This file is indexed.

/usr/include/trilinos/Epetra_MultiVector.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
//@HEADER
/*
************************************************************************

              Epetra: Linear Algebra Services Package 
                Copyright (2001) Sandia Corporation

Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
license for use of this work by or on behalf of the U.S. Government.

This library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
 
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.
 
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA
Questions? Contact Michael A. Heroux (maherou@sandia.gov) 

************************************************************************
*/
//@HEADER

#ifndef EPETRA_MULTIVECTOR_H
#define EPETRA_MULTIVECTOR_H

class Epetra_Comm;
class Epetra_BlockMap;
class Epetra_Map;
class Epetra_Import;
class Epetra_Export;
class Epetra_Distributor;
class Epetra_Vector;

#include "Epetra_ConfigDefs.h"
#include "Epetra_DistObject.h"
#include "Epetra_CompObject.h"
#include "Epetra_BLAS.h"
#include "Epetra_Util.h"

//! Epetra_MultiVector: A class for constructing and using dense multi-vectors, vectors and matrices in parallel.

/*! The Epetra_MultiVector class enables the construction and use of real-valued, 
  double-precision dense vectors, multi-vectors,
  and matrices in a distributed memory environment.  The dimensions and distribution of the dense
  multi-vectors is determined in part by a Epetra_Comm object, a Epetra_Map (or Epetra_LocalMap
  or Epetra_BlockMap) and the number of vectors passed to the constructors described below.

  There are several concepts that important for understanding the Epetra_MultiVector class:

  <ul>
  <li>  Multi-vectors, Vectors and Matrices.  
  <ul>
  <li> Vector - A list of real-valued, double-precision numbers.  Also a multi-vector with one vector.
  <li> Multi-Vector - A collection of one or more vectors, all having the same length and distribution.
  <li> (Dense) Matrix - A special form of multi-vector such that stride in memory between any 
  two consecutive vectors in the multi-vector is the same for all vectors.  This is identical
  to a two-dimensional array in Fortran and plays an important part in high performance
  computations.
  </ul>
  <li> Distributed Global vs. Replicated Local.
  <ul>
  <li> Distributed Global Multi-vectors - In most instances, a multi-vector will be partitioned
  across multiple memory images associated with multiple processors.  In this case, there is 
  a unique copy of each element and elements are spread across all processors specified by 
  the Epetra_Comm communicator.
  <li> Replicated Local Multi-vectors - Some algorithms use multi-vectors that are too small to
  be distributed across all processors, the Hessenberg matrix in a GMRES
  computation.  In other cases, such as with block iterative methods,  block dot product 
  functions produce small
  dense matrices that are required by all processors.  Replicated local multi-vectors handle
  these types of situation.
  </ul>
  <li> Multi-vector Functions vs. Dense Matrix Functions.
  <ul>
  <li> Multi-vector functions - These functions operate simultaneously but independently
  on each vector in the multi-vector and produce individual results for each vector.
  <li> Dense matrix functions - These functions operate on the multi-vector as a matrix, 
  providing access to selected dense BLAS and LAPACK operations.
  </ul>
  </ul>

  <b>Constructing Epetra_MultiVectors</b>

  Except for the basic constructor and copy constructor, Epetra_MultiVector constructors
  have two data access modes:
  <ol>
  <li> Copy mode - Allocates memory and makes a copy of the user-provided data. In this case, the
  user data is not needed after construction.
  <li> View mode - Creates a "view" of the user data. In this case, the
  user data is required to remain intact for the life of the multi-vector.
  </ol>

  \warning View mode is \e extremely dangerous from a data hiding perspective.
  Therefore, we strongly encourage users to develop code using Copy mode first and 
  only use the View mode in a secondary optimization phase.

  All Epetra_MultiVector constructors require a map argument that describes the layout of elements
  on the parallel machine.  Specifically, 
  \c map is a Epetra_Map, Epetra_LocalMap or Epetra_BlockMap object describing the desired
  memory layout for the multi-vector.

  There are six different Epetra_MultiVector constructors:
  <ul>
  <li> Basic - All values are zero.
  <li> Copy - Copy an existing multi-vector.
  <li> Copy from or make view of two-dimensional Fortran style array.
  <li> Copy from or make view of an array of pointers.
  <li> Copy or make view of a list of vectors from another Epetra_MultiVector object.
  <li> Copy or make view of a range of vectors from another Epetra_MultiVector object.
  </ul>

  <b>Extracting Data from Epetra_MultiVectors</b>

  Once a Epetra_MultiVector is constructed, it is possible to extract a copy of the values or create
  a view of them.

  \warning ExtractView functions are \e extremely dangerous from a data hiding perspective.
  For both ExtractView fuctions, there is a corresponding ExtractCopy function.  We
  strongly encourage users to develop code using ExtractCopy functions first and 
  only use the ExtractView functions in a secondary optimization phase.

  There are four Extract functions:
  <ul>
  <li> ExtractCopy - Copy values into a user-provided two-dimensional array.
  <li> ExtractCopy - Copy values into a user-provided array of pointers.
  <li> ExtractView - Set user-provided two-dimensional array parameters 
  to point to Epetra_MultiVector data.
  <li> ExtractView - Set user-provided array of pointer parameters 
  to point to Epetra_MultiVector data.
  </ul>

  <b>Vector, Matrix and Utility Functions</b>

  Once a Epetra_MultiVector is constructed, a variety of mathematical functions can be applied to
  the individual vectors.  Specifically:
  <ul>
  <li> Dot Products.
  <li> Vector Updates.
  <li> \e p Norms.
  <li> Weighted Norms.
  <li> Minimum, Maximum and Average Values.
  </ul>

  In addition, a matrix-matrix multiply function supports a variety of operations on any viable
  combination of global distributed and local replicated multi-vectors using calls to DGEMM, a
  high performance kernel for matrix operations.  In the near future we will add support for calls
  to other selected BLAS and LAPACK functions.

  <b> Counting Floating Point Operations </b>

  Each Epetra_MultiVector object keep track of the number
  of \e serial floating point operations performed using the specified object as the \e this argument
  to the function.  The Flops() function returns this number as a double precision number.  Using this 
  information, in conjunction with the Epetra_Time class, one can get accurate parallel performance
  numbers.  The ResetFlops() function resets the floating point counter.

  \warning A Epetra_Map, Epetra_LocalMap or Epetra_BlockMap object is required for all 
  Epetra_MultiVector constructors.

*/

//==========================================================================
class EPETRA_LIB_DLL_EXPORT Epetra_MultiVector: public Epetra_DistObject, public Epetra_CompObject, public Epetra_BLAS {

 public:

   //! @name Constructors/destructors
  //@{ 
  //! Basic Epetra_MultiVector constuctor.
  /*! Creates a Epetra_MultiVector object and, by default, fills with zero values.  

  \param In 
  Map - A Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.

  \warning Note that, because Epetra_LocalMap
  derives from Epetra_Map and Epetra_Map derives from Epetra_BlockMap, this constructor works
  for all three types of Epetra map classes.
  \param In 
  NumVectors - Number of vectors in multi-vector.
  \param In
  zeroOut - If <tt>true</tt> then the allocated memory will be zeroed
            out initialy.  If <tt>false</tt> then this memory will not
            be touched which can be significantly faster.
  \return Pointer to a Epetra_MultiVector.

  */
  Epetra_MultiVector(const Epetra_BlockMap& Map, int NumVectors, bool zeroOut = true);

  //! Epetra_MultiVector copy constructor.
  
  Epetra_MultiVector(const Epetra_MultiVector& Source);
  
  //! Set multi-vector values from two-dimensional array.
  /*!
    \param In 
    Epetra_DataAccess - Enumerated type set to Copy or View.
    \param In 
    Map - A Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
    \param In
    A - Pointer to an array of double precision numbers.  The first vector starts at A.
    The second vector starts at A+MyLDA, the third at A+2*MyLDA, and so on.
    \param In
    MyLDA - The "Leading Dimension", or stride between vectors in memory.
    \warning This value refers to the stride on the calling processor.  Thus it is a
    local quantity, not a global quantity.
    \param In 
    NumVectors - Number of vectors in multi-vector.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  Epetra_MultiVector(Epetra_DataAccess CV, const Epetra_BlockMap& Map, 
		     double *A, int MyLDA, int NumVectors);

  //! Set multi-vector values from array of pointers.
  /*!
    \param In 
    Epetra_DataAccess - Enumerated type set to Copy or View.
    \param In 
    Map - A Epetra_LocalMap, Epetra_Map or Epetra_BlockMap.
    \param In
    ArrayOfPointers - An array of pointers such that ArrayOfPointers[i] points to the memory
    location containing ith vector to be copied.
    \param In 
    NumVectors - Number of vectors in multi-vector.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  Epetra_MultiVector(Epetra_DataAccess CV, const Epetra_BlockMap& Map, 
		     double **ArrayOfPointers, int NumVectors);

  //! Set multi-vector values from list of vectors in an existing Epetra_MultiVector.
  /*!
    \param In 
    Epetra_DataAccess - Enumerated type set to Copy or View.
    \param In
    Source - An existing fully constructed Epetra_MultiVector.
    \param In
    Indices - Integer list of the vectors to copy.  
    \param In 
    NumVectors - Number of vectors in multi-vector.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  Epetra_MultiVector(Epetra_DataAccess CV,  
		     const Epetra_MultiVector& Source, int *Indices, int NumVectors);

  //! Set multi-vector values from range of vectors in an existing Epetra_MultiVector.
  /*!
    \param In 
    Epetra_DataAccess - Enumerated type set to Copy or View.
    \param In
    Source - An existing fully constructed Epetra_MultiVector.
    \param In
    StartIndex - First of the vectors to copy.  
    \param In 
    NumVectors - Number of vectors in multi-vector.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  Epetra_MultiVector(Epetra_DataAccess CV, 
		     const Epetra_MultiVector& Source, int StartIndex, 
		     int NumVectors);
  
  //! Epetra_MultiVector destructor.  
  virtual ~Epetra_MultiVector();
  //@}

  //! @name Post-construction modification routines
  //@{ 

  //! Replace current value  at the specified (GlobalRow, VectorIndex) location with ScalarValue.
  /*!
    Replaces the  existing value for a single entry in the multivector.  The
    specified global row must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    If the map associated with this multivector is an Epetra_BlockMap, only the first point entry associated
    with the global row will be modified.  To modify a different point entry, use the other version of
    this method

    \param In
    GlobalRow - Row of Multivector to modify in global index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if GlobalRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors().
  */
  int ReplaceGlobalValue(int GlobalRow, int VectorIndex, double ScalarValue);


  //! Replace current value at the specified (GlobalBlockRow, BlockRowOffset, VectorIndex) location with ScalarValue.
  /*!
    Replaces the existing value for a single entry in the multivector.  The
    specified global block row and block row offset 
    must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    \param In
    GlobalBlockRow - BlockRow of Multivector to modify in global index space.
    \param In
    BlockRowOffset - Offset into BlockRow of Multivector to modify in global index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if GlobalRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors(), set to -2 if BlockRowOffset is out-of-range.
  */
  int ReplaceGlobalValue(int GlobalBlockRow, int BlockRowOffset, int VectorIndex, double ScalarValue);


  //! Adds ScalarValue to existing value at the specified (GlobalRow, VectorIndex) location.
  /*!
    Sums the given value into the existing value for a single entry in the multivector.  The
    specified global row must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    If the map associated with this multivector is an Epetra_BlockMap, only the first point entry associated
    with the global row will be modified.  To modify a different point entry, use the other version of
    this method

    \param In
    GlobalRow - Row of Multivector to modify in global index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if GlobalRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors().
  */
  int SumIntoGlobalValue(int GlobalRow, int VectorIndex, double ScalarValue);


  //! Adds ScalarValue to existing value at the specified (GlobalBlockRow, BlockRowOffset, VectorIndex) location.
  /*!
    Sums the given value into the existing value for a single entry in the multivector.  The
    specified global block row and block row offset 
    must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    \param In
    GlobalBlockRow - BlockRow of Multivector to modify in global index space.
    \param In
    BlockRowOffset - Offset into BlockRow of Multivector to modify in global index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if GlobalRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors(), set to -2 if BlockRowOffset is out-of-range.
  */
  int SumIntoGlobalValue(int GlobalBlockRow, int BlockRowOffset, int VectorIndex, double ScalarValue);

  //! Replace current value  at the specified (MyRow, VectorIndex) location with ScalarValue.
  /*!
    Replaces the existing value for a single entry in the multivector.  The
    specified local row must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    This method is intended for use with vectors based on an Epetra_Map.  If used 
    on a vector based on a non-trivial Epetra_BlockMap, this will update only block 
    row 0, i.e. 

    Epetra_MultiVector::ReplaceMyValue  (  MyRow,  VectorIndex,  ScalarValue )  is 
    equivalent to:  
    Epetra_MultiVector::ReplaceMyValue  (  0, MyRow,  VectorIndex,  ScalarValue )


    \param In
    MyRow - Row of Multivector to modify in local index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if MyRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors().
  */
  int ReplaceMyValue(int MyRow, int VectorIndex, double ScalarValue);


  //! Replace current value at the specified (MyBlockRow, BlockRowOffset, VectorIndex) location with ScalarValue.
  /*!
    Replaces the existing value for a single entry in the multivector.  The
    specified local block row and block row offset 
    must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    \param In
    MyBlockRow - BlockRow of Multivector to modify in local index space.
    \param In
    BlockRowOffset - Offset into BlockRow of Multivector to modify in local index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if MyRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors(), set to -2 if BlockRowOffset is out-of-range.
  */
  int ReplaceMyValue(int MyBlockRow, int BlockRowOffset, int VectorIndex, double ScalarValue);


  //! Adds ScalarValue to existing value at the specified (MyRow, VectorIndex) location.
  /*!
    Sums the given value into the existing value for a single entry in the multivector.  The
    specified local row must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    If the map associated with this multivector is an Epetra_BlockMap, only the first point entry associated
    with the local row will be modified.  To modify a different point entry, use the other version of
    this method

    \param In
    MyRow - Row of Multivector to modify in local index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if MyRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors().
  */
  int SumIntoMyValue(int MyRow, int VectorIndex, double ScalarValue);


  //! Adds ScalarValue to existing value at the specified (MyBlockRow, BlockRowOffset, VectorIndex) location.
  /*!
    Sums the given value into the existing value for a single entry in the multivector.  The
    specified local block row and block row offset 
    must correspond to a GID owned by the map of the multivector on the
    calling processor.  In other words, this method does not perform cross-processor communication.

    \param In
    MyBlockRow - BlockRow of Multivector to modify in local index space.
    \param In
    BlockRowOffset - Offset into BlockRow of Multivector to modify in local index space.
    \param In
    VectorIndex - Vector within MultiVector that should to modify.
    \param In
    ScalarValue - Value to add to existing value.

    \return Integer error code, set to 0 if successful, set to 1 if MyRow not associated with calling processor
    set to -1 if VectorIndex >= NumVectors(), set to -2 if BlockRowOffset is out-of-range.
  */
  int SumIntoMyValue(int MyBlockRow, int BlockRowOffset, int VectorIndex, double ScalarValue);

  //! Initialize all values in a multi-vector with constant value.
  /*!
    \param In
    ScalarConstant - Value to use.

    \return Integer error code, set to 0 if successful.
  */
  int PutScalar (double ScalarConstant);
  
  //! Set multi-vector values to random numbers.
  /*! MultiVector uses the random number generator provided by Epetra_Util. 
		The multi-vector values will be set to random values on the interval (-1.0, 1.0).

    \return Integer error code, set to 0 if successful.

  */
  int Random();

  //@}

  //! @name Extraction methods
  //@{ 

  //! Put multi-vector values into user-provided two-dimensional array.
  /*!
    \param Out
    A - Pointer to memory space that will contain the multi-vector values.  
    The first vector will be copied to the memory pointed to by A.
    The second vector starts at A+MyLDA, the third at A+2*MyLDA, and so on.
    \param In
    MyLDA - The "Leading Dimension", or stride between vectors in memory.
    \warning This value refers to the stride on the calling processor.  Thus it is a
    local quantity, not a global quantity.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  int ExtractCopy(double *A, int MyLDA) const;

  //! Put multi-vector values into user-provided array of pointers.
  /*!
    \param Out
    ArrayOfPointers - An array of pointers to memory space that will contain the 
    multi-vector values, such that ArrayOfPointers[i] points to the memory
    location where the ith vector to be copied.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  int ExtractCopy(double **ArrayOfPointers) const;

  // ExtractView functions

  
  //! Set user-provided addresses of A and MyLDA.
  /*!
    \param 
    A (Out) - Address of a pointer to that will be set to point to the values of the multi-vector.  
    The first vector will be at the memory pointed to by A.
    The second vector starts at A+MyLDA, the third at A+2*MyLDA, and so on.
    \param 
    MyLDA (Out) - Address of the "Leading Dimension", or stride between vectors in memory.
    \warning This value refers to the stride on the calling processor.  Thus it is a
    local quantity, not a global quantity.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  int ExtractView(double **A, int *MyLDA) const;

  //! Set user-provided addresses of ArrayOfPointers.
  /*!
    \param 
    ArrayOfPointers (Out) - Address of array of pointers to memory space that will set to the
    multi-vector array of pointers, such that ArrayOfPointers[i] points to the memory
    location where the ith vector is located.

    \return Integer error code, set to 0 if successful.

    See Detailed Description section for further discussion.
  */
  int ExtractView(double ***ArrayOfPointers) const;

  //@}

  //! @name Mathematical methods
  //@{ 

  //! Computes dot product of each corresponding pair of vectors.
  /*!
    \param In
    A - Multi-vector to be used with the "\e this" multivector.
    \param Out
    Result - Result[i] will contain the ith dot product result.

    \return Integer error code, set to 0 if successful.
  */
  int Dot(const Epetra_MultiVector& A, double *Result) const;

  //! Puts element-wise absolute values of input Multi-vector in target.
  /*!
    \param In
    A - Input Multi-vector.
    \param Out
    \e this will contain the absolute values of the entries of A.

    \return Integer error code, set to 0 if successful.
    
    Note:  It is possible to use the same argument for A and \e this.
  */
  int Abs(const Epetra_MultiVector& A);

  //! Puts element-wise reciprocal values of input Multi-vector in target.
  /*!
    \param In
    A - Input Multi-vector.
    \param Out
    \e this will contain the element-wise reciprocal values of the entries of A.

    \return Integer error code, set to 0 if successful.  Returns 2 if some entry
    is too small, but not zero.  Returns 1 if some entry is zero.
    
    Note:  It is possible to use the same argument for A and \e this.  Also, 
    if a given value of A is smaller than Epetra_DoubleMin (defined in Epetra_Epetra.h),
    but nonzero, then the return code is 2.  If an entry is zero, the return code
    is 1.  However, in all cases the reciprocal value is still used, even
    if a NaN is the result.
  */
  int Reciprocal(const Epetra_MultiVector& A);

  //! Scale the current values of a multi-vector, \e this = ScalarValue*\e this.
  /*!
    \param In
    ScalarValue - Scale value.
    \param Out
    \e This - Multi-vector with scaled values.

    \return Integer error code, set to 0 if successful.
  */
  int Scale(double ScalarValue);

  //! Replace multi-vector values with scaled values of A, \e this = ScalarA*A.
  /*!
    \param In
    ScalarA - Scale value.
    \param In
    A - Multi-vector to copy.
    \param Out
    \e This - Multi-vector with values overwritten by scaled values of A.

    \return Integer error code, set to 0 if successful.
  */
  int Scale(double ScalarA, const Epetra_MultiVector& A);

  //! Update multi-vector values with scaled values of A, \e this = ScalarThis*\e this + ScalarA*A.
  /*!
    \param In
    ScalarA - Scale value for A.
    \param In
    A - Multi-vector to add.
    \param In
    ScalarThis - Scale value for \e this.
    \param Out
    \e This - Multi-vector with updatede values.

    \return Integer error code, set to 0 if successful.
  */
  int Update(double ScalarA, const Epetra_MultiVector& A, double ScalarThis);

  //! Update multi-vector with scaled values of A and B, \e this = ScalarThis*\e this + ScalarA*A + ScalarB*B.
  /*!
    \param In
    ScalarA - Scale value for A.
    \param In
    A - Multi-vector to add.
    \param In
    ScalarB - Scale value for B.
    \param In
    B - Multi-vector to add.
    \param In
    ScalarThis - Scale value for \e this.
    \param Out
    \e This - Multi-vector with updatede values.

    \return Integer error code, set to 0 if successful.
  */
  int Update(double ScalarA, const Epetra_MultiVector& A, 
	     double ScalarB, const Epetra_MultiVector& B, double ScalarThis);

  //! Compute 1-norm of each vector in multi-vector.
  /*!
    \param Out
    Result - Result[i] contains 1-norm of ith vector.
    \warning Map of the \e this multivector must have unique GIDs (UniqueGIDs() must return true).

    \return Integer error code, set to 0 if successful.
  */
  int Norm1   (double * Result) const;

  //! Compute 2-norm of each vector in multi-vector.
  /*!
    \param Out
    Result - Result[i] contains 2-norm of ith vector.
    \warning Map of the \e this multivector must have unique GIDs (UniqueGIDs() must return true).

    \return Integer error code, set to 0 if successful.
  */
  int Norm2   (double * Result) const;

  //! Compute Inf-norm of each vector in multi-vector.
  /*!
    \param Out
    Result - Result[i] contains Inf-norm of ith vector.

    \return Integer error code, set to 0 if successful.
  */
  int NormInf (double * Result) const;

  //! Compute Weighted 2-norm (RMS Norm) of each vector in multi-vector.
  /*!
    \param In
    Weights - Multi-vector of weights.  If Weights contains a single vector,
    that vector will be used as the weights for all vectors of \e this.  Otherwise,
    Weights should have the same number of vectors as \e this.
    \param Out
    Result - Result[i] contains the weighted 2-norm of ith vector.  Specifically
    if we denote the ith vector in the multivector by \f$x\f$, and the ith weight
    vector by \f$w\f$ and let j represent the jth entry of each vector, on return
    Result[i] will contain the following result:
    \f[\sqrt{(1/n)\sum_{j=1}^n(x_j/w_j)^2}\f],
    where \f$n\f$ is the global length of the vectors.

    \return Integer error code, set to 0 if successful.
  */
  int NormWeighted   (const Epetra_MultiVector& Weights, double * Result) const;

  //! Compute minimum value of each vector in multi-vector.
  /*! Note that the vector contents must be already initialized for this
      function to compute a well-defined result. The length of the
      vector need not be greater than zero on all processors. If length is
      greater than zero on any processor then a valid result will be computed.
    \param Out
    Result - Result[i] contains minimum value of ith vector.

    \return Integer error code, set to 0 if successful.
  */
  int MinValue  (double * Result) const;

  //! Compute maximum value of each vector in multi-vector.
  /*! Note that the vector contents must be already initialized for this
      function to compute a well-defined result. The length of the
      vector need not be greater than zero on all processors. If length is
      greater than zero on any processor then a valid result will be computed.
    \param Out
    Result - Result[i] contains maximum value of ith vector.

    \return Integer error code, set to 0 if successful.
  */
  int MaxValue  (double * Result) const;

  //! Compute mean (average) value of each vector in multi-vector.
  /*!
    \param Out
    Result - Result[i] contains mean value of ith vector.
    \warning Map of the \e this multivector must have unique GIDs (UniqueGIDs() must return true).

    \return Integer error code, set to 0 if successful.
  */
  int MeanValue (double * Result) const;
  
  
  //! Matrix-Matrix multiplication, \e this = ScalarThis*\e this + ScalarAB*A*B.
  /*! This function performs a variety of matrix-matrix multiply operations, interpreting
    the Epetra_MultiVectors (\e this-aka C , A and B) as 2D matrices.  Variations are due to
    the fact that A, B and C can be local replicated or global distributed
    Epetra_MultiVectors and that we may or may not operate with the transpose of 
    A and B.  Possible cases are:
    \verbatim

    Total of 32 case (2^5).
    Num
    OPERATIONS                        case  Notes
    1) C(local) = A^X(local) * B^X(local)  4   (X=Transpose or Not, No comm needed) 
    2) C(local) = A^T(distr) * B  (distr)  1   (2D dot product, replicate C)
    3) C(distr) = A  (distr) * B^X(local)  2   (2D vector update, no comm needed)

    Note that the following operations are not meaningful for 
    1D distributions:

    1) C(local) = A^T(distr) * B^T(distr)  1
    2) C(local) = A  (distr) * B^X(distr)  2
    3) C(distr) = A^X(local) * B^X(local)  4
    4) C(distr) = A^X(local) * B^X(distr)  4
    5) C(distr) = A^T(distr) * B^X(local)  2
    6) C(local) = A^X(distr) * B^X(local)  4
    7) C(distr) = A^X(distr) * B^X(local)  4
    8) C(local) = A^X(local) * B^X(distr)  4

    \endverbatim

    \param In
    TransA - Operate with the transpose of A if = 'T', else no transpose if = 'N'.
    \param In
    TransB - Operate with the transpose of B if = 'T', else no transpose if = 'N'.

    \param In
    ScalarAB - Scalar to multiply with A*B.
    \param In
    A - Multi-vector.
    \param In
    B - Multi-vector.
    \param In
    ScalarThis - Scalar to multiply with \e this.
    \warning Map of the distributed multivectors must have unique GIDs (UniqueGIDs() must return true).

    \return Integer error code, set to 0 if successful.

    \warning {Each multi-vector A, B and \e this is checked if it has constant stride using the
    ConstantStride() query function.  If it does not have constant stride, a temporary
    copy is made and used for the computation.  This activity is transparent to the user,
    except that there is memory and computation overhead.  All temporary space is deleted
    prior to exit.}
	 
  */
  int Multiply(char TransA, char TransB, double ScalarAB, 
	       const Epetra_MultiVector& A, const Epetra_MultiVector& B,
	       double ScalarThis );
  


  //! Multiply a Epetra_MultiVector with another, element-by-element.
  /*! This function supports diagonal matrix multiply.  A is usually a single vector
    while B and \e this may have one or more columns.  Note that B and \e this must
    have the same shape.  A can be one vector or have the same shape as B.  The actual
    computation is \e this = ScalarThis * \e this + ScalarAB * B @ A where @ denotes element-wise
    multiplication.
  */
  int Multiply(double ScalarAB, const Epetra_MultiVector& A, const Epetra_MultiVector& B,
	       double ScalarThis );


  //! Multiply a Epetra_MultiVector by the reciprocal of another, element-by-element.
  /*! This function supports diagonal matrix scaling.  A is usually a single vector
    while B and \e this may have one or more columns.  Note that B and \e this must
    have the same shape.  A can be one vector or have the same shape as B. The actual
    computation is \e this = ScalarThis * \e this + ScalarAB * B @ A where @ denotes element-wise
    division.
  */
  int ReciprocalMultiply(double ScalarAB, const Epetra_MultiVector& A, const Epetra_MultiVector& B,
			 double ScalarThis );

  //@}

  //! @name Random number utilities
  //@{ 


  //! Set seed for Random function.
  /*!
    \param In
    Seed - Should be an integer on the interval (0, 2^31-1).

    \return Integer error code, set to 0 if successful.
  */
  int SetSeed(unsigned int Seed_in){return(Util_.SetSeed(Seed_in));};

  //! Get seed from Random function.
  /*!
    \return Current random number seed.
  */
  unsigned int Seed(){return(Util_.Seed());};

  //@}

  //! @name Overloaded operators
  //@{ 

  //! = Operator.
  /*!
    \param In
    A - Epetra_MultiVector to copy.

    \return Epetra_MultiVector.
  */
  Epetra_MultiVector& operator = (const Epetra_MultiVector& Source);
  
  // Local element access functions

  // 

  //! Vector access function.
  /*!
    \return Pointer to the array of doubles containing the local values of the ith vector in the multi-vector.
  */
  double*& operator [] (int i) { return Pointers_[i]; }
  //! Vector access function.
  /*!
    \return Pointer to the array of doubles containing the local values of the ith vector in the multi-vector.
  */
  //  const double*& operator [] (int i) const;
  double * const & operator [] (int i) const { return Pointers_[i]; }

  //! Vector access function.
  /*!
    \return An Epetra_Vector pointer to the ith vector in the multi-vector.
  */
  Epetra_Vector * & operator () (int i);
  //! Vector access function.
  /*!
    \return An Epetra_Vector pointer to the ith vector in the multi-vector.
  */
  const Epetra_Vector * & operator () (int i) const;

  //@}

  //! @name Attribute access functions
  //@{ 
  
  //! Returns the number of vectors in the multi-vector.
  int NumVectors() const {return(NumVectors_);};

  //! Returns the local vector length on the calling processor of vectors in the multi-vector.
  int MyLength() const {return(MyLength_);};

  //! Returns the global vector length of vectors in the multi-vector.
  int GlobalLength() const {return(GlobalLength_);};

  //! Returns the stride between  vectors in the multi-vector (only meaningful if ConstantStride() is true).
  int Stride() const {return(Stride_);};
  
  //! Returns true if this multi-vector has constant stride between vectors.
  bool ConstantStride() const {return(ConstantStride_);};
  //@}

  /** Replace map, only if new map has same point-structure as current map.
      return 0 if map is replaced, -1 if not.
   */
  int ReplaceMap(const Epetra_BlockMap& map);

  //! @name I/O methods
  //@{ 

  //! Print method
  virtual void Print(ostream & os) const;
  //@}

  //! @name Expert-only unsupported methods
  //@{ 

  //! Reset the view of an existing multivector to point to new user data.
  /*! Allows the (very) light-weight replacement of multivector values for an
    existing multivector that was constructed using an Epetra_DataAccess mode of View.
    No checking is performed to see if the array of values passed in contains valid 
    data.  It is assumed that the user has verified the integrity of data before calling
    this method. This method is useful for situations where a multivector is needed
    for use with an Epetra operator or matrix and the user is not passing in a multivector,
    or the multivector is being passed in with another map that is not exactly compatible
    with the operator, but has the correct number of entries.

    This method is used by AztecOO and Ifpack in the matvec, and solve methods to improve
    performance and reduce repeated calls to constructors and destructors.

    @param ArrayOfPointers Contains the array of pointers containing the multivector data.

    \return Integer error code, set to 0 if successful, -1 if the multivector was not created as a View.

    \warning This method is extremely dangerous and should only be used by experts.
  */

  int ResetView(double ** ArrayOfPointers);

  //! Get pointer to MultiVector values
  double* Values() const {return Values_;};

  //! Get pointer to individual vector pointers
  double** Pointers() const {return Pointers_;};
  //@}

  // Expert-only function
  int Reduce(); 

 protected:

  // Internal utilities
  void Assign(const Epetra_MultiVector& rhs);
  int CheckInput();

  double *Values_;    // local MultiVector coefficients

 private:


  // Internal utilities

  int AllocateForCopy(void);
  int DoCopy(void);

  inline void UpdateDoubleTemp() const
  {if (DoubleTemp_==0) DoubleTemp_=new double[NumVectors_+1]; return;}

  inline void UpdateVectors()  const {if (Vectors_==0) { Vectors_ = new Epetra_Vector *[NumVectors_]; 
    for (int i=0; i<NumVectors_; i++) Vectors_[i] = 0;}
    return;
  }

  int AllocateForView(void);
  int DoView(void);
  int ChangeGlobalValue(int GlobalBlockRow,
                        int BlockRowOffset, 
                        int VectorIndex,
                        double ScalarValue,
                        bool SumInto);
  int ChangeMyValue(int MyBlockRow,
                    int BlockRowOffset, 
                    int VectorIndex,
                    double ScalarValue,
                    bool SumInto);

  int CheckSizes(const Epetra_SrcDistObject& A);

  int CopyAndPermute(const Epetra_SrcDistObject & Source,
                     int NumSameIDs, 
                     int NumPermuteIDs,
                     int * PermuteToLIDs,
                     int * PermuteFromLIDs,
                     const Epetra_OffsetIndex * Indexor);

  int PackAndPrepare(const Epetra_SrcDistObject & Source,
                     int NumExportIDs,
                     int * ExportLIDs,
                     int & LenExports,
                     char * & Exports,
                     int & SizeOfPacket,
                     int * Sizes,
                     bool & VarSizes,
                     Epetra_Distributor & Distor);
  
  int UnpackAndCombine(const Epetra_SrcDistObject & Source,
                       int NumImportIDs,
                       int * ImportLIDs, 
                       int LenImports, 
                       char * Imports,
                       int & SizeOfPacket, 
                       Epetra_Distributor & Distor,
                       Epetra_CombineMode CombineMode,
                       const Epetra_OffsetIndex * Indexor );

  double **Pointers_;        // Pointers to each vector;
  
  int MyLength_;
  int GlobalLength_;
  int NumVectors_;
  bool UserAllocated_;
  bool ConstantStride_;
  int Stride_;
  bool Allocated_;
  mutable double * DoubleTemp_;
  mutable Epetra_Vector ** Vectors_;
  Epetra_Util Util_;

};

#endif /* EPETRA_MULTIVECTOR_H */