */
  Epetra_SerialDenseMatrix(bool set_object_label=true);

  //! Shaped constructor; defines a variable-sized object
  /*!
    \param In 
           NumRows - Number of rows in object.
    \param In 
           NumCols - Number of columns in object.

    Epetra_SerialDenseMatrix objects defined by the shaped constructor are already shaped to the
		dimensions given as a parameters. All values are initialized to 0. Calling this constructor 
		is equivalent to using the default constructor, and then calling the Shape function on it.
    Values should be defined by using the [] or () operators.
   */
  Epetra_SerialDenseMatrix(int NumRows, int NumCols, bool set_object_label=true);
  
  //! Set object values from two-dimensional array.
  /*!
    \param In 
           Epetra_DataAccess - Enumerated type set to Copy or View.
    \param In
           A - Pointer to an array of double precision numbers.  The first vector starts at A.
	   The second vector starts at A+LDA, the third at A+2*LDA, and so on.
    \param In
           LDA - The "Leading Dimension", or stride between vectors in memory.
    \param In 
           NumRows - Number of rows in object.
    \param In 
           NumCols - Number of columns in object.

	   See Detailed Description section for further discussion.
  */
  Epetra_SerialDenseMatrix(Epetra_DataAccess CV, double* A_in, int LDA_in, int NumRows, int NumCols,
                           bool set_object_label=true);
  
  //! Epetra_SerialDenseMatrix copy constructor.
  
  Epetra_SerialDenseMatrix(const Epetra_SerialDenseMatrix& Source);

  //! Epetra_SerialDenseMatrix destructor.  
  virtual ~Epetra_SerialDenseMatrix ();
  //@}

  //! @name Shaping/sizing Methods
  //@{ 
  //! Set dimensions of a Epetra_SerialDenseMatrix object; init values to zero.
  /*!
    \param In 
           NumRows - Number of rows in object.
    \param In 
           NumCols - Number of columns in object.

	   Allows user to define the dimensions of a Epetra_SerialDenseMatrix at any point. This function can
	   be called at any point after construction.  Any values that were previously in this object are
	   destroyed and the resized matrix starts off with all zero values.

    \return Integer error code, set to 0 if successful.
  */
  int Shape(int NumRows, int NumCols);
  
  //! Reshape a Epetra_SerialDenseMatrix object.
  /*!
    \param In 
           NumRows - Number of rows in object.
    \param In 
           NumCols - Number of columns in object.

	   Allows user to define the dimensions of a Epetra_SerialDenseMatrix at any point. This function can
	   be called at any point after construction.  Any values that were previously in this object are
	   copied into the new shape.  If the new shape is smaller than the original, the upper left portion
	   of the original matrix (the principal submatrix) is copied to the new matrix.

    \return Integer error code, set to 0 if successful.
  */
  int Reshape(int NumRows, int NumCols);
  //@}

  //! @name Mathematical methods
  //@{ 

  //! Matrix-Matrix multiplication, \e this = ScalarThis*\e this + ScalarAB*A*B.
  /*! This function performs a variety of matrix-matrix multiply operations.

  \param In
         TransA - Operate with the transpose of A if = 'T', else no transpose if = 'N'.
  \param In
         TransB - Operate with the transpose of B if = 'T', else no transpose if = 'N'.

  \param In
         ScalarAB - Scalar to multiply with A*B.
  \param In
         A - Dense Matrix.
  \param In
         B - Dense Matrix.
  \param In
         ScalarThis - Scalar to multiply with \e this.

    \return Integer error code, set to 0 if successful.
	 
  */
  int Multiply(char TransA, char TransB, double ScalarAB, 
	       const Epetra_SerialDenseMatrix& A, 
	       const Epetra_SerialDenseMatrix& B,
	       double ScalarThis);

  //! Matrix-Vector multiplication, y = A*x, where 'this' == A.
  /* This method is intended to imitate the semantics of the matrix-vector
    multiplication provided by Epetra's sparse matrices. The 'vector' arguments
    are actually matrices; this method will return an error if the
    dimensions of 'x' are not compatible. 'y' will be reshaped if necessary.
  */
  int Multiply(bool transA,
               const Epetra_SerialDenseMatrix& x,
               Epetra_SerialDenseMatrix& y);

  //! Matrix-Matrix multiplication with a symmetric matrix A.
  /*! If SideA = 'L', compute \e this = ScalarThis*\e this + ScalarAB*A*B.
      If SideA = 'R', compute \e this = ScalarThis*\e this + ScalarAB*B*A.

This function performs a variety of matrix-matrix multiply operations.

  \param In
         SideA - Specifies order of A relative to B.

  \param In
         ScalarAB - Scalar to multiply with A*B.
  \param In
         A - Symmetric Dense Matrix, either upper or lower triangle will be used depending on
	 value of A.Upper().
  \param In
         B - Dense Matrix.
  \param In
         ScalarThis - Scalar to multiply with \e this.

    \return Integer error code, set to 0 if successful.
	 
  */
  int Multiply(char SideA, double ScalarAB, 
	       const Epetra_SerialSymDenseMatrix& A, 
	       const Epetra_SerialDenseMatrix& B,
	       double ScalarThis);

  //! Inplace scalar-matrix product A = \e a A.
  /*! Scale a matrix, entry-by-entry using the value ScalarA.


  \param ScalarA (In) Scalar to multiply with A.

   \return Integer error code, set to 0 if successful.
	 
  */
  int Scale(double ScalarA);

  //! Computes the 1-Norm of the \e this matrix.
  /*!
    \return Integer error code, set to 0 if successful.
  */
  virtual double NormOne() const;

  //! Computes the Infinity-Norm of the \e this matrix.
  virtual double NormInf() const;

  //@}

  //! @name Data Accessor methods
  //@{ 

  //! Value copy from one matrix to another.
  /*!
    The operator= allows one to copy the values from one existing SerialDenseMatrix to another, as
    long as there is enough room in the target to hold the source.

    \return Values of the left hand side matrix are modified by the values of the right hand side matrix.
  */
    Epetra_SerialDenseMatrix & operator = (const Epetra_SerialDenseMatrix& Source);

    //! Comparison operator.
    /*! operator== compares two Epetra_SerialDenseMatrix objects, returns false if sizes are different,
      or if any coefficients differ by an amount greater than Epetra_MinDouble.
    */
    bool operator==(const Epetra_SerialDenseMatrix& rhs) const;

    //! Inequality operator
    /*! operator!= simply returns the negation of operator==.
     */
    bool operator!=(const Epetra_SerialDenseMatrix& rhs) const
    { return !(*this == rhs); }

  //! Add one matrix to another.
  /*!
    The operator+= allows one to add the values from one existin SerialDenseMatrix to another, as
    long as there is enough room in the target to hold the source.

    \return Values of the left hand side matrix are modified by the addition
    of the values of the right hand side matrix.
  */
    Epetra_SerialDenseMatrix & operator += (const Epetra_SerialDenseMatrix& Source);

  //! Element access function.
  /*!
    The parentheses operator returns the element in the ith row and jth column if A(i,j) is
    specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
    Thus, A(i,j) = A[j][i] for all valid i and j.

    \return Element from the specified row and column.

		\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
  */
	    double& operator () (int RowIndex, int ColIndex);

  //! Element access function.
  /*!
    The parentheses operator returns the element in the ith row and jth column if A(i,j) is
    specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
    Thus, A(i,j) = A[j][i] for all valid i and j.

    \return Element from the specified row and column.

		\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
  */
    const double& operator () (int RowIndex, int ColIndex) const;

  //! Column access function.
  /*!
    The parentheses operator returns the element in the ith row and jth column if A(i,j) is
    specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
    Thus, A(i,j) = A[j][i] for all valid i and j.

    \return Pointer to address of specified column.

    \warning No bounds checking can be done for the index i in the expression A[j][i].
		\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
  */
    double* operator [] (int ColIndex);

  //! Column access function.
  /*!
    The parentheses operator returns the element in the ith row and jth column if A(i,j) is
    specified, the expression A[j][i] (note that i and j are reversed) will return the same element.
    Thus, A(i,j) = A[j][i] for all valid i and j.

    \return Pointer to address of specified column.

    \warning No bounds checking can be done for the index i in the expression A[j][i].
		\warning No bounds checking is done unless Epetra is compiled with HAVE_EPETRA_ARRAY_BOUNDS_CHECK.
  */
    const double* operator [] (int ColIndex) const;
    
  //! Set matrix values to random numbers.
  /*! 
		SerialDenseMatrix uses the random number generator provided by Epetra_Util.
		The matrix values will be set to random values on the interval (-1.0, 1.0).
    
		\return Integer error code, set to 0 if successful.
  */
  int Random();

  //! Returns row dimension of system.
  int M() const {return(M_);};

  //! Returns column dimension of system.
  int N() const {return(N_);};

  //! Returns pointer to the \e this matrix.
  double* A() const {return(A_);};

  //! Returns pointer to the \e this matrix.
  double* A() {return(A_);};

  //! Returns the leading dimension of the \e this matrix.
  int LDA() const {return(LDA_);};

	//! Returns the data access mode of the \e this matrix.
	Epetra_DataAccess CV() const {return(CV_);};
  //@}
  
  //! @name I/O methods
  //@{ 
  //! Print service methods; defines behavior of ostream << operator.
  virtual void Print(ostream& os) const;
  //@}

  //! @name Deprecated methods (will be removed in later versions of this class)
  //@{ 

  //! Computes the 1-Norm of the \e this matrix (identical to NormOne() method).
  /*!
    \return Integer error code, set to 0 if successful.
  */
  virtual double OneNorm() const {return(NormOne());};

  //! Computes the Infinity-Norm of the \e this matrix (identical to NormInf() method).
  virtual double InfNorm() const {return(NormInf());};
  //@}

  //! @name Additional methods to support Epetra_SerialDenseOperator interface
  //@{ 
 
    //! If set true, transpose of this operator will be applied.
    /*! This flag allows the transpose of the given operator to be used implicitly.  Setting this flag
        affects only the Apply() and ApplyInverse() methods.  If the implementation of this interface
        does not support transpose use, this method should return a value of -1.
 
    \param In
           UseTranspose -If true, multiply by the transpose of operator, otherwise just use operator.
 
    \return Integer error code, set to 0 if successful.  Set to -1 if this implementation does not support transpose.
  */
    virtual int SetUseTranspose(bool UseTranspose_in) { UseTranspose_ = UseTranspose_in; return (0); }
 
    //! Returns the result of a Epetra_SerialDenseOperator applied to a Epetra_SerialDenseMatrix X in Y.
    /*!
    \param In
           X - A Epetra_SerialDenseMatrix to multiply with operator.
    \param Out
           Y -A Epetra_SerialDenseMatrix containing result.
 
    \return Integer error code, set to 0 if successful.
  */
  virtual int Apply(const Epetra_SerialDenseMatrix& X, Epetra_SerialDenseMatrix& Y);
 
    //! Returns the result of a Epetra_SerialDenseOperator inverse applied to an Epetra_SerialDenseMatrix X in Y.
    /*!
    \param In
           X - A Epetra_SerialDenseMatrix to solve for.
    \param Out
           Y -A Epetra_SerialDenseMatrix containing result.
 
    \return Integer error code, set to 0 if successful.
 
  */
    virtual int ApplyInverse(const Epetra_SerialDenseMatrix & X, Epetra_SerialDenseMatrix & Y)
    {
      (void)X;//prevents unused variable compiler warning
      (void)Y;
      return (-1);
    }
 
    //! Returns a character string describing the operator
    virtual const char * Label() const { return Epetra_Object::Label(); }
 
    //! Returns the current UseTranspose setting.
    virtual bool UseTranspose() const { return UseTranspose_; }
 
    //! Returns true if the \e this object can provide an approximate Inf-norm, false otherwise.
    virtual bool HasNormInf() const { return true; }

    //! Returns the row dimension of operator
    virtual int RowDim() const { return M(); } 
 
    //! Returns the column dimension of operator 
    virtual int ColDim() const { return N(); } 
  //@}  

 protected:

  void CopyMat(double* Source, int Source_LDA, int NumRows, int NumCols,
               double* Target, int Target_LDA, bool add=false);
  void CleanupData();

  int M_;
  int N_;
  bool A_Copied_;
  Epetra_DataAccess CV_;

  //For performance reasons, it's better if Epetra_VbrMatrix can access the
  //LDA_ and A_ members of this class directly without going through an
  //accessor method. Rather than making them public members, we'll make
  //Epetra_VbrMatrix a friend class.

  friend class Epetra_VbrMatrix;

  int LDA_;
  double* A_;

  bool UseTranspose_;
};

// inlined definitions of op() and op[]
//=========================================================================
inline double& Epetra_SerialDenseMatrix::operator () (int RowIndex, int ColIndex) {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
  if (RowIndex >= M_ || RowIndex < 0)
		throw ReportError("Row index = " +toString(RowIndex) + 
											" Out of Range 0 - " + toString(M_-1),-1);
  if (ColIndex >= N_ || ColIndex < 0) 
		throw ReportError("Column index = " +toString(ColIndex) + 
											" Out of Range 0 - " + toString(N_-1),-2);
#endif
   return(A_[ColIndex*LDA_ + RowIndex]);
}
//=========================================================================
inline const double& Epetra_SerialDenseMatrix::operator () (int RowIndex, int ColIndex) const {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
  if (RowIndex >= M_ || RowIndex < 0) 
		throw ReportError("Row index = " +toString(RowIndex) + 
											" Out of Range 0 - " + toString(M_-1),-1);
  if (ColIndex >= N_ || ColIndex < 0) 
		throw ReportError("Column index = " +toString(ColIndex) + 
											" Out of Range 0 - " + toString(N_-1),-2);
#endif
  return(A_[ColIndex*LDA_ + RowIndex]);
}
//=========================================================================
inline double* Epetra_SerialDenseMatrix::operator [] (int ColIndex) {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
  if (ColIndex >= N_ || ColIndex < 0) 
		throw ReportError("Column index = " +toString(ColIndex) + 
											" Out of Range 0 - " + toString(N_-1),-2);
#endif
  return(A_ + ColIndex*LDA_);
}
//=========================================================================
inline const double* Epetra_SerialDenseMatrix::operator [] (int ColIndex) const {
#ifdef HAVE_EPETRA_ARRAY_BOUNDS_CHECK
  if (ColIndex >= N_ || ColIndex < 0) 
		throw ReportError("Column index = " +toString(ColIndex) + 
											" Out of Range 0 - " + toString(N_-1),-2);
#endif
  return(A_+ ColIndex*LDA_);
}
//=========================================================================

#endif /* EPETRA_SERIALDENSEMATRIX_H */