/usr/include/trilinos/Epetra_MsrMatrix.h is in libtrilinos-dev 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 | /*@HEADER
// ***********************************************************************
//
// AztecOO: An Object-Oriented Aztec Linear Solver Package
// Copyright (2002) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
//@HEADER
*/
#ifndef _EPETRA_MSRMATRIX_H_
#define _EPETRA_MSRMATRIX_H_
#include "Epetra_Object.h"
#include "Epetra_CompObject.h"
#include "Epetra_RowMatrix.h"
#include "Epetra_Map.h"
#include "az_aztec.h"
#ifdef AZTEC_MPI
#include "Epetra_MpiComm.h"
#else
#include "Epetra_SerialComm.h"
#endif
class Epetra_Import;
class Epetra_Export;
class Epetra_Vector;
class Epetra_MultiVector;
//! Epetra_MsrMatrix: A class for constructing and using real-valued double-precision sparse compressed row matrices.
/*! The Epetra_MsrMatrix provides basic support for existing Aztec users who have an investment in the Aztec
DMSR matrix format. A user may pass an existing Aztec DMSR matrix to the constructor for this class. The
data from the DMSR matrix will \e not be copied. Thus, any changes the user makes to the DMSR matrix data will
be reflected in the associated Epetra_MsrMatrix object.
*/
class Epetra_MsrMatrix: public Epetra_Object, public Epetra_CompObject, public virtual Epetra_RowMatrix {
public:
//! @name Constructors/Destructor
//@{
//! Epetra_MsrMatrix constuctor using existing Aztec DMSR matrix.
/*! Creates a Epetra_MsrMatrix object by encapsulating an existing Aztec DMSR matrix. The
Aztec matrix must come in as an AZ_MATRIX pointer, and AZ_transform must have called.
Also, the AZ_matrix_type must be AZ_MSR_MATRIX. (If the matrix is stored in Amat, this
information is contained in Amat->data_org[AZ_matrix_type].)
\param In
Amat - A completely constructed Aztec DMSR matrix.
\param In
proc_config - An Aztec array containing information about the parallel machine.
*/
Epetra_MsrMatrix(int * proc_config, AZ_MATRIX * Amat);
//! Epetra_MsrMatrix Destructor
virtual ~Epetra_MsrMatrix();
//@}
//! @name Extraction methods
//@{
//! Returns a copy of the specified local row in user-provided arrays.
/*!
\param In
MyRow - Local row to extract.
\param In
Length - Length of Values and Indices.
\param Out
NumEntries - Number of nonzero entries extracted.
\param Out
Values - Extracted values for this row.
\param Out
Indices - Extracted global column indices for the corresponding values.
\return Integer error code, set to 0 if successful.
*/
int ExtractMyRowCopy(int MyRow, int Length, int & NumEntries, double *Values, int * Indices) const;
//! Returns a copy of the main diagonal in a user-provided vector.
/*!
\param Out
Diagonal - Extracted main diagonal.
\return Integer error code, set to 0 if successful.
*/
int ExtractDiagonalCopy(Epetra_Vector & Diagonal) const;
//@}
//! @name Computational methods
//@{
//! Returns the result of a Epetra_MsrMatrix multiplied by a Epetra_MultiVector X in Y.
/*!
\param In
TransA -If true, multiply by the transpose of matrix, otherwise just use matrix.
\param In
X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Out
Y -A Epetra_MultiVector of dimension NumVectorscontaining result.
\return Integer error code, set to 0 if successful.
*/
int Multiply(bool TransA, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Returns the result of a Epetra_MsrMatrix multiplied by a Epetra_MultiVector X in Y.
/*!
\param In
Upper -If true, solve Ux = y, otherwise solve Lx = y.
\param In
Trans -If true, solve transpose problem.
\param In
UnitDiagonal -If true, assume diagonal is unit (whether it's stored or not).
\param In
X - A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int Solve(bool Upper, bool Trans, bool UnitDiagonal, const Epetra_MultiVector& X, Epetra_MultiVector& Y) const;
//! Computes the sum of absolute values of the rows of the Epetra_MsrMatrix, results returned in x.
/*! The vector x will return such that x[i] will contain the inverse of sum of the absolute values of the
\e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A. Using the resulting vector from this function as input to LeftScale()
will make the infinity norm of the resulting matrix exactly 1.
\param Out
x -A Epetra_Vector containing the row sums of the \e this matrix.
\warning It is assumed that the distribution of x is the same as the rows of \e this.
\return Integer error code, set to 0 if successful.
*/
int InvRowSums(Epetra_Vector& x) const;
//! Scales the Epetra_MsrMatrix on the left with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(i)*A(i,j) where i denotes the row number of A
and j denotes the column number of A.
\param In
x -A Epetra_Vector to solve for.
\return Integer error code, set to 0 if successful.
*/
int LeftScale(const Epetra_Vector& x);
//! Computes the sum of absolute values of the columns of the Epetra_MsrMatrix, results returned in x.
/*! The vector x will return such that x[j] will contain the inverse of sum of the absolute values of the
\e this matrix will be sca such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A. Using the resulting vector from this function as input to
RighttScale() will make the one norm of the resulting matrix exactly 1.
\param Out
x -A Epetra_Vector containing the column sums of the \e this matrix.
\warning It is assumed that the distribution of x is the same as the rows of \e this.
\return Integer error code, set to 0 if successful.
*/
int InvColSums(Epetra_Vector& x) const;
//! Scales the Epetra_MsrMatrix on the right with a Epetra_Vector x.
/*! The \e this matrix will be scaled such that A(i,j) = x(j)*A(i,j) where i denotes the global row number of A
and j denotes the global column number of A.
\param In
x -The Epetra_Vector used for scaling \e this.
\return Integer error code, set to 0 if successful.
*/
int RightScale(const Epetra_Vector& x);
//@}
//! @name Matrix Properties Query Methods
//@{
//! If FillComplete() has been called, this query returns true, otherwise it returns false.
bool Filled() const {return(true);};
//! If matrix is lower triangular, this query returns true, otherwise it returns false.
bool LowerTriangular() const {return(false);};
//! If matrix is upper triangular, this query returns true, otherwise it returns false.
bool UpperTriangular() const {return(false);};
//@}
//! @name Atribute access functions
//@{
//! Returns a pointer to the Aztec Msr matrix used to create this object.
AZ_MATRIX * Amat() const {return(Amat_);};
//! Returns the infinity norm of the global matrix.
/* Returns the quantity \f$ \| A \|_\infty\f$ such that
\f[\| A \|_\infty = \max_{1\lei\lem} \sum_{j=1}^n |a_{ij}| \f].
*/
double NormInf() const;
//! Returns the one norm of the global matrix.
/* Returns the quantity \f$ \| A \|_1\f$ such that
\f[\| A \|_1= \max_{1\lej\len} \sum_{i=1}^m |a_{ij}| \f].
*/
double NormOne() const;
//! Returns the number of nonzero entries in the global matrix.
int NumGlobalNonzeros() const {return(NumGlobalNonzeros_);};
//! Returns the number of global matrix rows.
int NumGlobalRows() const {return(OperatorRangeMap().NumGlobalPoints());};
//! Returns the number of global matrix columns.
int NumGlobalCols() const {return(OperatorDomainMap().NumGlobalPoints());};
//! Returns the number of global nonzero diagonal entries.
int NumGlobalDiagonals() const{return(OperatorDomainMap().NumGlobalPoints());};
//! Returns the number of nonzero entries in the calling processor's portion of the matrix.
int NumMyNonzeros() const {return(NumMyNonzeros_);};
//! Returns the number of matrix rows owned by the calling processor.
int NumMyRows() const {return(OperatorRangeMap().NumMyPoints());};
//! Returns the number of matrix columns owned by the calling processor.
int NumMyCols() const {return(RowMatrixColMap().NumMyPoints());};
//! Returns the number of local nonzero diagonal entries.
int NumMyDiagonals() const {return(OperatorRangeMap().NumMyPoints());};
//! Returns the Epetra_Map object associated with the domain of this operator.
const Epetra_Map & OperatorDomainMap() const {return(*DomainMap_);};
//! Returns the Epetra_Map object associated with the range of this operator (same as domain).
const Epetra_Map & OperatorRangeMap() const {return(*DomainMap_);};
//! Implement the Epetra_SrcDistObjec::Map() function.
const Epetra_BlockMap& Map() const {return(RowMatrixRowMap());}
//! Returns the Row Map object needed for implementing Epetra_RowMatrix.
const Epetra_Map & RowMatrixRowMap() const {return(OperatorRangeMap());};
//! Returns the Column Map object needed for implementing Epetra_RowMatrix.
const Epetra_Map & RowMatrixColMap() const {return(*ColMap_);};
//! Returns the Epetra_Import object that contains the import operations for distributed operations.
virtual const Epetra_Import * RowMatrixImporter() const {return(Importer_);};
//! Returns a pointer to the Epetra_Comm communicator associated with this matrix.
const Epetra_Comm & Comm() const {return(*Comm_);};
//@}
//! @name I/O Methods
//@{
//! Print method
virtual void Print(ostream & os) const;
//@}
//! @name Additional methods required to support the Epetra_Operator interface
//@{
//! Returns a character string describing the operator
const char * Label() const {return(Epetra_Object::Label());};
//! If set true, transpose of this operator will be applied.
/*! This flag allows the transpose of the given operator to be used implicitly. Setting this flag
affects only the Apply() and ApplyInverse() methods. If the implementation of this interface
does not support transpose use, this method should return a value of -1.
\param In
use_transpose -If true, multiply by the transpose of operator, otherwise just use operator.
\return Returns -1 if use_transpose is true, because it is not supported.
*/
int SetUseTranspose(bool use_transpose)
{
if (use_transpose == true) return(-1);
return(0);
}
//! Returns the result of a Epetra_Operator applied to a Epetra_MultiVector X in Y.
/*!
\param In
X - A Epetra_MultiVector of dimension NumVectors to multiply with matrix.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int Apply(const Epetra_MultiVector& X, Epetra_MultiVector& Y) const {
return(Epetra_MsrMatrix::Multiply(Epetra_MsrMatrix::UseTranspose(), X, Y));};
//! Returns the result of a Epetra_Operator inverse applied to an Epetra_MultiVector X in Y.
/*! In this implementation, we use several existing attributes to determine how virtual
method ApplyInverse() should call the concrete method Solve(). We pass in the UpperTriangular(),
the Epetra_MsrMatrix::UseTranspose(), and NoDiagonal() methods. The most notable warning is that
if a matrix has no diagonal values we assume that there is an implicit unit diagonal that should
be accounted for when doing a triangular solve.
\param In
X - A Epetra_MultiVector of dimension NumVectors to solve for.
\param Out
Y -A Epetra_MultiVector of dimension NumVectors containing result.
\return Integer error code, set to 0 if successful.
*/
int ApplyInverse(const Epetra_MultiVector& X,
Epetra_MultiVector& Y) const
{(void)X; (void)Y; return(-1);}
//! Returns true because this class can compute an Inf-norm.
virtual bool HasNormInf() const {return(true);}
//! Returns the current UseTranspose setting.
virtual bool UseTranspose() const {return(false);}
//@}
//! @name Additional methods required to implement RowMatrix interface
//@{
//! Return the current number of values stored for the specified local row.
/*! Similar to NumMyEntries() except NumEntries is returned as an argument
and error checking is done on the input value MyRow.
\param In
MyRow - Local row.
\param Out
NumEntries - Number of nonzero values.
\return Integer error code, set to 0 if successful.
*/
int NumMyRowEntries(int MyRow, int & NumEntries) const;
//! Returns the maximum of NumMyRowEntries() over all rows.
int MaxNumEntries() const;
//@}
private:
int GetRow(int Row) const;
AZ_MATRIX * Amat_;
int * proc_config_;
mutable double * Values_;
mutable int * Indices_;
mutable int MaxNumEntries_;
#ifdef AZTEC_MPI
Epetra_MpiComm * Comm_;
#else
Epetra_SerialComm * Comm_;
#endif
Epetra_Map * DomainMap_;
Epetra_Map * ColMap_;
Epetra_Import * Importer_;
mutable Epetra_MultiVector * ImportVector_;
int NumGlobalNonzeros_;
int NumMyNonzeros_;
int NumMyRows_;
int NumMyCols_;
mutable double NormInf_;
mutable double NormOne_;
//! Copy constructor (not accessible to users).
Epetra_MsrMatrix(const Epetra_MsrMatrix & Matrix) {(void)Matrix;}
};
#endif /* _EPETRA_MSRMATRIX_H_ */
|